
Automatic Schema Evolution in ROOT

CHEP09: Prague, 24 March 2009
Philippe Canal/FNAL

René BRUN/CERN, Lukasz Janyst/ CERN,
Jérôme Lauret/BNL, Valeri Fine/BNL

Apples And Oranges

Simple Automatic Schema Evolution.

•  Easily lets you transform into

Hand Coded Schema Evolution

•  Allows to transform into

•  Requires specific coding for each type of apple and orange.

 Complex Automatic Schema Evolution
•  Allow almost any kind of transformation

•  even apples to oranges

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 2

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 3

A Brief history of ROOT’s support
for Schema Evolution

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 4

Version 0.9
•  Hand-written Streamers

Version 1
•  Streamers generated via rootcint
•  Support for Class Versions

Version 2.25
•  Support for ByteCount
•  Several attempts to introduce automatic class evolution
•  Simple support for STL
•  Only hand coded and generated streamer function, Schema evolution done by hand
•  I/O requires : ClassDef, ClassImp and CINT Dictionary

Version 2.26 – 3.00
•  Automatic schema evolution
•  Use TStreamerInfo (with info from dictionary) to drive a general I/O routine.
•  Self describing files
•  MakeProject can regenerate the file’s classes layout

ROOT I/O History

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 5

ROOT I/O History
Version 3.03/05

•  Lift need for ClassDef and ClassImp for classes not inheriting from TObject
•  Any non TObject class can be saved inside a TTree or as part of a TObject-class
•  TRef/TRefArray

Version 4.00/08
•  Automatic versioning of ‘Foreign’ classes
•  Non TObject classes can be saved directly in TDirectory

Version 4.04/02
•  Large TTrees, TRef autoload
•  TTree interface improvements, Double32 enhancements

Version 5.08/00
•  Fast TTree merging, Indexing of TChains, Complete STL support.

Version 5.12/00
•  Prefetching, TTreeCache
•  TRef autoderefencing

Version 5.16/00
•  Improved modularity (libRio)

Version 5.22/00
•  Data Model Evolution (brought to you courtesy by BNL/STAR/ATLAS)

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 6

Early Days

At first, streamers needed to be fully written by hand

•  Very labor intensive and error prone.

Dictionaries became the corner-stone of the I/O
•  Allowed streaming of user class with minimal intrusion and

no complex ddl system.

•  rootcint generated default C++ Streamer function

•  But all schema evolution required to maintain the streamer
functions by hand

Streamers in 0.90/08

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 7

class TAxis :
 public TNamed,
 public TAttAxis
{
private:
 Int_t fNbins;
 Axis_t fXmin;
 Axis_t fXmax;
 TArrayF fXbins;
 …
 ClassDef(TAxis,1);
};

void TAxis::Streamer(TBuffer &b)
{
 if (b.IsReading()) {
 Version_t R__v = b.ReadVersion();
 TNamed::Streamer(b);
 TAttAxis::Streamer(b);
 b >> fNbins;
 b >> fXmin;
 b >> fXmax;
 fXbins.Streamer(b);
 } else {
 b.WriteVersion(TAxis::IsA());
 TNamed::Streamer(b);
 TAttAxis::Streamer(b);
 b << fNbins;
 b << fXmin;
 b << fXmax;
 fXbins.Streamer(b);
 }
} rootcint

Streamers in 0.90/08

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 8

class TAxis :
 public TNamed,
 public TAttAxis
{
private:
 Int_t fNbins;
 Axis_t fXmin;
 Axis_t fXmax;
 TArrayF fXbins;

 Int_t fFirst;
 Int_t fLast;
 …
 ClassDef(TAxis,2);
};
// New member fFirst and fLast.

void TAxis::Streamer(TBuffer &b)
{
 if (b.IsReading()) {
 Version_t R__v = b.ReadVersion();
 TNamed::Streamer(b);
 TAttAxis::Streamer(b);
 b >> fNbins;
 b >> fXmin;
 b >> fXmax;
 fXbins.Streamer(b);
 if (R__v > 3) {
 R__b >> fFirst;
 R__b >> fLast;
 }
 } else {
 b.WriteVersion(TAxis::IsA());
 TNamed::Streamer(b);
 TAttAxis::Streamer(b);
 b << fNbins;
 b << fXmin;
 b << fXmax;
 fXbins.Streamer(b);
 }
} developer

Streamers in 2.25

As of version 2.25 (1997), the ROOT streamers fully
supports complex schema evolution.

However:
•  They were becoming overly complex due to the

increasing number of versions to be kept track of.

•  They were not supporting forward compatibility
There was no way to read in an older version of ROOT
a file written with a newer version of ROOT.

•  They needed to be updated for almost any small
change in the classes.

•  Reading the object required access to the original compiled code.

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 9

2000 - StreamerInfo
ROOT Files are now self describing

•  Dictionary for persistent classes written to the file when closing the
 file.

•  ROOT files can be read by foreign readers (JAS for example)
•  Support for Backward and Forward compatibility
•  Files created in 2003 can be read in 2015
•  Classes (data objects) for all objects in a file can be regenerated via

 TFile::MakeProject
•  Data can be read without the original code

Support for simple automatic schema evolution:
•  Change the order of the members
•  Change simple data type (float to int)
•  Add or remove data members, base classes
•  Migrate a member to base class

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 10

Streamers in 3.00 - StreamerInfo

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 11

class TAxis :
 public TNamed,
 public TAttAxis
{
private:
 Int_t fNbins;
 Axis_t fXmin;
 Axis_t fXmax;
 TArrayF fXbins;
 Int_t fFirst;
 Int_t fLast;
 TString fTimeFormat;
 Bool_t fTimeDisplay;
 TObject *fParent; //!
 …
 ClassDef(Taxis,7);
};

void TAxis::Streamer(TBuffer &R__b)
{
 // Stream an object of class TAxis.

 if (R__b.IsReading()) {
 UInt_t R__s, R__c;
 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
 fParent = 0;
 if (R__v > 5) {
 TAxis::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
 return;
 }
 //====process old versions before automatic schema evolution

 //====end of old versions

 } else {
 TAxis::Class()->WriteBuffer(R__b,this);
 }
}

developer

StreamerInfo

Dictionary

•  Routine class maintenance
does not require manual updates.
•  Allow for pre and post streaming
operation (setting a transient
member)

Object wise Streaming:
•  For each object all data members

are streamed sequentially
in the same buffer.

•  This is the original technique using
Streamer functions.

Member wise streaming:
•  For each member the value of this member

for all objects is stored
•  Each member has its own buffer
•  Requires use of StreamerInfo
•  Advantages:

Objectwise vs. Memberwise

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 12

z3 y3 x3 z2 y2 x2 z1 y1 x1

TTree

xn
…
…

yn
…
…

zn
…
…

x3
x2
x1

y3
y2
y1

z3
z2
z1

•  Better compression
•  Better read/write time
•  Ability to read partial
 objects

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 13

Simple Automatic Schema Evolution

Support
•  Changing the order of the members
•  Changing simple data type (float to int)
•  Adding or removing data members, base classes
•  Migrating a member to base class

Limitations
•  Handle only removal, addition of members and change in simple

type
•  Does not support complex change in type, change in semantic

(like units)
•  Further customization requires using a Streamer function

•  Allow complete flexibility including setting transient members

However they can NOT be used for member-wise streaming
(TTrees)

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 14

 Complex Automatic Schema Evolution

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 15

Complex Automatic Schema Evolution
Complex Automatic Schema Evolution solves existing limitations

•  Assign values to transient data members

•  Rename classes

•  Rename data members

•  Change the shape of the data structures or convert one class structure to
another

•  Change the meaning of data members

•  Ability to access the TBuffer directly when needed

•  Ensure that the objects in collections are handled in the same way as the
ones stored separately

•  Transform data before writing

•  Make things operational also in bare ROOT mode

•  Supported in object-wise, member-wise and split modes.

User
Shared library User
Shared library

User can now supply a function to convert individual data members
 from disk to memory and rule defining when to apply the rules

A schema evolution rule is composed of:
•  sourceClass; version, checksum: identifier of the on disk class
•  targetClass: name of the class in memory
•  source: list of type and name of the on disk data member needed for the rule
•  target: list of in memory data member modified by the rules.
•  include: list header files needed to compile the conversion function
•  code: function or code snippet to be executed for the rule

Rules can be registered via:
•  LinkDef.h, Selection.xml, C++ API (via TClass), ROOT files

Complex Automatic Schema Evolution

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 16

Header.h

Selection.xml

LinkDef.h

C++ Code

rootcint

genreflex
ROOT file

ROOT I/O system User
Shared library

Dictionary Generation Syntax

Example of registering a rule from a LinkDef file:

Example of registering a rule from a Selection.xml file:

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 17

#pragma read sourceClass=”oldname” version="[1-]" checksum=“[12345,23456]” \
 source=”type1 var; type2 var2;" \
 targetClass=“newname” target=”var3" \
 include=“<cmath> <myhelper>” \
 code=”{ … ‘code calculating var3 from var1 and var2’ … }"

<read sourceClass=”oldname” version="[4-5,7,9,12-]” checksum="[12345,123456]”
 source=”type1 var; type2 var2;”
 targetClass=”newname” target=”var3”
 include=“<cmath> <myhelper>”
<![CDATA[
 … ‘code calculating var3 from var1 and var2’ …
]]>
</read>

C++ Syntax

Example of registering a rule from C++:

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 18

// Create the rule
rule = new TSchemaRule();
rule->SetSourceClass(“oldname”); // Name of the class on file
rule->SetVersion(“[1-”); // Set of version numbers this rule applies to
rule->SetChecksum(“[12345]”); // Set of checkums this rules applies to
rule->SetSource(“type1 var; type2 var2;”); // Where to get the info from
rule->SetTarget(“var3”); // Name of the variable to set
rule->SetInclude(“<cmath> <myhelper>”); // When needed to compile the code
rule->SetCode(“{ … ‘code calculating var3 from var1 and var2’ … }”);
rule->SetRuleType(TSchemaRule::kReadRule);
rule->SetReadFunctionPointer(functionptr); // Alternative to the ‘string’ code.

// Register the rule
TClass::GetClass(newname)->GetSchemaRules(kTRUE)->AddRule(rule);

Setting A Transient Member

This example shows how to initialize a transient member

source=“” indicates that no input is needed
version=“[1-] indicates that the rule applies to all versions of the class

target=“fCached indicates which member will be modified by the rule

This resolves the outstanding issues where transient members are
currently not updated when (re-)reading an object from a split branch

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 19

class MyClass {
private:
 Type fComplexData;
 Double_t fValue; //! Calculated from fComplexData
 Bool_t fCached; //! True if fValue has been calculated
public:
 double GetValue() { if (!fCached) { fValue = … ; }; return fValue; }

#pragma read sourceClass="MyClass" version="[1-]” source=””
 targetClass=”MyClass" \
 target=”fCached" \
 code="{ fCached = false; }"

MyClass.h

MyClassLinkDef.h

source=””

version="[1-]

target=”fCached”

Merging Several Data Members

In MyClass version 9, to save memory space, 3 data members were merged.

source=“int fX;..”: indicates the types and name of the original members.
onfile.fX gives access to the value of fX read from the buffer.

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 20

class MyClass {
private:
 int fX;
 int fY; // Values between 0 and 999
 int fZ; // Values between 0 and 9
public:
 int GetX() { return fX; }
 int GetY() { return fY; }
 ClassDef(MyClass,8);
}

MyClass.h class MyClass {
private:
 long fValues; // Merging of fX, fY and fZ
public:
 int GetX() { return fValues / 1000; }
 int GetY() { return (fValues%1000)-GetZ(); }
 int GetZ() { return fValues % 10;
 ClassDef(MyClass,9);
}

MyClass.h

#pragma read sourceClass="MyClass" version="[8]" targetClass="MyClass " \
 source="int fX; int fY; int fZ" target=“fValues" \
 code="{ fValues = onfile.fX*1000 + onfile.fY*10 + onfile.fZ; }"

MyClassLinkDef.h

onfile.fX

source="int fX; … ”

Renaming A Class

To clarify its purpose the class needed to be renamed.

•  sourceClass and targetClass are respectively MyClass and Properties

•  1st rule indicates that version 9 of MyClass can be read directly into a Properties
 object using only the simple automatic schema evolution rules.

•  2nd rule indicates that in addition to the simple rules, a complex conversion needs
 to be applied when reading version 8 of MyClass into a Properties object.

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 21

class MyClass {
private:
 int fX;
 int fY; // Values between 0 and 999
 int fZ; // Values between 0 and 9
public:
 int GetX() { return fX; }
 int GetY() { return fY; }
 ClassDef(MyClass,8);
}

MyClass.h class Properties {
private:
 long fValues; // Merging of fX, fY and fZ
public:
 int GetX() { return fValues / 1000; }
 int GetY() { return (fValues%1000)-GetZ(); }
 int GetZ() { return fValues % 10;
 ClassDef(Properties,2);
}

Properties.h

#pragma read sourceClass="MyClass" version="[9]" targetClass="Properties”
#pragma read sourceClass="MyClass" version="[8]" targetClass="Properties" \
 source="int fX; int fY; int fZ" target=“fValues" \
 code="{ fValues = onfile.fX*1000 + onfile.fY*10 + onfile.fZ; }” PropertiesLinkDef.h

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 22

Complex Evolution – Nested Objects
The same version of a containing class can hold several versions of
the nested object’s class.

•  Event version 2 contains an extended Track
•  The Track class underwent a couple of updates while Event did not change

•  Event version 3 contains
•  fCompactTrack– a more compact Track
•  fId – with information that used to be kept in the extended Track

#pragma read sourceClass=“Event" version="[2]" targetClass=“Event" \
 source=“Track fTrack;" target=“fId; fCompactTrack;" \
 code="{ if(onfile.fTrack->GetVersion() == 3) \
 { \
 fId = onfile.fTrack->GetMember<double>(id_fTrack_fB) + \
 onfile.fTrack->GetMember<double>(id_fTrack_fC); \
 onfile.fTrack->Load(fCompactTrack); \
 } \
 else if (onfile.fTrack->GetVersion() == 4) \
 { \
 fId = onfile.fTrack->GetMember<double>(id_fTrack_fB); \
 onfile.fTrack->Load(fCompactTrack); \
 }; }"

Copy data from Track to fCompactTrack by applying all
the registered rules to evolve from Track to CompactTrack

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 23

Analysis Backward & Forward Compatibility
Time T1:

•  MyClass has fPx, fPy, fPz
•  write file t1.root
•  write analysis work1.C using fPx, fPy, fPz

Time T2:
•  MyClass has fR, fT, fP
•  write file t2.root
•  write analysis work2.C using fR, fT, fP

Backward Compatibility:

•  The user can run work2.C on t1.root or t2.root

Forward Compatibility:

•  The user can run work1.C on t1.root or t2.root

work1.C
(fPx,fPy,fPz)

t1.root
(fPx,fPy,fPz)

work2.C
(fR, fT, fP)

t2.root
(fR,fT,fP)

Rule B: (fR, fT, fP) -> (fPx, fPy,fPz)

Rule A: (fPx, fPy,fPz) -> (fR, fT, fP)

Summary

•  New Complex Schema Evolution:

  Increase flexibility and performance when reading old files.

 Gives possibility to perform complex evolution even without
user classes, the information being in the ROOT file

  Powerful

  Fun

CHEP 2009 • Philippe Canal, Fermilab ROOT Data Model Evolution March 2009 24

