

Flavour-specific asymmetry and LHCb

Robert W. Lambert

On behalf of the LHCb collaboration

Introduction

➢ DØ exclusive asymmetry <u>hep-ex 0904.3907</u>

$$B_s^0 \to D_s^{\mp} \mu^{\pm} \nu_{\mu} X^0 \qquad a_{fs}^s = [1.7 \pm 9.1(\text{stat}) + 1.4 + 1.4 + 1.5 + 10^{-3}) \times 10^{-3}$$

DØ Inclusive asymmetry <u>hep-ex 1005.2757</u>

$$b\bar{b} \to \mu^{\pm}\mu^{\pm}... \qquad A^{b} = [-9.57 \pm 2.51(\text{stat}) \pm 1.46(\text{syst})] \times 10^{-3}$$

➢ What can we do at LHCb?

Literature

Reading material:

- LHCb
 - CERN-LHCb-2007-054
 - CERN-THESIS-2008-045
 - CERN-THESIS-2009-001
 - CERN-THESIS-2010-076

Theory

- hep-ph 0406300
- hep-ph 0612167 [JHEP]
 - hep-ph 0605028
- [PRL]

[PRD]

[PRL]

<u>hep-ph 0604112</u>

U. Nierste

Paul's Thesis

Rob's Thesis

Ken's Thesis

- A. Lenz, U. Nierste
- Y. Grossman et al.

Public note from old Monte Carlo

- [PRL]
- Z. Ligeti et al.

Other measurements

- hep-ex 0505017
- hep-ex 0202041 [PRL]
- hep-ex 0101006
- Note 9015

Babar

Belle

- Cleo
 - **CDF** inclusive

- 1. Theory .. from an experimentalist
- 2. Experimental Status
- 3. Complications at LHCb
- 4. Why LHCb?
- 5. Measurements at LHCb
- 6. Real data highlights
- 7. Outlook and Prospects
- 8. Conclusions

- Flavour-specific decays
 - Favoured/Allowed $B_q^0 \longrightarrow f$
 - Not allowed at tree $B_q^0 \longrightarrow \overline{f}$
 - Through mixing $B_q^0 \to \overline{B}_q^0 \to \overline{f}$

Flavour specific asymmetry, a_{fs}, parameterises CPV in mixing

$$a_{fs}^{q} \propto A_{fs}^{q}(t) = \frac{\Gamma\left(B_{q}^{0} \text{ or } \overline{B}_{q}^{0} \to \overline{f}\right) - \Gamma\left(B_{q}^{0} \text{ or } \overline{B}_{q}^{0} \to f\right)}{\Gamma\left(B_{q}^{0} \text{ or } \overline{B}_{q}^{0} \to \overline{f}\right) + \Gamma\left(B_{q}^{0} \text{ or } \overline{B}_{q}^{0} \to f\right)}$$

R Lambert, CERN

CERN CPV, 18th June 2010

Three different parameters fully constrain b-mixing

$$i\frac{d}{dt}\left(\begin{vmatrix} B_{q}^{0}(t) \\ B_{q}^{0}(t) \end{vmatrix}\right) = \left(\underbrace{M_{q}}_{q} - \frac{i}{2} \prod_{q} \right) \left(\begin{vmatrix} B_{q}^{0}(t) \\ B_{q}^{0}(t) \end{vmatrix}\right)$$

$$\Delta \Gamma_{q} = \left(\Gamma_{H}^{q} - \Gamma_{L}^{q}\right) = 2\left|\Gamma_{12}^{q}\right| \arg\left\{\frac{\Gamma_{12}^{q}}{M_{12}^{q}}\right\}, \quad \Delta m_{q} = \left(M_{H}^{q} - M_{L}^{q}\right) = 2\left|M_{12}^{q}\right|, \quad a_{fs}^{q} = \operatorname{Im}\left\{\frac{\Gamma_{12}^{q}}{M_{12}^{q}}\right\}$$

\succ a_{fs} is very small in the standard model

$$\left(a_{fs}^{d}\right)^{SM} = -(5.0 \pm 1.1) \times 10^{-4}$$
$$\left(a_{fs}^{s}\right)^{SM} = (2.1 \pm 0.4) \times 10^{-5}$$

- \succ a_{fs} is sensitive to new physics (NP):
 - Sensitive to loop contributions
 - Sensitive to new CPV phases

 \succ If we allow a single NP phase in the mixing Θ

$$a^{NP} \approx \operatorname{Im}\left\{\frac{\Gamma_{12}^{SM}}{M_{12}^{SM}}\right\} \cos \Theta - \operatorname{Re}\left\{\frac{\Gamma_{12}^{SM}}{M_{12}^{SM}}\right\} \sin \Theta$$

- \succ a_{fs} is sensitive to new physics (NP):
 - Sensitive to loop contributions
 - Sensitive to new CPV phases

 \succ If we allow a single NP phase in the mixing Θ

$$a^{NP} \approx a_{fs}^{SM} \cos \Theta - \operatorname{Re}\left\{\frac{\Gamma_{12}^{SM}}{M_{12}^{SM}}\right\} \sin \Theta$$

- \succ a_{fs} is sensitive to new physics (NP):
 - Sensitive to loop contributions
 - Sensitive to new CPV phases

 \succ If we allow a single NP phase in the mixing Θ

$$a^{NP} \approx 2.1 \times 10^{-5} \cos \Theta + 4.0 \times 10^{-3} \sin \Theta$$

> Up to **200-times** the SM ... but ... $(4x10^{-3}) < D\emptyset$ measurement

R Lambert, CERN

CERN CPV, 18th June 2010

Experimental Status

B-factories

hep-ph 0605028

Babar, Belle, Cleo all use the di-muon sample

- Know the initial state Y(4S)
- Time-integrated number-counting of di-muons
- Possible muon detector asymmetry is important to measure

hep-ex 0904.3907

> DØ have also made an exclusive measurement

- Search for the full decay chain in the data
- Requires full reconstruction
- Flavour-tagging provides extra information
- ✓ Lower and more easily understood backgrounds
- x Extra detector asymmetry
- x Lower statistics

$$A_{SL} = \frac{\Gamma(\overline{B_s^0} \to f) - \Gamma(\overline{B_s^0} \to \overline{f})}{\Gamma(\overline{B_s^0} \to f) + \Gamma(\overline{B_s^0} \to \overline{f})} = a_{fs}^s$$
$$a_{fs}^s = [1.7 \pm 9.1(\text{stat}) \quad {}^{+1.4}_{-1.5}(\text{syst})] \times 10^{-3}$$

CDF Inclusive

Note 9015

CDF use only the di-muon sample

- Don't know the initial state (pp)
- Time-integrated number-counting
- Possible muon detector asymmetry is important to measure

CERN CPV, 18th June 2010

New DØ inclusive

> DØ used primarily the di-muon sample

hep-ex 1005.2757

- Don't know the initial state (pp)
- Time-integrated number-counting
- Possible muon detector asymmetry is important to measure

hep-ex 1005.2757

- Key Systematics (it's difficult to be inclusive!)
 - Kaons decaying in-flight
 - Punch-through of hadrons to muons
- Key methods
 - Rely on real data, cross-check with well-tuned Monte Carlo
 - Use the inclusive single muon sample to get extra information
 - Reverse magnets to remove most detector asymmetry
 - Do many many cross-checks in different phase-space regions
- ➢ Result, 3.2σ !

$$SM = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$$
 $A^{b} \approx +(1 \pm 0.3) \%$

- Before the New DØ Inclusive Measurement
 - A lot of measurements
 - All consistent with SM +/- 1%
- The New DØ Inclusive Measurement
 - First evidence of departure from the SM
 - Statistics-limited, so may improve over the next year
- ➤ A lot of theory interest ☺, so, how will LHCb help?
- > ... The situation is significantly more complicated ...

Complications

The simple formula

$$A_{fs}^{q}(t) = \frac{\Gamma(f) - \Gamma(\bar{f})}{\Gamma(f) + \Gamma(\bar{f})}$$

10⁻³ -> **10** ⁻⁵

The simple formula

$$A_{fs}^{q}(t) = \frac{\Gamma(f) - \Gamma(\bar{f})}{\Gamma(f) + \Gamma(\bar{f})}$$

$$A_{fs}^{q}(t) = \frac{a_{fs}^{q}}{2} - \frac{\delta_{c}^{q}}{2} - \left(\frac{a_{fs}^{q}}{2} + \frac{\delta_{p}^{q}}{2}\right) \frac{\cos(\Delta m_{q}t)}{\cosh(\Delta \Gamma_{q}t/2)} + \frac{\delta_{b}^{q}}{2} \left(\frac{B}{S}\right)^{q}$$

$$10^{-3} \rightarrow 10^{-5} \qquad 10^{-2} \qquad 10^{-2} \qquad 10^{-2}$$

Polluting asymmetries are much larger than a_{fs}

- Detector asymmetry $\delta_c \sim (10^{-2})$
- Production asymmetry $\delta_p \sim (10^{-2})$
- Background asymmetry $\delta_{b} \sim (10^{-3})$

$$10^{-3}$$

$$\delta_{c} = \frac{\varepsilon(\bar{f}_{i})}{\varepsilon(f_{i})} - 1$$

$$\delta_{p} = \frac{N(\bar{I}_{0})}{N(\bar{I}_{0})} - 1$$

$$\delta_{b} = \frac{B/S}{B/S} - 1$$

LHCb

MC Asymmetry in Muons

Matter detector \rightarrow hadronic interactions are asymmetric \geq

- Magnet divides +/- charge, allowing +/- detector asymmetry
 - We need to reverse the magnet regularly

> An amazing machine

> Unfortunately also not CP symmetric

R Lambert, CERN

Production Asymmetry, δ_p LHCb

> LHC is a proton-proton collider: not CP-symmetric

- > LHCb is at high rapidity where production asymm. are largest
- \succ There is never a simple control channel to measure δ_{p}

CERN CPV, 18th June 2010

Why LHCb?

Why LHCb?

- LHCb is a dedicated, precision, b-physics experiment
- More statistics: we're in the forward region, and at LHC

Being Timely

Proper Time: LHCb Velo precise down to 35 fs!

Being Precise

- Particle ID: separation handled by dedicated subdetectors
- Two RICHes, Calorimetry and Muon system

- > Our forte: exclusive, reconstructed, *b*-decays
- > In particular, time-dependent measurements

Measurements

Measurements

$$b\overline{b} \rightarrow \mu^{\pm}\mu^{\pm}...$$

Exclusive

$$B_{s}^{0} \rightarrow D_{s}^{\mp} \pi^{\pm}$$
$$B_{d}^{0} \rightarrow D^{\mp} \mu^{\pm} \nu_{\mu} X^{0}$$
$$B_{s}^{0} \rightarrow D_{s}^{\mp} \mu^{\pm} \nu_{\mu} X^{0}$$

Subtraction method

combine
$$B_s^0 \rightarrow D_s^{\mp} \mu^{\pm} \nu_{\mu} X^0$$
 and $B_d^0 \rightarrow D^{\mp} \mu^{\pm} \nu_{\mu} X^0$

Channel

$$bb \rightarrow \mu^{\pm} \mu^{\pm} \dots$$
 ~10⁸ per fb⁻¹

Measured by DØ (see earlier)

$$A^{b} \approx \frac{a_{fs}^{s} + a_{fs}^{d}}{2}$$

$$SM = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$$

Complications

- Physics!
- Production asymmetry: N(b)≠N(anti-b) [in acceptance]
- PYTHIA predicts $\delta_{p}(b) = (+3.4 \pm 0.3) \times 10^{-3}$

Mitigating factors

None, difficult to interpret this measurement

Inclusive at LHCb

Channel

$$b \overline{b} \rightarrow \mu^{\pm} \mu^{\pm} \dots$$
 ~10⁸ per fb⁻¹

Measured by DØ (see earlier)

$$A^{b} \approx \frac{a_{fs}^{s} + a_{fs}^{d}}{2}$$

$$SM = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$$

Complications

- Physics!
- Production asymmetry: N(b)≠N(anti-b) [in acceptance]
- PYTHIA predicts $\delta_{p}(b) = (+3.4 \pm 0.3) \times 10^{-3}$

Mitigating factors

None, difficult to interpret this measurement

CERN-THESIS-2008-045

CERN-LHCb-2007-017

Channel

 $B_s^0 \rightarrow D_s^{\mp} \left(K^+ K^- \pi^{\mp} \right) \pi^{\pm}$ ~10⁵ per fb⁻¹

Entries / (4 Mev/c²) 00091 (4 Mev/c²) 00001 (4 Mev/c²) Monte-Carlo! $---B_s \rightarrow D_s \pi$ $-B_d \rightarrow D\pi$ **14000**[⊨] incl. bb **10000** ⊟ 8000 **6000**⊟ 4000E 2000 0 5310 5350 5390 5430 5470 $M_{B_{e}}$ (MeV/c²)

Channel

 $B_s^0 \rightarrow D_s^{\mp} \left(K^+ K^- \pi^{\mp} \right) \pi^{\pm}$ ~10⁵ per fb⁻¹

<u>CERN-THESIS-2008-045</u> <u>CERN-LHCb-2007-054</u>

$$A_{fs}^{s}(t) = \frac{a_{fs}^{s}}{2} - \frac{\delta_{c}^{s}}{2} - \left(\frac{a_{fs}^{s}}{2} + \frac{\delta_{p}^{s}}{2}\right) \frac{\cos\left(\Delta m_{s}t\right)}{\cosh\left(\Delta\Gamma_{s}t/2\right)} + \frac{\delta_{b}^{s}}{2} \left(\frac{B}{S}\right)^{s}$$

Complications

• Must fix either δ_c or δ_p in the fit – (δ_b can be fit beforehand)

Mitigating factors

- Detector asymmetry small ~10⁻⁴
- Fit a_{fs} and δ_{p} . With excellent proper time resolution (35 fs)

Hadronic at LHCb

Channel

$$B_s^0 \rightarrow D_s^{\mp} \left(K^+ K^- \pi^{\mp} \right) \pi^{\pm}$$
 ~10⁵ per fb⁻⁷

Measures

$$A_{fs}^{s}(t) = \frac{a_{fs}^{s}}{2} - \frac{\delta_{c}^{s}}{2} - \left(\frac{a_{fs}^{s}}{2} + \frac{\delta_{p}^{s}}{2}\right) \frac{\cos\left(\Delta m_{s}t\right)}{\cosh\left(\Delta\Gamma_{s}t/2\right)} + \frac{\delta_{b}^{s}}{2} \left(\frac{B}{S}\right)^{s}$$

Complications

• Must fix either δ_c or δ_p in the fit – (δ_b can be fit beforehand)

Mitigating factors

- Detector asymmetry small ~10⁻⁴
- Fit a_{fs} and δ_{p} . With excellent proper time resolution (35 fs)

)07-054

Semi-leptonic

CERN-LHCb-2007-054

$$\succ \text{ Channel } (q = s/d)$$

$$B_q^0 \rightarrow D_q^{\mp} \mu^{\pm} v_{\mu} X^0 \qquad \sim 10^6 \text{ per fb}^{-1}$$

Semi-leptonic

CERN-LHCb-2007-054

 $B_{q}^{0} \rightarrow D_{q}^{\mp} \mu^{\pm} \nu_{\mu} X^{0}$ ~10⁶ per fb⁻¹

Measures

$$A_{fs}^{q}(t) = \frac{a_{fs}^{q}}{2} - \frac{\delta_{c}^{q}}{2} - \left(\frac{a_{fs}^{q}}{2} + \frac{\delta_{p}^{q}}{2}\right) \frac{\cos\left(\Delta m_{q}t\right)}{\cosh\left(\Delta\Gamma_{q}t/2\right)} + \frac{\delta_{b}^{q}}{2} \left(\frac{B}{S}\right)^{q}$$

Complications

- Missing neutrino makes proper-time resolution worse (≥120 fs?)
- Detector asymmetry large and difficult to measure

Mitigating factors

• Lots of statistics, but this makes δ_c even more important

Complications

- Missing neutrino makes proper-time resolution worse (≥120 fs?)
- Detector asymmetry large and difficult to measure

Mitigating factors

• Lots of statistics, but this makes δ_c even more important

- > Take B_s/B_d with the same final states ($f = KK\pi \mu$)
 - ✓ Background asymmetry: 2D fit in mass spectra
 - ✓ Production asymmetry: fit with proper-time dependence
 - ✓ Detector asymmetry: the same in each decay...
- Do a simultaneous time-dependent fit
- > Measure the **difference** between B_s and B_d

$$\Delta A_{fs}^{s,d} \approx \frac{(a_{fs}^{s} - \delta_{c}) - (a_{fs}^{d} - \delta_{c})}{2} = \frac{a_{fs}^{s} - a_{fs}^{d}}{2}$$
$$SM = (+2.5_{-0.6}^{+0.5}) \times 10^{-4}$$

Very comparible to the DØ measurement, but orthogonal to it!

R Lambert, CERN

CERN CPV, 18th June 2010

The subtraction method

- > Take B_s/B_d with the same final states (f = KK
 - Background asymmetry: 2D fit in mass spection
 - ✓ Production asymmetry: fit with proper-time depe
 - ✓ Detector asymmetry: the same in each decay...
- Do a simultaneous time-dependent fit
- > Measure the **difference** between B_s and B_d

$$\Delta A_{fs}^{s,d} \approx \frac{(a_{fs}^{s} - \delta_{c}) - (a_{fs}^{d} - \delta_{c})}{2} = \frac{a_{fs}^{s} - a_{fs}^{d}}{2}$$
$$SM = (+2.5_{-0.6}^{+0.5}) \times 10^{-4}$$

Very comparible to the DØ measurement, but orthogonal to it!

R Lambert, CERN

CERN CPV, 18th June 2010

Real data highlights

Real Data B_s

Real Data B_d

n.b. Selection with no requirement for a muon (need ~40 nb⁻¹)

Sensitivities and Outlook

Sensitivity estimates

- Full MC used to tune toy MC
- Massive toy MC studies done in:
 - <u>CERN-LHCb-2007-054</u>
 - CERN-THESIS-2008-045
 - CERN-THESIS-2009-001
- Scaled to:
 - Latest Monte Carlo efficiencies
 - σ(bb) = 500 μb

Stat. Error (500 µb)	100 pb ⁻¹	1fb ⁻¹
$a_{fs}^{s} (D_{s} \pi)$	2.1 x 10⁻²	6.8 x 10⁻³
$\Delta A_{fs} (D_q \mu v)$	2.0 x 10⁻³	6.3 x 10 -4

All MC predictions!! Real data will be worse

Current Results

CERN CPV, 18th June 2010

After 1fb⁻¹ of LHCb

Assume A^b central value and no NP in B_d

CERN CPV, 18th June 2010

c.f. J/ $\Psi \Phi$

 $Im{\Delta_s}$

$\triangleright B_{s}^{0} \rightarrow J / \psi \Phi$

- Directly Measure sin ϕ_s
- $\sigma(\phi_s) = 0.05^c \text{ in 1 fb}^{-1}$
- $\succ a_{fs}^{s}$
 - Effectively Measures

$$\operatorname{Im}\left\{\frac{\Gamma_{12}}{M_{12}}\right\}\cos\Theta - \operatorname{Re}\left\{\frac{\Gamma_{12}}{M_{12}}\right\}\sin\Theta$$

• σ(Θ) = 0.5^c in 1 fb⁻¹

- But they constrain NP differently
 - Effective power enhanced
 - NB physical limit of a_{fs} is at $4x10^{-3} < current DØ$ result!

Combining DØ

DØ and CDF

FPCP 2010

(add my own personal merging)

Conclusion

- \succ DØ have made an astounding new measurement (3.2 σ !) $A^{b} = [-9.57 \pm 2.51(\text{stat}) \pm 1.46(\text{syst})] \times 10^{-3}$
- > At LHCb the environment is more hostile, concentrate on:

(a)
$$a_{fs}^{s}$$
 from $B_{s}^{0} \rightarrow D_{s}^{\mp} \pi^{\pm}$

 \checkmark Low detector asymmetry, great proper time resolution

(b)
$$\Delta A_{fs}^{s,d}$$
 from $B_q^0 \rightarrow D_q^{\mp} \mu^{\pm} \nu_{\mu} X^0$

Detector and production asymmetries fitted with the data

	Stat. Error (500 µb)	100 pb ⁻¹	1fb ⁻¹	
	$a_{fs}^{s}(D_{s}\pi)$	2.1 x 10⁻²	6.8 x 10⁻³	All MC predictions!! Real data will be worse
	$\Delta A_{fs} (D_q \mu \nu)$	2.0 x 10⁻³	6.3 x 10 -4	
R Lar	mbert, CERN	CERN CPV	. 18th June 2010	53

Backups are often required

Cereal loops

New Physics in special boxes!

Two exciting flavours!

 $A_{fs} \Delta \Gamma$ and Δm_s in every box!

Now in bitesize-chunks!

Act now and get your first 10⁵ decays free!

- A decay to a given state which cannot be reached by the antiflavour state (at tree level) = flavour-specific
- CP-violating asymmetry in mixing, manifests directly in flavour-specific decays = A_{fs}/a_{fs} flavour-specific asymmetry
- Since this is most readily observed in semi-leptonic decays it is also referred to as A_{sl}
- > f a final state of given flavour. \overline{f} its charge conjugate.

LHCb measurement cuts at right-angles

really depends what the value is, and if there is NP!

Asymmetry from Long Muon Tracks Reconstructed in MC

- Magnet divides +/- charge, allowing +/- asymmetry
- > by reversing magnet in D0: δ_c reduced from 3% -> ~0.1%

R Lambert, CERN

CERN CPV, 18th June 2010

Detector Asymmetry, δ

- \succ Matter detector \rightarrow hadronic interactions are asymmetric
- Dominant systematic at order 1%

R Lambert, CERN

CERN CPV, 18th June 2010

Systematics (1)

- $\succ \quad B_s^0 \to D_s^{\mp} \pi^{\pm}$
 - 1. Detector asymmetry
 - Expect second order, so < 10⁻⁴
 - Know the magnitude in real data from the pi momentum spectra
 - Detect any bias by binning in momentum
 - **Correct** with MC: Assuming the magnet is reversed!!
 - 2. Production asymmetry
 - Separate using the time-dependence
 - **Detect** large bias from this by binning in eta
 - **Measure** production asymmetry, possible but very coarse
 - 3. Background asymmetry
 - Fit simultaneously, simply, in the B-mass spectrum

Systematics (2)

$$\succ \quad B_q^0 \to D_q^{\mp} \mu^{\pm} \nu_{\mu} X^0$$

- 1. Detector asymmetry only second order, so $< 10^{-4}$
- Know the magnitude in real data from the daughter momenta
- **Detect** any bias by binning in momentum
- **Correct** with MC: Assuming the magnet is reversed!!
- 2. Production asymmetry
- Separate using the time-dependence
- Detect large bias from this by binning in eta
- **Measure** in $B_s^0 \to D_s^{\mp} \pi^{\pm}$ can help quantify any bias
- 3. Background asymmetry
- **Suppressed** by the effective B/S < 0.1, in the signal region
- Fit simultaneously, 2D fit, in the B-mass and D-mass spectra
- Cancel detector-related part also, only production remains
- **Detect** bias by binning in eta

> Take B_s/B_d with the same final states ($f = KK\pi \mu$)

$$\Gamma(f) = Ne^{-\Gamma t} \left[(1+x_1) \cosh\left(\frac{\Delta\Gamma t}{2}\right) + (x_2+x_3) \cos(\Delta m t) \right]$$

$$\Gamma(\bar{f}) = Ne^{-\Gamma t} \left[(1-x_1) \cosh\left(\frac{\Delta\Gamma t}{2}\right) + (x_2-x_3) \cos(\Delta m t) \right]$$

where: $x_1 = A_c + a_{fs}$ $x_2 = 2A_cA_p$ $x_3 = 2A_p - a_{fs}$

- > All production asymmetry is in x_2/x_3 , just throw it away
- Measure the difference between B_s and B_d

$$\Delta A_{fs}^{s,d} = \frac{x_1^s - x_1^d}{2} = \frac{a_{fs}^s - a_{fs}^d}{2} \qquad SM = \left(+2.5_{-0.6}^{+0.5}\right) \times 10^{-4}$$

> Channel (q = s/d)

$$B_q^0 \to D_q^{\mp} \mu^{\pm} \nu_{\mu} X^0 \qquad D_q^{\pm} \to K^+ K^- \pi^{\pm}$$

CERN-THESIS-2009-001 CERN-LHCb-2007-054

$$\Delta A_{fs} \approx \frac{a_{fs}^{s} - a_{fs}^{d}}{2}$$

$$SM = (+2.5^{+0.5}_{-0.6}) \times 10^{-4}$$

Complications

- Requires weak constraints on $\Delta\Gamma$ and Δm
- Mitigating factors
 - Production asymmetry fit simultaneously
 - Detector asymmetry cancelled

Tuned Pythia samples

δ _p x1000	Min Bias (10M)*	bb – inclusive (10M)*	$B_{s}^{0}B_{d}^{0}$ (20M) ⁺
Pions	-(4.23 0.16)	-(2.16 0.09)	-(2.27 0.07)
Kaons	-(17.0 0.5)	-(7.73 0.26)	-(8.2 0.2)
Muons		+(2.0 1.2)	+(1.0 0.9)
Ds		-(1.6 1.1)	-(1.6 1.1)
Bs		-(1.9 1.3)	-(1.5 0.8)
Bd		-(3.2 0.7)	-(3.2 0.4)

*=standard decays, †=Stable Bd+Bs

Asymmetries agree with generic bb events