$\left|V_{c b}\right|$ from $B \rightarrow D^{*} / v$ and Lattice QCD

Paul Mackenzie

Fermilab
mackenzie@fnal.gov
For the MILC and Fermilab Lattice Collaborations

$\left|V_{\text {cb| }}\right|$ Normalizes the whole Unitarity Triangle

c.f., Laiho, Lunghi, Van de Water, arXiv:0910.2928

So, for example, given that $A=\frac{\left|V_{c b}\right|}{\lambda^{2}}$ and that theoretical $\delta A \sim 2 \%$ and that $\delta B_{K} \sim 5 \%$, the uncertainty in the lattice determination of $V c b$ contributes more uncertainty to the analysis of εK than does B_{K}.

$$
\left|\epsilon_{K}\right|=C_{\epsilon} B_{K} A^{2} \bar{\eta}\left\{-\eta_{1} S_{0}\left(x_{c}\right)\left(1-\lambda^{2} / 2\right)+\eta_{3} S_{0}\left(x_{c}, x_{t}\right)+\eta_{2} S_{0}\left(x_{t}\right) A^{2} \lambda^{2}(1-\bar{\rho})\right\}
$$

Double ratios

It is possible to obtain Vcb from $B \rightarrow D^{*}$ Iv particularly accurately because can be obtained from double ratios such as

$$
\frac{\left\langle D^{*}\right| \bar{c} \gamma_{j} \gamma_{5} b|\bar{B}\rangle\langle\bar{B}| \bar{b} \gamma_{j} \gamma_{5} c\left|D^{*}\right\rangle}{\left\langle D^{*}\right| \bar{c} \gamma_{4} c\left|D^{*}\right\rangle\langle\bar{B}| \bar{b} \gamma_{4} b|\bar{B}\rangle}
$$

in which most errors cancel in the symmetry limit.

History

2001, quenched calculation, Hashimoto et al.

PRD66:014503, 2002

$$
\begin{array}{r}
\mathcal{F}(1)=0.913_{-0.017}^{+0.024} \pm 0.016_{-0.014-0.016-0.014}^{+0.003+0.000+0.006} \\
\text { stats, match, } \quad a, \quad \chi \mathrm{PT}, \text { quenching }
\end{array}
$$

Used complicated set of double ratios that guaranteed cancellation of many errors in the HQS limit.

2008, unquenched $2+1$ staggered sea, Laiho et al.

$$
\begin{aligned}
& \mathcal{F}(1)=0.921 \pm 0.013 \pm 0.008 \pm 0.008 \pm 0.014 \pm 0.006 \pm 0.003 \pm 0.004 \\
& \text { stats, } \quad g_{D D^{* \pi},} \quad \chi \mathrm{PT}, \quad \text { disc., } \quad x_{\mathrm{b}, \mathrm{c},} \quad \text { match, } \quad u_{0} \\
&\left|V_{\mathrm{cb}}\right|=\left(38.9 \pm 0.7_{\text {expt }} \pm 1.0_{\mathrm{LQCD}}\right) \times 10^{-3}
\end{aligned}
$$

Used single double ratio at $\mathrm{w}=1$.
Errors need not cancel as completely, but in practice many do. Much faster than Hashimoto et al. method.

2010, Laiho et al., this talk
Quadruple statistics, smaller lattice spacings, generated completely new data set with retuned parameters and some inconsistencies removed.

Exclusive/Inclusive Tension in $V_{c b}$

2009

- Determinations of $\left|V_{\text {cb }}\right|$ via exclusive (+ LQCD) and inclusive (+ OPE \& pQCD) decays haven't agreed perfectly (discrepancy >2 $\boldsymbol{>}$).

To reduce tension

- Exclusive:
- firm up existing lattice-QCD calculations (this talk); cross-check from other groups;
- re-examine extrapolation $w \rightarrow 1$;
- determine $\left|V_{\mathrm{cb}}\right|$ at $w \neq 1$.
- Improved experiment.
- Inclusive: higher-order corrections being computed.

Semileptonic Form Factors

$$
\begin{aligned}
& \frac{\langle D| \mathcal{V}^{\mu}|B\rangle}{\sqrt{m_{B} m_{D}}}=\left(v_{B}+v_{D}\right)^{\mu} h_{+}(w)+\left(v_{B}-v_{D}\right)^{\mu} h_{-}(w), \\
& \frac{\left\langle D_{\alpha}^{*}\right| \mathcal{V}^{\mu}|B\rangle}{\sqrt{m_{B} m_{D^{*}}}}=\varepsilon^{\mu \nu \rho \sigma} v_{B}^{v} v_{D^{*}}^{\rho} \varepsilon_{\alpha}^{* \sigma} h_{V}(w), \\
& \frac{\left\langle D_{\alpha}^{*}\right| \mathcal{A}^{\mu}|B\rangle}{\sqrt{m_{B} m_{D^{*}}}}=i \varepsilon_{\alpha}^{* v}\left\{(1+w) g^{v \mu} h_{A_{1}}(w)-v_{B}^{v}\left[V_{B}^{\mu} h_{A_{2}}(w)+v_{D^{*}}^{\mu} h_{A_{3}}(w)\right]\right\}, \\
& \frac{d \Gamma(B \rightarrow D \ell v)}{d w}=\frac{G_{F}^{2}}{48 \pi^{3}} m_{D}^{3}\left(m_{B}+m_{D}\right)^{2}\left(w^{2}-1\right)^{3 / 2}\left|V_{c b}\right|^{2}|\mathcal{G}(w)|^{2} \\
& \mathcal{G}(w)=h_{+}(w)-\frac{m_{B}-m_{D}}{m_{B}+m_{D}} h_{-}(w) \propto f_{+}\left(q^{2}\right)
\end{aligned}
$$

$B \rightarrow D^{*} / v$ at Zero Recoil, $w \rightarrow 1:$

$$
\begin{aligned}
& \frac{1}{\sqrt{w^{2}-1}} \frac{d \Gamma}{d w}=\frac{G_{F}^{2}}{4 \pi^{3}} m_{D^{*}}^{3}\left(m_{B}-m_{D^{*}}\right)^{2}\left|V_{c b}\right|^{2} \chi(w)|\mathcal{F}(w)|^{2} \\
& \chi(w)=\frac{w+1}{12}\left(5 w+1-\frac{8 w(w-1) m_{B} m_{D^{*}}}{\left(m_{B}-m_{D^{*}}\right)^{2}}\right) \rightarrow 1 \\
& \mathcal{F}(w)=h_{A_{1}}(w) \frac{1+w}{2} \sqrt{\frac{H_{0}^{2}(w)+H_{+}^{2}(w)+H_{-}^{2}(w)}{3 \chi(w)}} \rightarrow h_{A_{1}}(1) \\
& H_{0}(w)=\frac{m_{B} w-m_{D^{*}}-m_{B}(w-1) R_{2}(w)}{m_{B}-m_{D^{*}}} \rightarrow 1 \\
& H_{ \pm}(w)=t(w)\left[1 \mp \sqrt{(w-1) /(w+1)} R_{1}(w)\right] \rightarrow 1 \\
& t^{2}(w)=\left[m_{B}^{2}+m_{D^{*}}^{2}-2 w m_{B} m_{D^{*}}\right] /\left(m_{B}-m_{\left.D^{*}\right)^{2}}^{2}\right. \rightarrow 1 \\
& R_{1}(w)=h_{V}(w) / h_{A_{1}}(w) \\
& R_{2}(w)=\left[m_{B} h_{A_{3}}(w)+m_{\left.D^{*} h_{A_{2}}(w)\right] / m_{B} h_{A_{1}}(w)}\right.
\end{aligned}
$$

Advantages of Zero Recoil

- Simpler: one number to compute, not four functions: take shape from experiment.
- More powerful HQS:
- Luke's theorem, $1 / m_{Q^{2}}{ }^{2}$;
- control errors.
- Nonzero recoil has $1 / m_{Q}$:

- In the end, of course, adopt strategy that minimizes

BaBar error in IVcbl.

Ingredients

- Gluon fields from MILC ensembles:
- Lüscher-Weisz improved action with $g^{2} N_{\mathrm{c}}$ corrections but not $g^{2} n_{\mathrm{f}}-\mathrm{O}$ ($\alpha_{\mathrm{s}}{ }^{2}{ }^{2} a^{2}$), $\mathrm{O}\left(a^{4}\right)$;
- 2+1 flavors of sea quarks: rooted asqtad determinant- $\mathrm{O}\left(\alpha_{s} a^{2}\right), \mathrm{O}\left(a^{4}\right)$ "small" \Leftarrow Fat7.
- Light spectator quark: asqtad action- $\mathrm{O}\left(\alpha_{s} a^{2}\right), \mathrm{O}\left(a^{4}\right)$ "small" \Leftarrow Fat7.
- Heavy quarks: Sheikholeslami-Wohlert (aka clover) action with Fermilab interpretation:
- discretization effects $\mathrm{O}\left(\alpha_{\mathrm{s}} a^{2} b_{\Sigma \cdot B^{[1]}}(m a)\right), \mathrm{O}\left(\alpha_{\mathrm{s}} a^{2} d_{1}{ }^{[1]}(m a)\right)$, $\mathrm{O}\left(a^{2} b_{i}{ }^{[0]}\right.$ (ma));
- functions $b_{i}{ }^{[0]}(m a)$ derived from HQET matching (see below).

MILC Gauge Field Ensembles

Scope of analysis

- This update encompasses the ensembles highlighted in red:
- mass and decay correlators for all $a m_{q}=a m_{l}$ aka "full QCD" or "unitary" (in italics);
- also for all $a m_{q}=0.4 a m_{s}$ (in bold).;
- hence $2+7+5+3$ (partially-quenched) correlators at $a m_{q}=0.15,0.12$, $0.09,0.06 \mathrm{fm}$.
- Bare quark mass (aka x) determined from spinaveraged kinetic meson mass:
- improving strategies with twisted b.c. and, eventually, better sources.
- Tree-level tadpole improved $c_{\mathrm{sw}}=1 / u_{0}{ }^{2}$, where $u_{0}{ }^{4}=$〈plaquette〉.

Correlators and Ratios of Correlators

- Our objective is

$$
\mathcal{R}_{A_{1}}=\frac{\left\langle D^{*}\right| \bar{c} \gamma_{j} \gamma_{5} b|\bar{B}\rangle\langle\bar{B}| \bar{b} \gamma_{j} \gamma_{5} c\left|D^{*}\right\rangle}{\left\langle D^{*}\right| \bar{c} \gamma_{4} c\left|D^{*}\right\rangle\langle\bar{B}| \bar{b} \gamma_{4} b|\bar{B}\rangle}=\left|h_{A_{1}}(1)\right|^{2}
$$

- We define 3-point correlations functions:
- So look for plateau in

$$
\begin{aligned}
C^{B \rightarrow D^{*}}\left(t_{i}, t_{s}, t_{f}\right) & =\sum_{\mathbf{x}, \mathbf{y}}\langle 0| O_{D^{*}}\left(\mathbf{x}, t_{f}\right) \bar{\Psi}_{c} \gamma_{j} \gamma_{5} \Psi_{b}\left(\mathbf{y}, t_{s}\right) O_{B}^{\dagger}\left(\mathbf{0}, t_{i}\right)|0\rangle, \\
C^{B \rightarrow B}\left(t_{i}, t_{s}, t_{f}\right) & =\sum_{\mathbf{x}, \mathbf{y}}\langle 0| O_{B}\left(\mathbf{x}, t_{f}\right) \bar{\Psi}_{b} \gamma_{4} \Psi_{b}\left(\mathbf{y}, t_{s}\right) O_{B}^{\dagger}\left(\mathbf{0}, t_{i}\right)|0\rangle, \\
C^{D^{*} \rightarrow D^{*}}\left(t_{i}, t_{s}, t_{f}\right) & =\sum_{\mathbf{x}, \mathbf{y}}\langle 0| O_{D^{*}}\left(\mathbf{x}, t_{f}\right) \bar{\Psi}_{c} \gamma_{4} \Psi_{c}\left(\mathbf{y}, t_{s}\right) O_{D^{*}}^{\dagger}\left(\mathbf{0}, t_{i}\right)|0\rangle .
\end{aligned}
$$

$$
R_{A_{1}}(t)=\frac{C^{B \rightarrow D^{*}}(0, t, T) C^{D^{*} \rightarrow B}(0, t, T)}{C^{D^{*} \rightarrow D^{*}}(0, t, T) C^{B \rightarrow B}(0, t, T)}=\stackrel{\downarrow}{-2} \mathcal{R}_{A}
$$

Oscillating states:

- A staggered correlator couples to opposite-parity states with (-1) ${ }^{t}$:

$$
\begin{aligned}
C^{X \rightarrow Y}(0, t, T) & =\sum_{k=0} \sum_{\ell=0}(-1)^{k t}(-1)^{\ell(T-t)} A_{\ell k} e^{-m_{X}^{(k)} t} e^{-m_{Y}^{(\ell)}(T-t)} \\
& =A_{00}^{X \rightarrow Y} e^{-m_{X} t-m_{Y}(T-t)}+(-1)^{T-t} A_{01}^{X \rightarrow Y} e^{-m_{X} t-m_{Y}^{\prime}(T-t)} \\
& +(-1)^{t} A_{10}^{X \rightarrow Y} e^{-m_{X}^{\prime} t-m_{Y}(T-t)}+(-1)^{T} A_{11}^{X \rightarrow Y} e^{-m_{X}^{\prime} t-m_{Y}^{\prime}(T-t)}+\ldots
\end{aligned}
$$

- Last term is wrong-parity-to-wrong-parity transition, and doesn't oscillate in t.
- Does oscillate in T, so control by computing $C^{X \rightarrow Y}(0, t, T)$ and $C^{X \rightarrow Y}(0, t, T+1)$:

$$
\bar{R}_{A_{1}}(0, t, T)=\frac{1}{2} R_{A_{1}}(0, t, T)+\frac{1}{4} R_{A_{1}}(0, t, T+1)+\frac{1}{4} R_{A_{1}}(0, t+1, T+1)
$$

Plateau on a Coarse Ensemble

$$
\left(a m_{l}, a m_{s}\right)=(0.01,0.05)
$$

Plateau on a Fine Ensemble

$$
\left(a m_{l}, a m_{s}\right)=(0.0062,0.031)
$$

Plateau on a Superfine Ensemble

$$
\left(a m_{l}, a m_{s}\right)=(0.0036,0.018)
$$

Matching and Discretization via HQET

- Heavy-light hadrons can be described by heavy-quark effective theory.
- Founded on basic dynamics and emerging symmetries.
- LGT has the same basic dynamics and symmetries, so an HQET description exists here too.
- Relating HQET for two underlying theories (LGT \& QCD) yields
- theory of cutoff effects;
- definition of matching factors;
- relationships between observables.

- As $v^{\prime} \rightarrow v, 1 / m$ corrections vanish.
- From (tree-level) HQET matching, zero recoil [ASK, hep-lat/00020085]:

$$
\delta h_{A_{1}}(1)=\left(\frac{1}{8 m_{3 c}^{2}}-\frac{1}{8 m_{D_{\perp} c}^{2} c}+\frac{1}{8 m_{3 b}^{2}}-\frac{1}{8 m_{D_{\perp}^{2} b}^{2}}\right) \mu_{\pi}^{2}+\left(\frac{1}{8 m_{3 c}^{2}}-\frac{1}{8 m_{s B c}^{2}}-\frac{3}{8 m_{3 b}^{2}}+\frac{3}{8 m_{s B b}^{2}}\right) \frac{\mu_{G}^{2}}{3}
$$

- $1 / m^{2}$ corrections cancel well for $c\left(m_{c} a<1\right)$ and to some extent for b.
- Previous work: conservative power counting with $\Lambda=500-700 \mathrm{MeV}$.
- Future work:
- use explicit formulae and experimental results or lattice data for $\mu_{\pi^{2}}$ and $\mu_{G^{2}}$.
- Incorporate correction operators in Bayesian continuum extrapolations.
- Remaining matching error is overall normalization, computed in one-loop PT w/ BLM α_{s} :

$$
\rho_{A}^{2}=\frac{Z_{A}^{2}}{Z_{V^{b b}} Z_{V c c}}
$$

Heavy-quark mass (aka x) tuning

coarse $\left(a m_{q}, a m_{l}, a m_{s}\right)=(0.02,0.02,0.05)$

Chiral Extrapolation

- In arXiv:0808.2519 we introduce two intermediate quadruple ratios (ratios of double ratios) to disentangle chiral extrapolation from heavy-quark discretization errors.
- Now we carry out the chiral extrapolation without the quadruple ratios, but with equivalent information in the fit.
- Partially-quenched staggered PT available from Laiho \& Van de Water [hep-lat/0512007].
- Incorporates a cusp when pion is light enough for $D^{*} \rightarrow$ $D \pi$ to be physical.
- Show only "full QCD" points on plot:

Chiral Extrapolation

2010

$$
\chi^{2} / \mathrm{dof}=8.9 / 12, \mathrm{CL}=0.72
$$

Compare 2008

2010 Result

```
hAt(1)=0.9077(51)(88)(84)(90)(33)(30)
            stat, g}\mp@subsup{g}{\squareD\mp@subsup{D}{}{*},}{}\chi\mathrm{ extrap, HQ disc., к tune, PT
    =0.9077(51)(159)
                stat, sys
=0.9077(167)
hA1}(1)
    F(1)=0.927(13)(8)(8)(14)(6)(3)(4) 2008, PRD79:014506, 2009
    F(1)=0.908(05)(9)(8)(09)(3)(3) 2010, this work
|Vcb | F(1)\times103=36.04 +/- 0.52
HFAG, 09 End of Year.
    (35.41(52)->('08))
| | Vcb}|=39.7(7)(7)\times10-3, (theory, experiment
```


Discrepancies reduced

Result from global fit excluding direct determination of $V_{c b}$:
$V_{c b}=(42.56 \pm 0.82) \times 10^{-3}$. (Discrepancy: 2.2б.)

Result from inclusive B decay:
$V_{c b}=(41.68+/-0.44+/-0.09+/-0.58) \times 10^{-3}$

$$
=(41.68+/-0.73) \times 10^{-3} .
$$

(Discrepancy: 1.6б.)

Laiho, Lunghi, and Van de Water, latticeaverages.org, PRD81:034503, 2010.

HFAG, 09 End of Year.

Global fit

Inclusive
Exclusive $B \rightarrow D^{*} / v$

Outlook

- Should be possible to further reduce discretization error (largest current error) with smaller lattice and incorporation of known HQET behavior into Baysian priors for discretization into fitting program.
- $g_{\pi D D^{*}}$ and χ extrapolation uncertainties almost as large, and will take more thought.
- B_{K} analysis needs $<1 \%$ uncertainty in this theory.
- A lot still to accomplish!

