$|V_{cb}|$ from $B \rightarrow D^*/v$ and Lattice QCD

Paul Mackenzie

Fermilab mackenzie@fnal.gov

For the MILC and Fermilab Lattice Collaborations

CKM 2010 Warwick Sept. 6-10, 2010

|V_{cb}| Normalizes the whole Unitarity Triangle

c.f., Laiho, Lunghi, Van de Water, <u>arXiv:0910.2928</u>

So, for example, given that $A = \frac{|V_{cb}|}{\lambda^2}$

and that theoretical $\delta A \sim 2\%$ and that $\delta B_K \sim 5\%$, the uncertainty in the lattice determination of Vcb contributes more uncertainty to the analysis of εK than does B_K .

$$|\epsilon_K| = C_{\epsilon} B_K A^2 \overline{\eta} \{ -\eta_1 S_0(x_c) (1 - \lambda^2/2) + \eta_3 S_0(x_c, x_t) + \eta_2 S_0(x_t) A^2 \lambda^2 (1 - \overline{\rho}) \}$$

Double ratios

It is possible to obtain Vcb from $B \rightarrow D^* Iv$ particularly accurately because can be obtained from double ratios such as

$$rac{\langle D^* | \overline{c} \gamma_j \gamma_5 b | \overline{B}
angle \langle \overline{B} | \overline{b} \gamma_j \gamma_5 c | D^*
angle}{\langle D^* | \overline{c} \gamma_4 c | D^*
angle \langle \overline{B} | \overline{b} \gamma_4 b | \overline{B}
angle}$$

in which most errors cancel in the symmetry limit.

History

2001, quenched calculation, Hashimoto et al.

 $\mathcal{F}(1) = 0.913^{+0.024}_{-0.017} \pm 0.016^{+0.003}_{-0.014} \pm 0.016^{+0.003}_{-0.014} \pm 0.016^{+0.000}_{-0.014}$

stats, match, *a*, χPT, quenching

Used complicated set of double ratios that guaranteed cancellation of many errors in the HQS limit.

2008, unquenched 2+1 staggered sea, Laiho et al.

PRD79:014506, 2009

PRD66:014503, 2002

 $\mathcal{F}(1) = 0.921 \pm 0.013 \pm 0.008 \pm 0.008 \pm 0.014 \pm 0.006 \pm 0.003 \pm 0.004$

stats, $g_{DD^*\pi}$, χ PT, disc., $\varkappa_{b,c}$, match, u_0

 $|V_{\rm cb}| = (38.9 \pm 0.7_{\rm expt} \pm 1.0_{\rm LQCD}) \times 10^{-3}$

Used single double ratio at w=1. Errors need not cancel as completely, but in practice many do. Much faster than Hashimoto et al. method.

2010, Laiho et al., this talk

Quadruple statistics, smaller lattice spacings, generated completely new data set with retuned parameters and some inconsistencies removed.

Exclusive/Inclusive Tension in V_{cb} in $|V_{ub}|$ and $|V_{cb}|$

2009

Van de Water, Lattice 2009

AG Winter '09 + GGOU

To reduce tension

• Exclusive:

- firm up existing lattice-QCD calculations (this talk); cross-check from other groups;
- re-examine extrapolation $w \rightarrow 1$;
- determine $|V_{cb}|$ at $w \neq 1$.
- Improved experiment.
- Inclusive: higher-order corrections being computed.

Semileptonic Form Factors

• Kinematics: $q^2 = M_B^2 + M_D^2 - 2wM_BM_{D^*}$, w =

$$\begin{aligned} \frac{\langle D | \mathcal{V}^{\mu} | B \rangle}{\sqrt{m_B m_D}} &= (v_B + v_D)^{\mu} h_+(w) + (v_B - v_D)^{\mu} h_-(w), \\ \frac{\langle D^*_{\alpha} | \mathcal{V}^{\mu} | B \rangle}{\sqrt{m_B m_D^*}} &= \varepsilon^{\mu \nu \rho \sigma} v^{\nu}_B v^{\rho}_{D^*} \varepsilon^{*\sigma}_{\alpha} h_V(w), \\ \frac{\langle D^*_{\alpha} | \mathcal{A}^{\mu} | B \rangle}{\sqrt{m_B m_D^*}} &= i \varepsilon^{*\nu}_{\alpha} \{ (1 + w) g^{\nu \mu} h_{A_1}(w) - v^{\nu}_B [v^{\mu}_B h_{A_2}(w) + v^{\mu}_{D^*} h_{A_3}(w)] \}, \end{aligned}$$

$$\frac{d\Gamma(B \to D\ell\nu)}{dw} = \frac{G_F^2}{48\pi^3} m_D^3 (m_B + m_D)^2 (w^2 - 1)^{3/2} |V_{cb}|^2 |\mathcal{G}(w)|^2$$

$$\mathcal{G}(w) = h_+(w) - \frac{m_B - m_D}{m_B + m_D} h_-(w) \propto f_+(q^2)$$

 $B \rightarrow D^*/v$ at Zero Recoil, $w \rightarrow 1$:

$$\frac{1}{\sqrt{w^2 - 1}} \frac{d\Gamma}{dw} = \frac{G_F^2}{4\pi^3} m_{D^*}^3 (m_B - m_{D^*})^2 |V_{cb}|^2 \chi(w) |\mathcal{F}(w)|^2$$

$$\chi(w) = \frac{w + 1}{12} \left(5w + 1 - \frac{8w(w - 1)m_Bm_{D^*}}{(m_B - m_{D^*})^2} \right) \to 1$$

$$\mathcal{F}(w) = h_{A_1}(w) \frac{1 + w}{2} \sqrt{\frac{H_0^2(w) + H_+^2(w) + H_-^2(w)}{3\chi(w)}} \to h_{A_1}(1)$$

$$H_0(w) = \frac{m_Bw - m_{D^*} - m_B(w - 1)R_2(w)}{m_B - m_{D^*}} \to 1$$

$$H_{\pm}(w) = t(w) \left[1 \mp \sqrt{(w - 1)/(w + 1)}R_1(w) \right] \to 1$$

$$t^2(w) = [m_B^2 + m_{D^*}^2 - 2wm_Bm_{D^*}]/(m_B - m_{D^*})^2 \to 1$$

$$R_1(w) = h_V(w)/h_{A_1}(w)$$

$$R_2(w) = [m_Bh_{A_3}(w) + m_{D^*}h_{A_2}(w)]/m_Bh_{A_1}(w)$$

Advantages of Zero Recoil

• Simpler: one number to compute, not four functions: take shape from experiment.

• In the end, of course, adopt strategy that minimizes BaBarerror in $|V_{cb}|$.

Ingredients

- Gluon fields from MILC ensembles:
 - Lüscher-Weisz improved action with g^2N_c corrections but not g^2n_f —O ($\alpha_s^{"2"}a^2$), O(a^4);
 - 2+1 flavors of sea quarks: rooted asqtad determinant—O(α_sa²), O(a⁴) "small" ⇐ Fat7.
- Light spectator quark: asqtad action— $O(\alpha_s a^2)$, $O(a^4)$ "small" \Leftarrow Fat7.
- Heavy quarks: Sheikholeslami-Wohlert (aka clover) action with Fermilab interpretation:
 - discretization effects O($\alpha_s a^2 b_{\Sigma \cdot B}^{[1]}(ma)$), O($\alpha_s a^2 d_1^{[1]}(ma)$), O($a^2 b_i^{[0]}(ma)$);
 - functions $b_i^{[0]}(ma)$ derived from HQET matching (see below).

MILC Gauge Field Ensembles

<i>a</i> (fm)	lattice	# confs	(am_l, am_s)	am_q	\varkappa_b	\varkappa_c	CSW
≈ 0.15	16 ³ ×48	596	(0.0290, 0.0484)	{0.0484, 0.0068,			
medium	16 ³ ×48	640	(0.0194, 0.0484)	0.0453, 0.0421,			
coarse	16 ³ ×48	631	(0.0097, 0.0484)	0.0290, 0.0194 ,	0.0781	0.1218	1.570
	20 ³ ×48	603	(0.0048, 0.0484)	0.0097, 0.0048}			
≈ 0.12	20 ³ ×64	2052	(0.02, 0.05)	{0.05, 0.03,	0.0918	0.1259	1.525
coarse	20 ³ ×64	2259	(0.01, 0.05)	0.0415, 0.0349,	0.0901	0.1254	1.531
	20 ³ ×64	2110	(0.007, 0.05)	0.02 , 0.01,	0.0901	0.1254	1.530
	24 ³ ×64	2099	(0.005, 0.05)	0.007, 0.005}	0.0901	0.1254	1.530
≈ 0.09	28 ³ ×96	1996	(0.0124, 0.031)	{0.031,0.0261,	0.0982	0.1277	1.473
fine	28 ³ ×96	1946	(0.0062, 0.031)	0.0093,	0.0979	0.1276	1.476
	32 ³ ×96	983	(0.00465, 0.031)	0.0124 , 0.0062	0.0977	0.1275	1.476
	40 ³ ×96	1015	(0.0031, 0.031)	0.0047, 0.003/}	0.0976	0.1275	I.478
≈ 0.06	48 ³ ×144	668	(0.0072, 0.018)	{0.0188, 0.0160,	0.1052	0.1296	1.4287
superfine	48 ³ ×144	668	(0.0036, 0.018)	0.0054,	0.1052	0.1296	I.4287
	56 ³ ×144	800	(0.0025, 0.018)	0.0072 , 0.0036			
	64 ³ ×144	826	(0.0018, 0.018)	0.0025, 0.0018}			
pprox 0.045 ultrafine	64 ³ ×192	860	(0.0028, 0.014)	0.014, 0.0028			

MILC asqtad ensembles

Scope of analysis

- This update encompasses the ensembles highlighted in red:
 - mass and decay correlators for all am_q = am_l aka "full QCD" or "unitary" (in *italics*);
 - also for all $am_q = 0.4am_s$ (in **bold**).;
 - hence 2 + 7 + 5 + 3 (partially-quenched) correlators at $am_q = 0.15, 0.12, 0.09, 0.06$ fm.
- Bare quark mass (aka κ) determined from spinaveraged kinetic meson mass:
 - improving strategies with twisted b.c. and, eventually, better sources.
- Tree-level tadpole improved $c_{SW} = 1/u_0^2$, where $u_0^4 = \langle plaquette \rangle$.

Correlators and Ratios of Correlators

• Our objective is

$$\mathcal{R}_{A_{1}} = \frac{\langle D^{*} | \overline{c} \gamma_{j} \gamma_{5} b | \overline{B} \rangle \langle \overline{B} | \overline{b} \gamma_{j} \gamma_{5} c | D^{*} \rangle}{\langle D^{*} | \overline{c} \gamma_{4} c | D^{*} \rangle \langle \overline{B} | \overline{b} \gamma_{4} b | \overline{B} \rangle} = |h_{A_{1}}(1)|^{2}$$

• We define 3-point correlations functions:

$$C^{B\to D^*}(t_i, t_s, t_f) = \sum_{\mathbf{x}, \mathbf{y}} \langle 0 | \mathcal{O}_{D^*}(\mathbf{x}, t_f) \overline{\Psi}_c \gamma_j \gamma_5 \Psi_b(\mathbf{y}, t_s) \mathcal{O}_B^{\dagger}(\mathbf{0}, t_i) | 0 \rangle,$$

$$C^{B\to B}(t_i, t_s, t_f) = \sum_{\mathbf{x}, \mathbf{y}} \langle 0 | \mathcal{O}_B(\mathbf{x}, t_f) \overline{\Psi}_b \gamma_4 \Psi_b(\mathbf{y}, t_s) \mathcal{O}_B^{\dagger}(\mathbf{0}, t_i) | 0 \rangle,$$

$$C^{D^* \to D^*}(t_i, t_s, t_f) = \sum_{\mathbf{x}, \mathbf{y}} \langle 0 | \mathcal{O}_{D^*}(\mathbf{x}, t_f) \overline{\Psi}_c \gamma_4 \Psi_c(\mathbf{y}, t_s) \mathcal{O}_{D^*}^{\dagger}(\mathbf{0}, t_i) | 0 \rangle.$$

• So look for plateau in

matching ρ_A

$$R_{A_1}(t) = \frac{C^{B \to D^*}(0, t, T)C^{D^* \to B}(0, t, T)}{C^{D^* \to D^*}(0, t, T)C^{B \to B}(0, t, T)} = \rho_A^{-2} \mathcal{R}_{A_1}$$

Oscillating states:

 A staggered correlator couples to opposite-parity states with (-1)^t:

$$C^{X \to Y}(0, t, T) = \sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} (-1)^{kt} (-1)^{\ell(T-t)} A_{\ell k} e^{-m_X^{(k)} t} e^{-m_Y^{(\ell)} (T-t)}$$

= $A_{00}^{X \to Y} e^{-m_X t - m_Y (T-t)} + (-1)^{T-t} A_{01}^{X \to Y} e^{-m_X t - m'_Y (T-t)}$
+ $(-1)^t A_{10}^{X \to Y} e^{-m'_X t - m_Y (T-t)} + (-1)^T A_{11}^{X \to Y} e^{-m'_X t - m'_Y (T-t)} + \dots$

- Last term is wrong-parity-to-wrong-parity transition, and doesn't oscillate in t.
- Does oscillate in T, so control by computing $C^{X \rightarrow Y}(0, t, T)$ and $C^{X \rightarrow Y}(0, t, T+1)$:

$$\overline{R}_{A_1}(0,t,T) = \frac{1}{2}R_{A_1}(0,t,T) + \frac{1}{4}R_{A_1}(0,t,T+1) + \frac{1}{4}R_{A_1}(0,t+1,T+1)$$

Plateau on a Coarse Ensemble

 $(am_l, am_s) = (0.01, 0.05)$

Plateau on a Fine Ensemble

 $(am_l, am_s) = (0.0062, 0.031)$

Plateau on a Superfine Ensemble

 $(am_l, am_s) = (0.0036, 0.018)$

CKM 2010, Warwick, Sept 6-10, 2010 17/25

Matching and Discretization via HQET

- Heavy-light hadrons can be described by heavy-quark effective theory.
- Founded on basic dynamics and emerging symmetries.
- LGT has the same basic dynamics and symmetries, so an HQET description exists here too.
- Relating HQET for two underlying theories (LGT & QCD) yields
 - theory of cutoff effects;
 - definition of matching factors;
 - relationships between observables.

- As $v' \rightarrow v$, 1/m corrections vanish.
- From (tree-level) HQET matching, zero recoil [ASK, hep-lat/00020085]:

$$\delta h_{A_1}(1) = \left(\frac{1}{8m_{3c}^2} - \frac{1}{8m_{D_{\perp}c}^2} + \frac{1}{8m_{2b}^2} - \frac{1}{8m_{D_{\perp}b}^2}\right) \mu_{\pi}^2 + \left(\frac{1}{8m_{3c}^2} - \frac{1}{8m_{sBc}^2} - \frac{3}{8m_{3b}^2} + \frac{3}{8m_{sBb}^2}\right) \frac{\mu_G^2}{3}$$

- $1/m^2$ corrections cancel well for c ($m_c a < 1$) and to some extent for b.
- Previous work: conservative power counting with $\Lambda = 500-700$ MeV.
- Future work:
 - use explicit formulae and experimental results or lattice data for μ_{π^2} and μ_{G^2} .
 - Incorporate correction operators in Bayesian continuum extrapolations.
- Remaining matching error is overall normalization, computed in one-loop PT w/ BLM α_{s} :

$$\rho_A^2 = \frac{Z_A^2}{Z_{V^{bb}} Z_{V^{cc}}}$$

Heavy-quark mass (aka \varkappa) tuning coarse (am_q , am_l , am_s) = (0.02, 0.02, 0.05)

Chiral Extrapolation

- In <u>arXiv:0808.2519</u> we introduce two intermediate quadruple ratios (ratios of double ratios) to disentangle chiral extrapolation from heavy-quark discretization errors.
- Now we carry out the chiral extrapolation without the quadruple ratios, but with equivalent information in the fit.
- Partially-quenched staggered PT available from Laiho & Van de Water [<u>hep-lat/0512007</u>].
- Incorporates a cusp when pion is light enough for $D^* \rightarrow D\pi$ to be physical.
- Show only "full QCD" points on plot:

Chiral Extrapolation

2010 Result

 $h_{A1}(1)=0.9077(51)(88)(84)(90)(33)(30)$ stat, $g_{\pi DD^*}$, χ extrap, HQ disc., κ tune, PT =0.9077(51)(159) stat, sys =0.9077(167) $h_{A1}(1) =$ F(1) = 0.927(13)(8)(8)(14)(6)(3)(4) 2008, PRD79:014506, 2009

F(1) = 0.908(05)(9)(8)(09)(3)(3) 2010, this work

 $|Vcb| F(1) \ge 10^3 = 36.04 + 0.52$ (35.41(52) \rightarrow ('08))

 $\Rightarrow |V_{cb}| = 39.7(7)(7) \times 10^{-3}$, (theory, experiment)

Discrepancies reduced

Result from global fit excluding direct determination of V_{cb} : $V_{cb} = (42.56 \pm 0.82) \times 10^{-3}$. (Discrepancy: 2.2 σ .)

Laiho, Lunghi, and Van de Water, latticeaverages.org, PRD81:034503, 2010.

Result from inclusive *B* decay: $V_{cb} = (41.68 + - 0.44 + - 0.09 + - 0.58) \times 10^{-3}$ $= (41.68 + - 0.73) \times 10^{-3}$. (Discrepancy: 1.6 σ .)

HFAG, 09 End of Year.

Outlook

- Should be possible to further reduce discretization error (largest current error) with smaller lattice and incorporation of known HQET behavior into Baysian priors for discretization into fitting program.
- $g_{\pi DD^*}$ and χ extrapolation uncertainties almost as large, and will take more thought.
- B_{κ} analysis needs <1% uncertainty in this theory.
 - A lot still to accomplish!

