Rare Charm Decays

Rare Charm Processes

- Charm provides constraints on beyond Standard Model physics that is distinct from B & K sectors
- Only now are experiments reaching "interesting" sensitivity
 - Rare Decays = Search for New Physics
 - Charm Mixing → Constraints on New Physics
 - CP Violation = Search for New Physics
 - In mixing
 - In decay

This talk ONLY on Rare Charm Decays

Outline

Focus on neutral annihilation and radiative decays

- Highlight sensitivity to new physics
- Point out strengths & weaknesses of different channels
- Some comparison with beauty & strange systems
 - Better, worse, just different
- Contrast techniques used in different environments
- Motivate future studies
- ► Try to cover almost everything in last 5 years but will put most focus on D → hll

Search for New Physics (NP) in Charm

Very low SM rates $(BF(c \rightarrow ull) \sim 10^{-8})$ for loop processes provide unique window to observe NP (TeV Scale) in rare charm processes

Rare Decays, D⁰-D⁰ oscillations & CP Violation

New Physics can introduce new particles into loop or new tree level neutral current phenomena

New particles appearing on-shell at LHC must appear in virtual loops & affect amplitudes in K, B and Charm _{Supersymmetry:}

Particles and couplings in rare charm

processes are NOT the same as in

rare B and K processes

Extended Higgs:

New Physics Searches with Rare D

Example: $c \rightarrow ul^{+l^{-}}$. Initially, exclusive modes look unpromising for NP searches, in contrast to B decays.

Why? Because short distance effects are swamped by long distance contributions.

Br	short distance		total rate \simeq	experiment
	contribution only		long distance contr.	
	SM	SM + NP		
$D^+ \rightarrow \pi^+ e^+ e^-$	6×10^{-12}	8×10^{-9}	$1.9 imes 10^{-6}$	$< 7.4 \times 10^{-6}$
$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	6×10^{-12}	$8 imes 10^{-9}$	$1.9 imes10^{-6}$	$< 8.8 \times 10^{-6}$
$D^0 ightarrow ho^0 e^+ e^-$	negligible	5×10^{-10}	$1.6 imes 10^{-7}$	$< 1.0 \times 10^{-4}$
$D^0 ightarrow ho^0 \mu^+ \mu^-$	negligible	5×10^{-10}	$1.5 imes 10^{-7}$	$< 2.2 \times 10^{-5}$

However, differential distributions, and FB asymmetries, still have discriminating power.

And total rate can still be sizably enhanced in some cases: $D^0 \rightarrow \mu\mu \sim 10^{-13}$ in SM, can go up to 10^{-7} in R-parity violating SUSY

m_{ee}² [GeV²] Pacific Northwest

Radiative Decay & Neutral Annihilation – B, D, K

Standard Model calculations range from simple to impossible

Radiative Decay

- Beauty
 - Precision: theory and experiment
- Strange
 - Precision theory, experiment within reach
 - Lower SM rate = greater sensitivity
- Charm
 - Theory = long distance
 - Existing measurements beautiful but...
- Neutral Annihilation
 - Almost all New Physics parameter space limited by experimental measurements
 - Better limit = better physics (!)

Different Experimental Environments

e+e- at Charm Threshold ~5 tracks/event e+e- at ~10 GeV ~10 tracks/event Tevatron 50 tracks/interaction Up to 10 interactions/event

Charm Threshold: CLEO-c and BESIII

Events are extremely clean

Charged & neutral multiplicities in ψ(3770) events are only 5.0 & 2.4 ~ 1/2 that of continuum charm at √s = 10.58 GeV

Events at Threshold are pure DD

- No additional fragmentation particles produced
- Allows use of kinematic constraints, missing mass methods

Double Tag studies are pristine

- Backgrounds heavily suppressed
- Minimizes statistical errors and systematic uncertainties
- Signal to Background optimal
 - $\sigma(\psi(3770) \rightarrow DD) \sim 1/2 \sigma(e^+e^- \rightarrow hadrons) bkgd$
- Neutrino/K_L Reconstruction
 - Undetected energy & momentum interpreted as neutrino/K_L 4-vector
- Large enough data samples for competitive rare decay studies

Y(4S): Belle and BaBar

- Still pretty clean
- Excellent PID
- All charmed hadron species accessible
- Enormous data sets now
- Anticipate 50x more at Belle II and SuperB

Tevatron: D0 & CDF (also LHCb ATLAS & CMS)

- Enormous cross sections
- Large boost
- All species available
- Good dimuon triggers
- Lots of Tevatron data and collecting much more
- Even more at LHC

Neutral Leptonic Decays: $D \rightarrow \mu \mu$

Earlier CDF Measurement

Only 65 pb⁻¹ but better figures!

General Analysis Strategy

- Normalize to, then veto D* tagged ππ.
- Fakes measured with D* tagged Kπ

CDF 65 pb⁻¹ D $\rightarrow \mu\mu$ < 2.5x10⁻⁶

PRD 68, 091101 2003

Neutral Leptonic Decays: $D \rightarrow \mu \mu$

CDF Public Note 9226 (2008)

Expectation: $D \rightarrow \mu \mu$ SM<10⁻¹³

RPV SUSY~10⁻⁷

CDF 65 pb⁻¹ D $\rightarrow \mu\mu$ < 2.5x10⁻⁶

CDF 360 pb⁻¹ D $\rightarrow \mu\mu < 4.3 \times 10^{-7}$

5.5x more luminosity \rightarrow 5.8x better limit

R-parity coupling violating constraint $\lambda_{21k}\lambda_{22k} = 1.5\sqrt{B(D^0 \rightarrow \mu^+\mu^-)} < 9.8 \times 10^{-4}$

Two Body Radiative Decays

SHORT DISTANCE

Phys.Rev.Lett.92:101803,2004 PEAKING BACKGROUNDS NOT MEASURED SO MEASURE THEM

 $\begin{array}{c} \begin{array}{c} & & \\$

FIRST RADIATIVE CHARM DECAY

Two-body Radiative Decays

- price tag 1/8 statistics

16

Two Body Radiative Decays

Expectation: $D \rightarrow \gamma \gamma$ SM~10⁻⁸ Could be enhanced by New Physics

CLEO D $\rightarrow \gamma\gamma$ < 8.6x10⁻⁶

Note: "other" D NOT reconstructed Reduce "all" backgrounds - price tag 1/8 statistics

BESIII sensitivity in 10 fb⁻¹ (12x CLEO-c) ~10⁻⁷

Expect SuperB factory to have Standard Model reach

Two-body vs Three-body "Radiative" Decays

Two processes: long distance (strong scale) and short distance (weak scale)

short distance effects are swamped by long distance contributions

Differential distributions, and Forward-backward asymmetries, still have discriminating power.

Rare Charm Decays - CKM 2010

CLEO-c

Update previous result PRL95, 221802 (2005) 281 pb⁻¹@ Ψ (3770) to full data sample 818 pb⁻¹ @ Ψ (3770) and 602 pb⁻¹ @ 4.17 GeV (DsDs*)

4.76x10⁶ D+ 1.10x10⁶ Ds+

Do NOT reconstruct tag D+ or Ds+

Search for D(s) \rightarrow hee, h= π or K

Remove double semileptonic decays missing energy veto

Event Selection & Kinematic Variables

- "Usual" π, K, e ID
- At Ψ(3770)
 - $\Delta E = E_D E_{beam} \& M_{bc} = (E_{beam}^2 p_D^2)^{1/2}$
 - Signal Box
 - (ΔE, M_{bc})=(±20 MeV,±5 MeV)
 - At 4170 MeV
 - M(Ds) and M_{recoil}(Ds)
 - Signal Box
 - $(\Delta M, \Delta M_{\text{recoil}})=(\pm 20 \text{ MeV}, \pm 55 \text{ MeV})$
- BREM photons are recovered around each electron candidate (100 mrad)
- π, K p > 50 MeV, cosθ < 0.93</p>
- electrons p > 200 MeV, $\cos\theta < 0.90$

Data
 MC DD
 MC ττ
 MC RR
 MC qq

No electron identification

1 electron identification

2 electron identification

CLEO-c Results: $D_s \rightarrow hee$ (with tight c

Data

 $MC D\overline{D}$

FIG. 1. Scatter plots of $\Delta M_{\rm bc}$ vs ΔE . The two contours for each mode enclose regions determined with signal MC simulation to contain 50% and 85% of signal events, respectively. The signal region, defined by $(\Delta E, \Delta M_{\rm bc}) = (\pm 20 \,{\rm MeV}, \pm 5 \,{\rm MeV})$, is shown as a box.

FIG. 2. Scatter plots of ΔM_{recoil} vs ΔM . The two contours for each mode enclose regions determined with signal MC s to contain 40% and 85% of signal events, respectively. The signal region, defined by $(\Delta M, \Delta M_{\text{recoil}}) = (\pm 20 \text{ MeV}, \pm 100 \text{ s})$ is shown as a box.

AC s	$D_s^+ \to \pi^+ e^+ e^-$	$< 2.2 \times 10^{-5}$
V,±	$D_s^+ \rightarrow \pi^- e^+ e^+$	$< 1.8 \times 10^{-5}$
	$D_s^+ \rightarrow K^+ e^+ e^-$	$< 5.2 imes 10^{-5}$
	$D_s^+ \rightarrow K^- e^+ e^+$	$< 1.7 imes 10^{-5}$
	$D_s^+ \to \pi^+ \phi(e^+ e^-)$	$(0.6^{+0.8}_{-0.4} \pm 0.1) \times 10^{-5}$
		$< 1.8 \times 10^{-5}$

BABAR

288 FB⁻¹ Very similar to CLEO Approach

SELECT CONTINUUM D'S TO BE ABLE TO MAKE MISSING ENERGY VETOS

EXPANDED TO INCLUDE ALL HADRON SPECIES AND BOTH DI-ELECTRONS AND DI-MUONS

BABAR Results

Rare Charm Decays - CKM 2010

D0 Experiment

D0 Experiment

D0 Results

$$B(D^{+} \to \pi^{+} \phi \to \pi^{+} \mu^{+} \mu^{-}) = (1.8 \pm 0.5 \pm 0.6) \times 10^{-6}$$
$$B(D^{+} \to \pi^{+} \mu^{+} \mu^{-}) < 3.9 \times 10^{-6}$$

Some Comparisons: D $\rightarrow \phi \pi$ +

Some Comparisons: $c \rightarrow ull$

MILESTONE II: ALL THREE HAVE SET LIMITS NEAR 10⁻⁶ LEVEL USING MODES BEST SUITED FOR THEIR EXPERIMENT/ENVIRONMENT

Rare Charm Decays - CKM 2010

Some Comparisons: $c \rightarrow ull$

MILESTONE II: ALL THREE HAVE SET LIMITS NEAR 10⁻⁶ LEVEL USING MODES BEST SUITED FOR THEIR EXPERIMENT/ENVIRONMENT

Expectations & Conclusions

- Rare Charm Decays are a unique probe for New Physics
- Very diverse set of results from 5 experiments at 3 energies
 Other than CLEO-c only fraction of data analyzed
- Leptonic Decays ~10⁻⁷ limits from Belle (660 fb⁻¹)
 - Comparable results expected from CDF with current data sample
 - Comparable results expected from BESIII with 10 fb⁻¹
 - LHCb expects to set limit of 4x10⁻⁸ in 100 pb⁻¹
- **►** Radiative Decays ργ, ωγ, γγ limits from CLEO-c ~10⁻⁵
 - 12x data (eventually from BESIII) 10⁻⁷ limit expected
 - Note in SM long distance effects $D \rightarrow \gamma \gamma \approx D \rightarrow \mu \mu$ so $D \rightarrow \gamma \gamma$ determines size of New Physics window in $D \rightarrow \mu \mu$
- ▶ c → ull variety of limits from CLEO, Babar, D0 ~10⁻⁶
 - Expect LHCb will do better than 10⁻⁷ before BESIII results ~10⁻⁷
 - LHCb sensitivity studies not yet performed