CKM 2010 – University of Warwick – Sep. 8th 2010

Rare Decays with Missing Energy at SuperB

Alejandro Pérez LAL – Université Paris XI

Outline

Theoretical motivation

The experimental technique (Recoil Analysis):

- Semi-leptonic (SL)
- Hadronic (HD)
- Experimental status

SuperB detector layout

- Fwd-PID
- > Bwd-EMC (veto devise)

Analysis strategy

- ≻ B→Kνν
- י B*→K*vv
- Expected sensitivity on New Physics (NP) searches
- Summary and outlook

Golden Matrix for B-Physics

		H^+	Minimal	Non-Minimal	Non-Minimal	NP	Right-Handed
		high ${\rm tan}\beta$	$_{\rm FV}$	FV (1-3)	FV (2-3)	Z-penguins	currents
	$\mathcal{B}(B \to X_s \gamma)$		Χ		0		О
	$A_{CP}(B \to X_s \gamma)$				X		О
-	$\mathcal{B}(B \to \tau \nu)$	X-CKM					
	$\mathcal{B}(B \to X_s l^+ l^-)$				О	О	О
-	$\mathcal{B}(B \to K \nu \overline{\nu})$				О	X	
	$S(K_S \pi^0 \gamma)$						X
	β			х-скм			
X The GOLDEN channel for the given scenario							
	O Not the GOL	Not the GOLDEN channel for the given scenario,					
but can show experimentally measurable deviations from SM.							
	Super B					specifics	
						nalyses	
	Rare de	cavs w	ith		Channels v	with π^0 . γ . ν .	Ks
->	missing	energy				·····	

B→K^(*)vv Theoretical Motivation

- Electroweak penguin (loop diagram) radiated processes (b→s):
 - Flavor changing neutral current (FCNC) prohibited in SM at tree level
 - Sensitive New Physics (NP): Susy particles, light dark matter (LDM), ...

- b→svv model independent phenomenology: (W. Altmannshofer et al. TUM-HEP-709-09)
- BR(B \rightarrow Kvv) = (4.5±0.7)×10⁻⁶ (1-2 η) ϵ^{2}
- BR(B \rightarrow K*vv) = (6.8±1.1)×10⁻⁶ (1+1.31 η) ϵ^{2}
- $F_{\mu}(B \rightarrow K^* \nu \nu) = (0.54 \pm 0.01) (1 + 2\eta)/(1 + 1.31\eta)$

$$\frac{d\Gamma}{d\cos\theta} \propto \frac{3}{4}(1 - \langle F_L \rangle)\sin^2\theta + \frac{3}{2} \langle F_L \rangle \cos^2\theta$$

 θ (helicity) = angle between:

- K* direction in B rest frame
- K direction in K* rest frame

ity of Warwick - September 8th 2010

$$\varepsilon = \frac{\sqrt{|\mathbf{C}_{l}^{v}|^{2} + |\mathbf{C}_{R}^{v}|^{2}}}{|(\mathbf{C}_{l}^{v})^{SM}|}$$
$$\eta = \frac{-\operatorname{Re}(\mathbf{C}_{L}^{v}\mathbf{C}_{R}^{v})}{|\mathbf{C}_{l}^{v}|^{2} + |\mathbf{C}_{R}^{v}|^{2}}$$

B→K^(*)vv Theoretical Motivation

- Electroweak penguin (loop diagram) radiated processes (b→s):
 - Flavor changing neutral current (FCNC) prohibited in SM at tree level
 - Sensitive New Physics (NP): Susy particles, light dark matter (LDM), ...

b \rightarrow **svv** model independent phenomenology: (W. Altmannshofer et al. TUM-HEP-709-09)

B→K^(*)vv Theoretical Motivation

- Electroweak penguin (loop diagram) radiated processes (b→s):
 - Flavor changing neutral current (FCNC) prohibited in SM at tree level
 - Sensitive New Physics (NP): Susy particles, light dark matter (LDM), ...

b \rightarrow **svv** model independent phenomenology: (W. Altmannshofer et al. TUM-HEP-709-09)

6

Recoil Analysis Technique (I)

Most of the searches for rare B decays exploit the Recoil Technique:

Breco: full (partial) reconstruction of one B into a hadronic (semi-leptonic) final state
Brecoil: look for the signal signature, e.g. K^(*) not accompanied by additional (charged+neutral) particles + Missing Energy

Recoil technique at B-Factories:

- search for rare decays (~10⁻⁵) with missing energy
 - (Not possible at hadronic machines)
- Several benchmark channels at SuperB: B→τν, B→K^(*)νν, ...

Recoil Analysis Technique (II)

- Aim: collect as many as possible fully/partially reconstructed B mesons in order to study the properties of the Brecoil
- 1st step: reconstruction D→hadrons

$$\begin{array}{cccc} D^{*+} \to D^{0} \pi^{+} & D^{0} \to K^{-} \pi^{+} & D^{+} \to K^{-} \pi^{+} \pi^{-} \\ D^{*0} \to D^{0} \pi^{0} & D^{0} \to K^{-} \pi^{+} \pi^{0} (\gamma \gamma) & D^{+} \to K^{-} \pi^{+} \pi^{-} \pi^{0} \\ D^{0} \to K^{-} \pi^{+} \pi^{+} \pi^{-} & D^{+} \to K^{0}_{S} \pi^{+} \\ D^{*0} \to D^{0} \gamma & D^{0} \to K^{0}_{S} \pi^{+} \pi^{-} & D^{+} \to K^{0}_{S} \pi^{+} \pi^{-} \pi^{+} \\ D^{+} \to K^{0}_{S} \pi^{+} \pi^{0} \end{array}$$

2nd step:

 \bigcirc

<u>Hadronic Breco:</u> B→DX

- Use D as a seed and add X to have system compatible with B hypothesis $(X = n\pi^{\pm} mK^{\pm} rK^{0}_{s} q\pi^{0} and n+m+r+q<6)$
- Sample of 1100 B decay modes with different purities
- Kinematics completely constrained
- Low reconstruction efficiencies (~0.4%)

Semi-Leptonic Breco: B→D^(*)Iv

- Use D as a seed and a lepton to form a DI pair (I = e[±],μ[±])
- Sample of 14 B decay modes
- Kinematics is unconstrained due to neutrino
- Higher reconstruction efficiencies (~2.0%)

(::)

Experimental Status

Alejandro Pérez, CKM 2010 - University of Warwick - September 8th 2010

SM expectation

SuperB Detector Layout

- Baseline configuration: BaBar with a reduced boost (βγ = 0.28 instead of 0.56) ⇒ higher geometrical acceptance ⇒ higher efficiency
- Additional detector components proposed:
 - Forward particle identification device (Fwd-PID)
 - Backward electromagnetic calorimeter (Bwd-EMC)

$B \rightarrow K^{(*)}vv$ Analysis strategy (I)

Signal-side selection:

- $B \rightarrow Kvv$: look for a single $K^+(K^0_s)$ in Brecoil
- B^{*}→K^{*}νν: look for a K^{*+} (K^{*0}) in B*recoil*. Several modes: K^{*+}→K⁰_s(→π⁺π⁻)π⁺, K⁰_s(→π⁰π⁰)π⁺, K⁺π⁰ (charged); K^{*0}→K⁺π⁻ (neutral)
- Opposite (same) charges of Breco and Brecoil for charged (neutral) modes
- No extra tracks in the event
- Kinematic cuts: K⁰_s and K^{*} mass
- Kaon (K⁺,K⁰_S) K^{*} CM momentum
- Missing energy (E_{beams} energy of charged and neutral objects in event)
- Main discriminant variable: Eextra = Σ(extra neutrals in the EMC)

B→K^(*)vv Analysis strategy (II)

Fit strategy for $B \rightarrow K^* \nu \nu$ analysis:

• The plan is to extract BR and F₁ by performing a 2D fit on Eextra and θ (helicity)

- Drawback for angular analysis: need to know Brecoil reference frame (RF)
 - Hadronic Breco: constrained kinematics
 Brecoil RF can be inferred from Breco reconstruction and beams information
 - Semi-leptonic Breco: unconstrained kinematics due to neutrino
 - Still can use the available information to build an estimator for θ (helicity)
 - Expect worse resolution effects w.r.t Hadronic Breco

Angular Analysis: SL recoil (I)

- Available experimental information for θ (helicity) measurement:
- D^(*)I vertex in Lab RF and 4-momentum in CM
- Module of Breco 3-momentum in CM
- Cosine of the angle between the Breco and D^(*)I in CM: Breco is in a cone around D^(*)I

<u>Two estimators for θ :</u>

- Average:
 - use all possible Brecoil vectors around $D^{(*)}I$ cone to calculate θ . Then average out.
- Beam spot:

for each Brecoil vector obtain the min-distance (d-min) between the beam spot and the line through the DI vertex with Brecoil direction. θ (helicity) calculated with the Brecoil giving the smallest d-min

Angular Analysis: SL recoil (II)

Angular Analysis: SL and HD recoil

- Events with 80° < θ-true < 100°</p>
- Hadronic recoil has a lower resolution (5 times better) due to the constrained kinematics

$B \rightarrow K^{(*)}vv$ (SL): Expected Sensitivity

- Performed a very simple cut and count analysis
- Not enough statistics for background samples for studying background reduction
- Only estimate efficiency gains on signal samples: ~5% to 10%
- Pessimistic assumption: backgrounds increases in efficiency such that S/B ratio stays constant => overall increase in statistics for all samples

Alejandro Pérez, CKM 2010 - University of Warwick - September 8th 2010

Expected constrains on NP

Expected constrains on NP

 $BR(B \rightarrow Kvv)$ With 51ab⁻¹ expects **18% precision** S/√(S+B) Preliminary 0 L 10 20 30 40 50 60 70 0.5 0.4 **Preliminary** 0.3 1,0) 0.2 0.1 F 0 -0.1 Current Status -0.2 68% prob -0.3 95% prob -0.4 Theo error -0.5 1.5 0.5 2.5 1 2 E

- Warning: very preliminary results
- Still need to quantify the effect of:
 - Bwd-EMC on background rejection
 - SuperB machine backgrounds rates

- September 8th 2010

Summary and outlook

- Rare decays with missing energy are golden modes for spotting NP
- SuperB clean experimental environment allows to study those decays (not possible at hadronic machines)
- B→K^(*)vv modes have potential for NP searches: overconstrained model independent phenomenology ⇒ 3 observables and 2 parameters (ε,η)
- SuperB will be able to significantly reduce NP parameter space with a reduced fraction of its total dataset (51ab⁻¹ ⇔ ~3.4 years of data taking)
- Expect better results with additional detector improvements (Bwd-EMC)

Still some work to do

- Simultaneous extraction of BR($B \rightarrow K^{(*)}vv$) and $F_{L}(B \rightarrow K^{(*)}vv)$ with a 2D fit on Eextra and θ (helicity)
- Additional FL measurement should improve constrain on (ϵ, η) plane
- Hopefully NP effects will be spotted after a couple of years of running!

Alejandro Pérez, CKM 2010 - University of Warwick - September 8th 2010