Rare leptonic B and D decays

Sebastian Jaeger

$\mathbf{W}^{\text {University }}$

6th International Workshop on the CKM Unitarity Triangle University of Warwick, 06-10 September 2010

Contents

- Why rare leptonic decays
- Standard Model
- New Physics

Why rare leptonic decays?

Meson decays are the simpler, the fewer hadrons there are in the final state. Here "simple" refers to theory, particularly QCD

decay type	strong dynamics	\# observables
Leptonic	decay constant	
$B \rightarrow \mathrm{lv},\left.\mathrm{B} \rightarrow \mathrm{l}^{+}\right\|^{-}$	$\langle 0\| j^{\mu}\|B\rangle \propto f_{B}$	$\mathrm{O}(1)$
semileptonic, radiative $B \rightarrow K^{*} I v, K^{*} Y$	$\begin{gathered} \text { form factors } \\ \langle\pi\| j^{\mu}\|B\rangle \propto f^{B \pi}\left(q^{2}\right) \end{gathered}$	O(10)
Nonleptonic 2-body $B \rightarrow \pi m, \pi K, \rho \rho, \ldots$	full matrix element $\langle\pi m\| Q_{i}\|B\rangle$	O(100)

Decay constants are accessible by first principle methods (lattice QCD). Price to pay: small branching fractions, few observables

Leptonic decay, NP and LHC

$\propto \frac{m_{\mu}^{2}}{M_{W}^{2}} \quad \begin{aligned} & \text { loop and helicity } \\ & \text { suppressed in SM }\end{aligned}$

$$
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.2 \pm 0.2) \times 10^{-9}
$$

Buras et al 2010

$$
\propto \frac{m_{b}^{2} m_{\mu}^{2}}{M_{W}^{4}} \tan ^{6} \beta
$$

Yukawa suppressed in SM
in 2HDM (or MSSM) Yukawas can be very large
Loop suppression and possible removal of helicity/Yukawa suppression imply strong sensitivity to new physics

Standard Model

- Mediated by short-distance Z penguin and box - long distance strongly CKM / GIM suppressed

- including QCD corrections, matches onto single relevant effective operator $\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} \frac{\alpha}{\pi \sin ^{2} \theta_{W}} V_{t b}^{*} V_{t q} Y Q_{A}$
$Y\left(\bar{m}_{t}\left(m_{t}\right)\right)=0.9636\left[\frac{80.4 \mathrm{GeV}}{M_{W}} \frac{\bar{m}_{t}}{164 \mathrm{GeV}}\right]^{1.52}$

(approximates NLO to $<10^{-4}$) $\begin{aligned} & \text { IBuchalla\&Buras } 93, \\ & \text { Misiak\&Urban } 99 \text {; }\end{aligned}$
$Q_{A}=\bar{b}_{L} \gamma^{\mu} q_{L} \bar{\ell} \gamma_{\mu} \gamma_{5} \ell$
Artuso et al 0801.1833]
higher orders negligible
- branching fraction
$B\left(B_{s} \rightarrow l^{+} l^{-}\right)=\tau\left(B_{s} \frac{G_{F}^{2}}{\pi}\left(\frac{\alpha}{4 \pi \sin ^{2} \Theta_{W}}\right)^{2} F_{B_{s}}^{2} m_{l}^{2} m_{B_{s}} \sqrt{1-4 \frac{m_{l}^{2}}{m_{B_{s}}^{2}}}\left|V_{t b}^{*} V_{t s}\right|^{2} Y^{2}\right.$
main uncertainties: decay constant, CKM
for D or K decays long-distance contributions are important

st?nO? NOMO?

- $\mathrm{F}_{\mathrm{Bs}}=(238.8 \pm 9.5) \mathrm{MeV}$
lattice QCD average

- error can be reduced by normalizing to $B_{s}-\bar{B}_{s}$ mixing

$$
B\left(B_{q} \rightarrow \ell^{+} \ell^{-}\right)=C \frac{\tau_{B_{q}}}{\hat{B}_{q}} \frac{Y^{2}\left(\bar{m}_{t}^{2} / M_{W}^{2}\right)}{S\left(\bar{m}_{t}^{2} / M_{W}^{2}\right)} \Delta M_{q}
$$

where S is the $\Delta \mathrm{F}=2$ box function and C a numerical const and in the bag factor $\hat{B}_{B_{s}}=1.33 \pm 0.06$, some systematic uncertainties cancel. Then

$$
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.2 \pm 0.2) \times 10^{-9}
$$

- Very precise test of SM from hadronic observables at LHC!
- same trick for $\mathrm{B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}, \mathrm{B}_{\mathrm{s}, \mathrm{d}} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{e}^{+} \mu^{-}$, etc
- not for $\mathrm{D} \rightarrow \mu^{+} \mu^{-}$or $\mathrm{K} \rightarrow \mu^{+} \mu^{-}$as mixing is not calculable

Long distance

- For $\mathrm{B}_{\mathrm{s}, \mathrm{d}} \rightarrow \mu^{+} \mu^{-}$long distance effects are CKM suppressed
- for $D \rightarrow \mu^{+} \mu^{-}$(or $K \rightarrow \mu^{+} \mu^{-}$), short-distance itself GIM suppressed, so LD relevant and in this case dominant

Burdman et al 2001

$$
\mathcal{B} r_{D^{0} \rightarrow \mu^{+} \mu^{-}}^{(\gamma \gamma)} \simeq 2.7 \times 10^{-5} \mathcal{B} r_{D^{0} \rightarrow \gamma \gamma} \sim 10^{-13}
$$

- "background" effects such as undetected soft photons are not included in uncertainties quoted before and are traditionally left to experimentalists...

Experiment

- present upper bounds

	CDF	D0	SM theory
$B_{s} \rightarrow \mu^{+} \mu^{-}$	$4.310^{-8} 95 \% \mathrm{CL}$	$5.210^{-8} 95 \% \mathrm{CL}$	$(3.2 \pm 0.2) 10^{-9}$
$\mathrm{~B}_{\mathrm{d}} \rightarrow \mu^{+} \mu^{-}$	$7.610^{-9} 95 \% \mathrm{CL}$		$(1.0 \pm 0.1) 10^{-10}$
$D \rightarrow \mu^{+} \mu^{-}$	$3.010^{-7} 95 \% \mathrm{CL}$		$\sim 10^{-13}$

CDF public note 9892 D0 arXiv:1006.3469 D0 arXiv:1008.5077
Kreps arXiv:1008.0247 Buras et al arXiv:1007.1993

- early LHCb prospects

Burdman et al 2001

Beyond the SM

- New physics can modify the Z penguin
... induce a Higgs penguin ...

... or induce (or comprise) four-fermion contact interactions directly
- most general effective hamiltonian

$$
\frac{G_{F}}{\sqrt{2}} \frac{\alpha}{\pi \sin ^{2} \theta_{W}} V_{t b}^{*} V_{t q}\left[C_{S} Q_{S}+C_{P} Q_{P}+C_{A} Q_{A}\right]
$$

$$
\begin{aligned}
& \qquad B\left(B_{q} \rightarrow \ell^{+} \ell^{-}\right)= \\
& \frac{G_{F}^{2} \alpha^{2}}{64 \pi^{3} \sin ^{4} \theta_{W}}\left|V_{t b}^{*} V_{t q}\right|^{2} \tau_{B_{q}} M_{B_{q}}^{3} f_{B_{q}}^{2} \sqrt{1-\frac{4 m_{\ell}^{2}}{M_{B_{q}}^{2}}} \\
& \text { could violate } \\
& \text { lepton flavour! }
\end{aligned}
$$

MSSM - large $\tan \beta$

In SM, higgs couplings flavour diagonal (proportional mass matrix)

$$
M_{i j}^{d}=v Y_{i j}^{d}
$$

MSSM - large tan β

In SM, higgs couplings flavour diagonal (proportional mass matrix)

$$
M_{i j}^{d}=v_{d} Y_{i j}^{d}+v_{u} \Delta_{i j}
$$

In MSSM, 3 neutral higgses, 2 vevs v_{u}, v_{d}

MSSM - large tan β

In SM, higgs couplings flavour diagonal (proportional mass matrix)
parametrically

$$
M_{i j}^{d}=v_{d} Y_{i j}^{d}+v_{u} \Delta_{i j}
$$

In MSSM, 3 neutral higgses, 2 vevs v_{u}, v_{d} $\tan \beta=v_{u} / v_{d}$

MSSM - large tan β

In SM, higgs couplings flavour diagonal In SM, higgs couplings flavo
(proportional mass matrix) In MSSM, 3 neutral higgses, 2 vevs v_{u}, v_{d}

parametrically large if $v_{u} \gg v_{d}$

MSSM - large tan β

MSSM - large tan β - MFV

- huge rates possible, even for minimal flavour violation
- correlation (for MFV) [Buras etal 2002] with $\Delta M_{B_{s}}$ [Gorbahn, SJ, Nierste, Tine 2009] bound on $B R\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$in these models implies closeness of $\Delta M_{B_{s}}$ to SM. In turn, $\Delta M_{B_{s}}$ at present does not constrain $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}$
- beyond MFV, no correlations !
 not necessarily suppression of $B_{d} \rightarrow \mu^{+} \mu^{-}$ with respect to $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu$

MSSM - small tan β

- Z penguin contributions now relatively more important and interference effects possible

complete 1-loop calculation in general MSSM
[Dedes, Rosiek, Tanedo 2008] implemented in public computer program "SUSY_FLAVOR"
[Rosiek, Chankowski, Dedes, SJ, Tanedo 2010]

(in this plot the Z penguin does not receive large contributions, in general it can)

Randall-Sundrum

- Warped extra-dimensional models "explain" SM flavour structure by localizing the SM degrees of freedom differently in the extra
 dimension. Higher Kaluza-Klein states of the gauge bosons have tree-level FCNC couplings to the SM particles

without / with custodial protection higgs on IR brane

Little(st) Higgs (with T parity)

- Higgs is pseudo-Goldstone boson. Implies new particles with non-MFV couplings

- enter at 1 loop through Z penguin, finite calculable contribution
[Goto et al 0809.4753]
[de Aguila et al 0811.2891]
- effect less pronounced than in MSSM or RS but should be distinguishable from Standard Model
- no observable effects in $D \rightarrow \mu^{+} \mu^{-}$

[Blanke et al 0906.5454]
[Paul et al 1008.3141]

Fourth generation

- (in simplest form:) one extra family of fermions with SM quantum numbers same diagrams as in SM
 extra masses and "CKM" elements provide rich non-minimal source of flavour violation

[Buras et al arXiv:1004.4565]

$D \rightarrow \mu^{+} \mu^{-}$

- Generically, this receives contributions from a Z penguin (negligible in SM due to GIM) which might not be small; Z' etc would
 also contribute
- Generic discussion and correlation with D mixing in [Golowich et al 0903.2830] $B R\left(D \rightarrow \mu^{+} \mu^{-}\right)$of up to 10^{-9} in some scenarios
- However, analysis in LHT model shows unobservably small effects, reason are constraints in B and K physics (for any values of NP masses and mixings)
[Paul et al 1008.3141]
The authors ask whether this might be generically so.
(why) is e.g. this diagram
(not) accompanied by a contribution to neutral Kaon mixing ?

- I think depending on experimental prospects this deserves further study

Conclusions

- Rare leptonic decays are theoretically clean
- They can be new physics dominated
- and LHCb can measure $\operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$down to the $S M$ value (and below)
- Without a theory of flavour, we cannot predict hierarchies between $B R\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$and $B R\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)$, or even between lepton-flavour-conserving and violating modes
- I encourage experimenters to look beyond $B_{s} \rightarrow \mu^{+} \mu^{-}$where feasible ($\mu^{+} \mathrm{e}^{-}, \mathrm{e}^{+} \mathrm{e}^{-}$? B_{d} !). (If encouragement is needed.)
- if $D^{0} \rightarrow \mu^{+} \mu^{-}$were observed in an experiment, it would be an unambiguous new physics discovery and/or measurement

