Evation Results on Borren Bs -- K*uu

Iain Bertram Department of Physics Lancaster University for the CDF & DO Collaborations CKM 2010 9th September 2010

 $B^0 \rightarrow K^{*0}(K^+\pi^-)\mu\mu$

- Non-resonant decays via box or penguin process
- BR(B⁰ \rightarrow K^{*0}µµ) ~10⁻⁶
- Physics beyond the SM
 - Possible increase in B
 - Modify the decay kinematics
- Measure: BR, A_{FB} , K^* Longitudinal Polarisatior

M(μμK) (GeV/c²)

- <u>CDF Note 10047</u> 4.4fb⁻¹
- Optimized over previous published result (PRD 79:011104, 2009)
- Improved Particle ID
 - Muon: Likelihood ID cleaner dimuon candidates
 - Kaon, pion: combined log likelihood from ToF and dE/dx reducing combinatorial background
- Makes use of neural networks for B signal selection

Observation of Decays

Branching Ratios (XX± stat ± syst) × 10⁻⁶ 0.38±0.05±0.03 1.06±0.14±0.09 1.44±0.33±0.56

Differential Branching Fraction

• $q^2 = m^2(\mu\mu)c^2$

$$P_{s}(\cos\theta_{K}) \propto \frac{3}{2} F_{L} \cos^{2}\theta_{K} + \frac{3}{4} (1 - F_{L})(1 - \cos^{2}\theta_{K})$$

For B⁺, set F_L=1
$$P_{s}(\cos\theta_{\mu}) \propto \frac{3}{4} F_{L}(1 - \cos^{2}\theta_{\mu}) + \frac{3}{8} (1 - F_{L})(1 + \cos^{2}\theta_{\mu}) + A_{FB} \cos\theta_{\mu}$$

 $B_{S} \rightarrow \mu \mu$

- Current SM Prediction: Buras: <u>hep-ph/0904.4917</u>
 → BR(B_s→µµ) = (3.6±0.3)×10⁻⁹
 - → BR($B_d \rightarrow \mu \mu$) = (I.I±0.I)×I0⁻¹⁰
- Can be enhanced by the presence of non-SM physics

7

Signal & Background

$$\mathcal{B}\left(B_s^0 \to \mu^+ \mu^-\right) = \frac{\left(N(B_s^0)\right)}{N(B^+)} \cdot \frac{\epsilon_{B^+}}{\epsilon_{B_s}} \cdot \frac{f_u}{f_s} \cdot \mathcal{B}(B^+)$$

I. Measure number of possible signal events in B_s mass window

$$\mathcal{B}\left(B_s^0 \to \mu^+ \mu^-\right) = \frac{N(B_s^0)}{N(B^+)} \cdot \frac{\epsilon_{B^+}}{\epsilon_{B_s}} \cdot \frac{f_u}{f_s} \cdot \mathcal{B}(B^+)$$

- I. Measure number of possible signal events in B_s mass window
- 2. Normalise to number of $B^+ \rightarrow J/\psi K^+$ events

$$\mathcal{B}\left(B_s^0 \to \mu^+ \mu^-\right) = \frac{N(B_s^0)}{N(B^+)} \cdot \left(\frac{\epsilon_{B^+}}{\epsilon_{B_s}}\right) \cdot \frac{f_u}{f_s} \cdot \mathcal{B}(B^+)$$

- I. Measure number of possible signal events in B_s mass window
- 2. Normalise to number of $B^+ \rightarrow J/\psi K^+$ events
- 3. Correct for relative reconstruction efficiencies

$$\mathcal{B}\left(B_s^0 \to \mu^+ \mu^-\right) = \frac{N(B_s^0)}{N(B^+)} \cdot \frac{\epsilon_{B^+}}{\epsilon_{B_s}} \cdot \frac{f_u}{f_s} \cdot \mathcal{B}(B^+)$$

- I. Measure number of possible signal events in B_s mass window
- 2. Normalise to number of $B^+ \rightarrow J/\psi K^+$ events
- 3. Correct for relative reconstruction efficiencies
- 4. Correct for Fragmentation Functions and Branching ratio.
 Particle Data Group (<u>W.M.Yao et al.</u>). 2006.
 Both CDF and D0 use the LEP numbers.

 f_u/f_s is the dominant source of systematic uncertainties at 15%

CDF's Most Recent Result

- <u>CDF Note 9892</u>
- Based on published analysis
- More Data
 - ➡ Added I.7fb⁻¹
 - Additional tracking acceptance - gain of 12%

- Background is modelled using sideband regions in mass
- MC is compared with $B^+ \rightarrow J/\psi K^+$ data.

CDF's Most Recent Result

- <u>arXiv:1006.3469v1</u> [hep-ex] submitted to Phys. Lett. B
- 6.1fb⁻¹ data (split into Run 2a 1.3fb⁻¹ and Run 2b 4.8fb⁻¹)
- Many improvements
 - ➡ Acceptance Gain (Muons ~10%, Trigger ~16%)
 - Bayesian Neural Networks
 - Improved understanding of discriminating variables
 - Improved MC and Data modelling
 - ➡ 2D fit of BNN output and mass spectrum

Background Reduction

$B \rightarrow hh$

Muon(J/ψ→μμ)

 $B \rightarrow hh$

Muon(J/ψ→μμ)

Signal Extraction

• 2D fit to $m(\mu\mu)$ and BNN

Comparisons

Old: 1D counting events in signal region New: 2D including shape in signal region ~40% improvement in expected limit New/Old

D0 Results

In highest sensitivity region: 51 ± 4 expected bkg events, 55 data events

BF < 51 x 10⁻⁹ (95% CL) 14x SM

Expected limit: 40 x 10⁻⁹ 11x SM

arXiv:1006.3469v1 [hep-ex]

Upper Limits on BR(B $\rightarrow \mu^+\mu^-$) at 95% C.L. at Tevatron

Prospects - Current Data Taking

2011 and Beyond

Upper Limits on BR(B $\rightarrow \mu^+\mu^-$) at 95% C.L. at Tevatron

Summary

- Results on search for FCNC at the Tevatron presented.
- B→K^{*}µµ (CDF 4.4 fb⁻¹)
 - First measurement of A_{FB} in hadron collisions and competitive with B factories First observation of $B_s \rightarrow \Phi \mu \mu$ (rarest B_s decay observed)
- $B \rightarrow \mu \mu$ (D0 new result 6.1 fb⁻¹) B(Bs) < 51 x 10⁻⁹
 - ➡ CDF World Best 3.7fb⁻¹ B(Bs) < 43 x 10⁻⁹
 - No evidence of Physics beyond the SM
- Additional data being collected, 8fb⁻¹ on tape
 - \Rightarrow Expect 10fb⁻¹ by Summer 2011, and possibly 16fb⁻¹ in 2014.