Current and future kaon experiments

M. S. Sozzi University of Pisa and INFN

Warwick

Warning

Nicola Cabibbo (1935-2010)

Physicist member of the NA48 and NA62 collaborations

Warwick, Sep. 7th, 2010

CKM10

Fixed-target high-energy hadron beams: KTeV and NA48

KTEV 25. Kaons at the Tevatron

100 physicists 12 USA/Japan institutions 1997-1999 Physics with K in the 90s driven by ε'/ε experiments

Their legacy: **The first confirmation of the CKM picture of CPV**

A 12% **measurement** of ε'/ε (and much more: $\varepsilon_{K'}$, CPT...)

Innovative detection and analysis **techniques**

Two state-of-the-art EM calorimeters

Much more physics: **50 papers each** and counting... _{CKM10}

130 physicists 16 European institutions 1998-2003

Warwick, Sep. 7th, 2010

Kaons: the qualitative phase

Reasonably precise experimental data but...

Not an impressive impact on the Unitarity Triangles

Actually *training ground* for LQCD

Waiting for Lattice breakthrough...

Φ-factories: KLOE

Not the original ε'/ε goal but lots of physics:

Integrated luminosity: ~ 2.5 fb⁻¹ (~ 2.5 \cdot 10⁹ K_SK_L events) Peak: 1.6 \cdot 10³² cm⁻² s⁻¹

Approach with unique potential for **K_s physics**, absolute normalizations

Campaign of **BR and lifetimes** measurements

Beginning of K **interferometry** physics, CPT and QM tests

93 physicists - 15 institutions - 2000-2006

Kaons: the quantitative phase

The Kaon BR revolution (2003-2010): large (several %, several σ) variations in world data (higher statistics, radiative corrections)

10⁵-10⁷ events samples ~0.1% background (for K⁺, K_L)

Cabibbo angle from K ℓ 3 (K_L, K_S, K⁺) and LQCD:

 $\Gamma(K_{l3(\gamma)}) = \frac{C_{K}^{2} G_{F}^{2} M_{K}^{5}}{192\pi^{3}} S_{EW} |V_{uS}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} I_{Kl}(\lambda) (1 + 2\Delta_{K}^{SU(2)} + 2\Delta_{Kl}^{EM})$

 $\frac{\Gamma_{K_{\ell 2}}}{\Gamma_{\pi_{\ell 2}}} = \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_\pi^2} \frac{m_K (1 - m_\ell^2 / m_K^2)^2}{m_\pi (1 - m_\ell^2 / m_\pi^2)^2} (1 + \delta_{\rm EM}) \quad |\operatorname{Vus}| / |\operatorname{Vud}| \text{ from } (\mathrm{K}/\mathrm{II}) \ell 2 \text{ and } \mathrm{LQCD}$

Kaons confront CKM

M.S. Sozzi

CKM10

Leptonic K decays

Helicity-suppressed Kl2 decays: $K^{\pm} \rightarrow e^{\pm}v \ K^{\pm} \rightarrow \mu^{\pm}v$ Axial current in SM, hadronic physics in normalization f_K (ChPT and lattice matching). Sub per-mille precision on $R_K = \frac{\Gamma(K^{\pm} \rightarrow e^{\pm}v)}{\Gamma(K^{\pm} \rightarrow \mu^{\pm}v)}$

 $R_{K}(SM) = (2.477 \pm 0.001) \cdot 10^{-5}$

BSM: scalar densities or RH currents H⁺ affects rates and possibly RK !

```
NA62 (40% data set)
60K candidates, 9% background
```

KLOE (final) 14K candidates, 15% background

 $R_{K} = (2.487 \pm 0.012) \cdot 10^{-5}$

DaΦne and KLOE: a new marriage

Starting 2008 new crab-waist interaction scheme reached **4.5** 10³² cm⁻² s⁻¹ luminosity

Step 0 (2010): collect 5fb⁻¹ running at 10^{33} luminosity, with 2 pairs of new e⁺e⁻ taggers for $\gamma\gamma$ physics Resonance physics, hadronic σ , precision CKM measurements: $|Vus|f_+(0) \rightarrow 0.14\%$

Step 1 (late 2011): collect 20 fb⁻¹ with

- Small-angle crystal calorimeters
- Tile calorimeters on beam quadrupoles

- GEM light tracker for improved vertex resolution

CPT and Lorentz violation tests Dark matter searches

```
Marginal for K_S \rightarrow \pi^0 \ell^+ \ell^-
```

M.S. Sozzi

: a new m	arriage	
KLOE-2		
	T.	
N.	15TE	FFFF

Mode	$\delta V_{us} \times f_+(0) \ (\%)$	B	au	δ	IKI
$K_L e3$	0.21	0.09	0.13	0.11	0.09
$K_L \mu 3$	0.25	0.10	0.13	0.11	0.15
K_Se3	0.33	0.30	0.03	0.11	0.09
$K^{\pm}e3$	0.37	0.25	0.05	0.25	0.09
$K^{\pm}\mu 3$	0.40	0.27	0.05	0.25	0.15

KLOE-2 Step0: few 10-4 CKM univ. test

CKM10

The role of Lattice

Lattice QCD and the Unitarity Triangle

Three of the five determinations of the UT parameters depend in a critical way from Lattice QCD results.

We would like measurements that are as far as possible independent from details of the hadron physics. The answer: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and $K_L \rightarrow \pi^0 \nu \bar{\nu}$.

Measurement	$V_{CKM} \times$ other	Constraint
$b \rightarrow u/b \rightarrow c$	$ V_{ub}/V_{cb} ^2$	$\bar{\rho}^2 + \bar{\eta}^2$
Δm_d	$ V_{td} ^2 f_{B_d}^2 B_{B_d} f(m_t)$	$(1-\bar{\rho})^2+\bar{\eta}^2$
$\frac{\Delta m_d}{\Delta m_s}$	$\frac{ V_{td} ^2}{ V_{ts} ^2} \frac{f_{B_d}^2 B_{B_d}}{f_{B_s}^2 B_{B_s}}$	$(1-\bar{\rho})^2+\bar{\eta}^2$
ε_K	$f(A, \overline{\eta}, \overline{\rho}, B_K)$	$\propto ar\eta(1-ar ho)$

A. Stocchi, from analysis by M. Ciuchini et al.

Why ultra-rare K decays?

Let's face it:

the flavour structure of "TeV scale" BSM physics is not too weird

Why ultra-rare K decays?

Let's face it:

the flavour structure of "TeV scale" BSM physics is not too weird

The easy (SM) stuff has been done

"When the going gets tough, the tough get going"

Why ultra-rare K decays?

Let's face it:

the flavour structure of "TeV scale" BSM physics is not too weird

The easy (SM) stuff has been done

"When the going gets tough, the tough get going"

K **theoretical cleanliness** unmatched, simple system, few decay channels Extreme **hard-GIM SM-suppressed** FCNC decays: room for NP up to 10x SM

Unique sensitivity to **flavour couplings** of BSM physics about to be produced at LHC... ... or sensitivity to **extremely high NP scales** in the unfortunate case that... (10% measurement of $K \rightarrow \pi \upsilon \upsilon$ BR can probe

1000 TeV NP scale)

Warwick, Sep. 7th, 2010

M.S. Sozzi

CKM10

$K \rightarrow \pi \nu \nu$ BR predictions

The experimental challenges stimulated a flurry of theoretical improvements

 $K^+ \rightarrow \pi^+ \eta \eta$

 $BR_{SM} = (0.85 \pm 0.07) \cdot 10^{-10}$

 $\mathbf{K}_{\mathbf{L}} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\upsilon} \boldsymbol{\upsilon}$ $BR_{SM} = (0.26 \pm 0.04) \cdot 10^{-10}$

2.2%

CKM, parametric

Comparable, unprecedented, *tiny* theoretical errors

$K \rightarrow \pi \upsilon \upsilon$ beyond SM

K \rightarrow πυυ **remains clean** also beyond SM: single effective υυ operator, calculable Wilson coeff., no long-distance effects

The new $K_L \rightarrow \pi^0 \upsilon \upsilon$ enterprise

"The best it can be said is that so far nobody demonstrated conclusively that the measurement is impossible".

Warwick, Sep. 7th, 2010

How to detect a not kinematically closed decay, with poor signature, in a 10¹⁰ background?

Not quite your average "needle and haystack" problem maybe 10⁵ haystacks...

"...when you have eliminated the impossible, whatever remains, *however improbable*, must be the truth"

Sherlock Holmes The Sign of the Four (1890)

KEK E391a experiment

First dedicated pilot experiment to search for $K_L \rightarrow \pi^0 \upsilon \upsilon$ at the KEK-PS Improve over KTeV (Dalitz) limit: BR < 5.9 $\cdot 10^{-7}$

- High intensity: 2 ·10¹² ppp 12 GeV/*c* (50% DC)
- "Pencil" beam as transverse constraint: ~ 2 GeV/c KL at 4° and 11m
- Photon veto hermeticity down to 1-2 MeV: Pb/scint in high vacuum
- Good EM calorimetry: ~500 pure CsI 7x7 cm², with central hole

Three runs (2004-2005): 12 month total GOAL...

KEK E391a results

J-PARC

30 GeV/*c*, 100 kW reached, upgrade to 1 MW

3 Kaon lines (two separated K⁺, one K⁰)

M.S. Sozzi

CKM10

J-PARC

30 GeV/*c*, 100 kW reached, upgrade to 1 MW

3 Kaon lines (two separated K⁺, one K⁰)

CKM10

J-PARC K_L beam

 $0.2 \div 4 \text{ GeV}/c \text{ K}_{\text{L}}$

beam plug

2nd collimator (4.5+0.5m)

sweeping magnet

M.S. Sozzi

CKM10

KOTO experiment

Higher beam intensity, acceptance Lower DC, yield (angle): Statistics: 3000 x E391a

Halo n/K: 240x E391a: new beam line

Improved **background** control: new EM calorimeter (> granularity, longer), new backside charged veto, new beam-hole γ veto (25x Pb/aerogel)

Step 1: SES = 2.7 SM events (3 Snowmass years) with 2.2 background

Step 2 upgrade: **100 SM events** (dedicated, smaller targeting angle beam line, larger detector)

66 people, 16 institutions (Japan, Korea, USA, Russia, Taiwan) Stage 2 approval, beam line commissioned, in preparation

M.S. Sozzi

CKM10

KOTO experiment

2700 CsI crystal EM calorimeter (KTeV) with new electronics, in vacuum. 144 ch. prototype tested OK, now stacking.

Beam in October to test calorimeter Engineering run & first physics run fall 2011

Goal: reach GN limit before summer 2012 shutdown with 1 month 30 kW beam

Measurement of K⁺ $\rightarrow \pi^+ \upsilon \upsilon$ with new decay in-flight technique Intense unseparated (6% K+) 75 GeV/*c* hadron beam: 5 ·10¹² ppp High-energy: high yield, large decay volume, more powerful vetoing Track incoming K⁺ in 800MHz beam, particle ID, photon vetoing

5 ·10¹² K⁺ decays/year
55 SM events/(<Snowmass) year, S/B ≈ 5 M.S. Sozzi CKM10

Completing R&D Starting construction ANTI-A1

Partial engineering test 2011 First physics run 2013

US: strong interest and many casualties

FNAL P996 proposal

5% measurement of BR(K⁺ $\rightarrow \pi^+ \upsilon \upsilon$) with (proven) **stopped beam** technique, improving **x100** over BNL E949 by using:

- •10% of MI protons: 9.6 $\cdot 10^{13}$ 150 GeV/c p (kaon yield x7)
- •TeVatron as a stretcher ring (95% DC), same detector rates (~8 MHz)
- •Separated 550 MeV/c K+ beam (K/ $\pi \approx 2.5$, 13.5 m long, K⁺ stops x4.5)

Goal:
$$194_{-79}^{+89}$$
 events/year (1 year = 1.8 Snowmass years) with S/N ≈ 4

Ratio P996/E949	
$11.3^{+3.3}_{-2.3}$	Detector acceptance
6.3 ± 2.1	Stopped kaons per hour
5.3	Hours per year

FNAL P996 proposal

13 institutes, PAC endorsement Cost: 33.3 MUSD+contingengy (cost for TeVatron running...) New detector in CDF hall based on E949 concept, CDF/CLEO solenoid

Acceptance x11: many 10-50% improvements

Component	Acceptance factor
$\pi ightarrow \mu ightarrow e$	2.24 ± 0.07
Deadtimeless DAQ	1.35
Larger solid angle	1.38
1.25-T B field	1.12 ± 0.05
Range stack segmentation	1.12 ± 0.06
Photon veto	$1.65_{-0.18}^{+0.39}$
Improved target	1.06 ± 0.06
Macro-efficiency	1.11 ± 0.07
Delayed coincidence	1.11 ± 0.05
Product $(R_{\rm acc})$	$11.28^{+3.25}_{-2.22}$

Schedule: want to compete with NA62 TeVatron run II end ?...

FNAL Project-X (megatron, intensitron,...)

Ultimate proton driver for the next decade 50-120 GeV for v, K, μ , n(EDM)

Slow extraction limited from circular machines (10s of kW): Continuous-Wave LINAC (p or H⁻), **2** MW at 2 GeV, 2·10¹⁵ p/s **10x** AGS K yield (1/30 K/p, 300x flux)

Kaons at Project-X

Flux potential for **ultimate** ultra-rare K decay measurements

~500 K⁺ $\rightarrow \pi^+ \upsilon \upsilon$ events/year (S/B ~ 4)

 K_L →π⁰υυ experiment: the best of both worlds - Intrinsic high-precision timing: TOF approach (KOPIO) beam microbunching 50ps/40ns) - Round and small beam (acceptance and bkg rejection)

~200 K_L $\rightarrow \pi^0$ vv evts/year (S/B ~ 5-10)

Ultimate CPT test at **Planck scale**: interference from pure K⁰ beam

M.S. Sozzi

CKM10

Time-Reversal Violation

CKM10

Transverse μ^+ **polarization** in K⁺ $\rightarrow \pi^0 \mu^+ \upsilon$ decay CPV not suppressed by $\Delta I=1/2$ (can be $20x \epsilon'/\epsilon \approx 10^{-4}$) Tiny SM contribution ($\approx 10^{-7}$), small FSI ($\approx 10^{-5}$): good window for New Physics search Relative phase of scalar coupling FF

40 years of experimental history

KEK E246 experiment (final 2006):

$$P_T = -0.0017 \pm 0.0023 \pm 0.0011$$
$$P_T < 5 \cdot 10^{-3} \quad (90\% CL)$$

No sign of TRV Statistically limited

Factor **20** over E246: 0.8 GeV/*c* separated K+ branch line (K/ $\pi \approx 2$) Higher beam **intensity** (2 MHz K⁺), 1 year (300 kW beam) **Active polarimeter** (lower systematics, higher acceptance) **New tracking** (w. thinner target and He bags: higher background rejection)

45 people, 20 institutions (Japan, Russia, USA, Canada, Vietnam, Thailand) Stage 1 approval, R&D, beam line commissioned, 1 polarimeter sector in 2009

Kaons?

K experiments **complementary** to proton experiments (LHC) after all Higgs (or his lookalike) is the source of flavour effects...

Measured BRs and sensitivities in the **10⁻¹²** BR range

New Physics might already be there: ε_{K} ? ε'/ε ? Only Lattice knows... (at least LQCD *can* be done...)

From discovery tool to **quantitative probe** (CKM) field...

... working even beyond the SM: ultra-rare K decays are the holy grail

Kaons?

K experiments **complementary** to proton experiments (LHC) after all Higgs (or his lookalike) is the source of flavour effects...

Measured BRs and sensitivities in the **10**⁻¹² BR range

New Physics might already be there: ε_{K} ? ε'/ϵ ? Only Lattice knows... (at least LQCD *can* be done...)

From discovery tool to **quantitative probe** (CKM) field...

... working even beyond the SM: ultra-rare K decays are the holy grail

Effects seen with **10s of kW**, need **100s of kW** now

(and improved $|V_{cb}|$, $|V_{ub}|$ would help)

A flourishing of **challenging computations** and **ultra-challenging experimental enterprises** Kaons!

M.S. Sozzi

Conclusions ?

After 64 years of honorable service to physics, kaons, as the *minimal flavour laboratory*, are active as ever in offering *new ways* to explore the mysteries of the flavour sector, and to answer "Who ordered that?"

Thank-you

Spares

QCD from K: old way

Cusp Data NA48/2 2009 Ke4 Data NA48/2 2010 E865 2003 S1181977 pionium atoms DIRAC 0.25 aO .15 0.2 **ChPT** prediction: a₀=0.220±0.005 M.S. Sozzi

Form factor analysis of K[±]→ π ⁺ π ⁻e[±] υ (Ke4) decays

results:

CKM10

NA48/2 largest world statistics: 1.13.10⁶ events

 $0.2210 \pm 0.0047_{
m stat} \pm 0.0040_{
m syst}$ $a_0 =$ ${f a_2} \,= -\,0.0429 \pm 0.0044_{
m stat} \pm 0.0028_{
m syst}$ $a_0 - a_2 = 0.2639 \pm 0.0020_{stat} \pm 0.0015_{syst}$

Two Protvino projects

SPHINX+GAMS+ISTRA \rightarrow **OKA** at Protvino: 65-70 GeV 10¹³ ppp at U-70 (38% DC) **12.5 GeV** RF-separated K⁺ beam **5** 10⁶ Kpp (K/ $\pi \approx 4$) Commissioning beam and detector with runs started 2009 10-100x improvement on ISTRA Kaon program + spectroscopy

Ongoing R&D for a $K_L \rightarrow \pi^0 \upsilon \upsilon$ experiment **KLOD** Neutral pencil beam extracted @ 35 mrad, 10 GeV/c K⁰ 300 MHz n background: dual-readout spaghetti calorimeter Aim at **1 SM event** (S/B \approx 3) with 10 days of beam

M.S. Sozzi

Rare K decays: the full picture

