Charm Semileptonic Decays at CLEO-c

charm

Bo Xin Purdue University For the CLEO Collaboration

> CKM 2010 @ WARWICK Sep 06 - 10, 2010

09/07/2010

Importance of Charm Semileptonic Decays

Golden $P \rightarrow P$ transitions:

Option (a):

Since $|V_{cs}|$ and $|V_{cd}|$ are tightly constrained by unitarity, we can check theoretical calculations of the form factors

- Tested theory can then be applied to B semileptonic decays to extract $|V_{ub}|$.
- Option (b):

Assuming theoretical calculations of form factors, we can extract $|V_{cs}|$ and $|V_{cd}|$

□ New modes: to gain a complete understanding of charm semileptonic decays

P \rightarrow V transitions: 3 hadronic form factors are needed.

No unquenched LQCD calculation exists.

09/07/2010

Theory + Experiment = Precision Flavor Physics

Theory + Experiment = Precision Flavor Physics

The CLEO-c detector

CLEO III – SVX + ZD – 0.5 T

□818 pb⁻¹@3.770GeV (~ $5x10^6 D\overline{D}$ events) □600 pb⁻¹@4.170GeV (~ $6x10^5 D_s^* D_s$ events)

General purpose symmetric detector

△p/p = 0.6% at 800 MeV/c △E/E = 2% at 1 GeV, 5% at 100 MeV 93% coverage (charged and neutral) Excellent electron and particle ID Muons do not have enough energy to reach the muon chambers; mostly use electrons to do semileptonic decays

> Low multiplicity D tagging with high efficiency

 \rightarrow CLEAN-c

09/07/2010

Charm Semileptonic Decays @ CLEO-c

Fits to the U Distributions for $D \rightarrow K ev$

Form Factor Parameterizations

In general:

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{1-\lambda} \frac{1}{(1-q^{2}/m_{pole}^{2})} + \frac{1}{\pi} \int_{(m_{D}+m_{P})^{2}}^{\infty} \frac{\operatorname{Im}(f_{+}(t))}{t-q^{2}-i\varepsilon} dt$$
Single pole

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{(1-q^{2}/m_{pole}^{2})} \qquad \text{Measure } f_{+}(0) \& \mathfrak{m}_{pole}$$
Modified Pole

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{(1-q^{2}/m_{pole}^{2})(1-\alpha q^{2}/m_{pole}^{2})} \qquad \text{Measure } f_{+}(0) \& \mathfrak{a}$$

$$m_{pole} = m(D_{(s)}^{*})$$
(Allows for additional poles)
Series Expansion
form factors can be written as: $f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2})} \sum_{k=0}^{\infty} a_{k}(t_{0})[z(q^{2},t_{0})]^{k}$

$$z(q^{2},t_{0}) = \frac{\sqrt{t_{+}-q^{2}} - \sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}} + \sqrt{t_{+}-t_{0}}} \qquad t_{\pm} = (M_{D} \pm m_{K,\pi})^{2}, \quad t_{0}: \operatorname{arbitrary } q^{2} \text{ value}$$
that maps to z=0

z is small and converges quickly, linear or quadratic is sufficient to describe the data

Becher & Hill, Phys. Lett. B 633, 61 (2006)

Measure a_0 , $r_1 = a_1/a_0$, and $r_2 = a_2/a_0$

Form Factors: Test of LQCD

Form factor measures probability hadron will be formed

Modified pole model used to compare with LQCD

Form Factors: Test of LQCD

The LQCD uncertainty on $f_+^{\kappa}(0)$ was 10% (in 2005), now 2.5%!

The same LQCD technique can be used for $D \rightarrow \pi$ to further reduce the theory uncertainty on $f_+^{\pi}(0)$.

CLEO-c results consistent with LQCD, but more precise. f₊^K(0): 1% vs 3%, f₊^π(0): 3% vs. 10%

|V_{cs} | and |V_{cd} | Results

The data determine $|V_{cs(d)}|f_+(0)$. * PDG (Kev) To extract $|V_{cs(d)}|$, we combine the measured $|V_{cs(d)}|f_+(0)$ LEP W→cs values using the Becher-Hill parameterization with BESII [(Kev) (FNAL-MILC-HPQCD) for $f_{+}(0)$ CLEO-c: the most precise *direct* determination CLEO-C +HPQCD 2010 of $|V_{cs}| = \sigma(|V_{cs}|) / |V_{cs}| \sim 1.1\%$ (expt) $\oplus 2.5\%$ (theory) CLEO - c $|V_{cs}|$ 0.5 * PDG2002 IV 1 (818 pb^{-1}) $0.963 \pm 0.009 \pm 0.006 \pm 0.024$ stat syst theory CLEO-c: $\sigma(|V_{cd}|) / |V_{cd}| \sim 3.1\%$ (expt) $\oplus 10\%$ (theory) PDG/HF νN *v*N remains most precise determination $|V_{cd}|$ CLEO - cCLEO-C +LQCD 2005 $(818 \text{ pb}^{-1}) \qquad 0.234 \pm 0.007 \pm 0.002 \pm 0.025$ stat syst theory 0.1 0.15 0.20.25|**∨**_d| 09/07/2010 Charm Semileptonic Decays @ CLEO-c Bo Xin 11

$\sqrt[5]{D} \rightarrow pev$ Branching Fraction and Form Factors

Observation of $D \rightarrow \eta' ev \& D \rightarrow \eta ev$ Form Factor

Two different analysis techniques for $D \rightarrow \eta$ 'ev and ηev **PRELIMINARY**

Tagged: reconstruction a D tag and look at $E_{miss} \& P_{miss}$ on the other side of the event

Generic Reconstruction (GR):

□find signal (η/η'+e), then attempt to form a hadronic decay mode on the opposite side by looking for π^{\pm} , K[±], π^{0} , η, and K⁰_s.

Beam constrained mass is then calculated using neutrino 4-momentum as inferred from the missing 4-momentum of the event.

$D^+ \rightarrow K^- \pi^+ e^+ v$ and $D^+ \rightarrow K^- \pi^+ \mu^+ v$

- Six hadronic tag modes
- □ µ/π separation is based on $|m_{K\pi}-m_{K^*}|$ and other cuts including $|E_{miss}-|P_{miss}|| < 20 \text{MeV}$ $B(D^+ \to \overline{K}^{*0}e^+\nu) = (5.52 \pm 0.07 \pm 0.13)\%$ $B(D^+ \to \overline{K}^{*0}\mu^+\nu) = (5.27 \pm 0.07 \pm 0.14)\%$
- Five kinematic variables used in a model independent study of the four helicity amplitudes (K* and non-resonant Kπ included)
- Muons enable the study of mass-suppressed helicity form factor H_t(q²)
- Projective weighting technique, first used by FOCUS PLB633, 183(2006)
 - helicity basis form factors are distinguished based on their contributions to the decay angular distribution.
- **D** No evidence for d- or f-wave $K\pi$ component

Six form factor products vs. q²

Bo Xin

Exclusive D_s Semileptonic Decays

- Reconstruct a D_s tag in several hadronic modes, then study the system against the tag and a well reconstructed γ.
- No other significant D_s semileptonic branching fraction is expected.
- Total width of these exclusive modes is 16% lower than the D⁰/D⁺ semileptonic widths.
- Direct observation of a semileptonic decay including a scalar meson in the final state.

	Signal Mode	$\mathcal{B}(\%)$	
310 pb ⁻¹ @4170	$\overline{D_s^+ \to \phi e^+ \nu_e}$	$2.29 \pm 0.37 \pm 0.11$	
(Half of full dataset)	$D_s^+ \to \eta e^+ \nu_e$	$2.48 \pm 0.29 \pm 0.13$	
PRD 80:052007(2009)	$D_s^+ \to \eta' e^+ \nu_e$	$0.91 \pm 0.33 \pm 0.05$	
$B(D_s^+ \to f_0(980)e^+\nu)$ × $B(f_0 \to \pi^+\pi^-)$	$D_s^+ \to K^0 e^+ \nu_e$ $D_s^+ \to K^{\star 0} e^+ \nu_e$ $D_s^+ \to f_0 e^+ \nu_e$	$\begin{array}{c} 0.37 \pm 0.10 \pm 0.02 \\ 0.18 \pm 0.07 \pm 0.01 \\ 0.13 \pm 0.04 \pm 0.01 \end{array}$	

A separate analysis on $D_s^+ \rightarrow f_0(980)e^+\nu$ using full data set (PRD 80:052009(2009)) not shown due to lack of time

Charm Semileptonic Decays @ CLEO-c

Inclusive Semileptonic Decays of D⁰,D⁺, and D_s

□Cleanest Tagged modes: $D^0 \rightarrow K\pi$, $D^- \rightarrow K\pi\pi$, $D^-_s \rightarrow \phi\pi$

Unfold true electron using PID efficiency matrix

□Use knowledge about exclusive modes and form factor models to extrapolate below the momentum cutoff (200MeV/c)

 $\Gamma_{D^+}^{SL} / \Gamma_{D^0}^{SL} = 0.99 \pm 0.02 \pm 0.02$ $\Gamma_{D^+}^{SL} / \Gamma_{D^0}^{SL} = 0.81 \pm 0.05 \pm 0.03$ Isospin symmetry

Any additional exclusive modes will have small branching ratios

PRD 81:052007(2010)	D ⁰ →X e ⁺ v	D⁺→X e⁺v	$D_s \rightarrow X e^+ v$
Inclusive 8 (%)	6.55±0.10±0.09	16.36±0.11±0.29	6.49±0.40±0.18
Sum of exclusive <i>8</i> (%)	6.1±0.2±0.2	15.1±0.5±0.5	6.47±0.60
			35

09/07/2010

Charm Semileptonic Decays @ CLEO-c

Bo Xin

Summary

- Most of CLEO-c Charm semileptonic results have been updated using full data sets.
 - $\Box D \rightarrow Ke^+ v, D \rightarrow \pi e^+ v$ form factors in general agreement with LQCD.
 - □ LQCD precision lags.
 - Best direct measurement of |V_{cs}|, measured to ±1.1%(experimental) ± 2.5%(theory).
 - $|V_{cd}|$ is measured to ±3.1%(experimental) ± 10%(theory).
 - \Box Form factors in many D and D_s modes have been studied.
 - \square Observations of new semileptonic modes in both D and D_s decays.
 - □ Measurements of inclusive semileptonic decays.
- The CLEO-c semileptonic program has been highly successful.
- The next D factory, BESIII, will continue to challenge the precisions of QCD calculations.

Theory: A Breakthrough in Lattice QCD

- It is suggested that $B_s \rightarrow J/\Psi f_0$ can be an alternative to $B_s \rightarrow J/\Psi \Phi$ to measure CP Violation in the B_s system Stone & Zhang [PRD79, 074024]
- D_s semileptonic decays provide a very clean environment to study the properties of the $f_0(980)$ meson

600 pb⁻¹ @4170 (CLEO-c full dataset)

19

or f₀

Backup Slides

In general:
$$f_{+}(q^{2}) = \frac{f_{+}(0)}{1-\alpha} \frac{1}{\left(1-q^{2}/m_{pole}^{2}\right)} + \sum_{k=1}^{N} \frac{\rho_{k}}{1-\frac{1}{\gamma_{K}} \frac{q^{2}}{m_{pole}^{2}}}$$

$D \rightarrow K/\pi e^+\nu$: Fits to the d Γ/dq^2 Distributions

$D \rightarrow K/\pi e^+ v$ Branching fractions

Precision measurements from BABAR/Belle/CLEO-c.

CLEO-c most precise. Theoretical precision lags experiment.

09/07/2010

$D \rightarrow P \in v$, which parameterization to choose?

When the shape parameters are not fixed, each parameterization is able to describe the data with a comparable χ^2 probability.

As data do not support the physical basis for the pole & modified pole models, the model independent Becher-Hill series parameterization is used for $|V_{cx}|$.

$D \rightarrow \rho e_{\nu}$: Kinematic Variables

Dependence on the form factors enters through H_+ , H_- and H_0 .

$D \rightarrow \rho e_{\nu}$: Form Factor Ratios R_{ν} and R_{2}

The helicity amplitudes are given by

$$\begin{aligned} H_{\pm}(q^{2}, m_{\pi\pi}) &= (M_{D} + m_{\pi\pi} (A_{1}(q^{2}) + 2 \frac{M_{D}P_{\pi\pi}}{M_{D} + m_{\pi\pi}} (V(q^{2}))) \\ H_{0}(q^{2}, m_{\pi\pi}) &= \frac{1}{2m_{\pi\pi} \sqrt{q^{2}}} \left[(M_{D}^{2} - m_{\pi\pi}^{2} - q^{2})(M_{D} + m_{\pi\pi} (A_{1}(q^{2}) + 4 \frac{M_{D}^{2}P_{\pi\pi}^{2}}{M_{D} + m_{\pi\pi}} (A_{2}(q^{2})) \right] \end{aligned}$$

Form factors are parameterized using the simple pole model (*i.e.*, vector dominance):

$$A_{1(2)}(q^2) = \frac{A_{1(2)}(0)}{1 - q^2 / M_A^2}; \qquad V(q^2) = \frac{V(0)}{1 - q^2 / M_V^2}$$

U We make a 4D fit to the decay rate for form factor ratios $R_{\rm V}$ and $R_{\rm 2}$:

■ We make a fit (Fit B) described in Nucl. Instr. and Meth. A328, 547 (1993): a multidimensional fit to variables modified by experimental acceptance and resolution taking into account correlations among them

