

Charm semileptonic decays at the B factories

Centre de Physique (des Particules de Marseille

CPP

Justine Serrano

Centre de Physique des Particules de Marseille

Review of results: $D^0 \rightarrow K^- e^+ v$ $D^0 \rightarrow \pi^- e^+ v$ $D_s^+ \rightarrow K^+ K^- e^+ v$ $D^+ \rightarrow K^- \pi^+ e^+ v$

CKM2010 University of Warwick, september 7th

Importance of charm semileptonic decays

$$d\Gamma \propto \left| V_{cx} \right|^2 \times FF^2$$

Then 2 strategies:

- Use Lattice QCD input for the form factors to determine V_{cx}
- Use CKM unitarity to determine the form factors and validate LQCD results
 - $\Rightarrow\,$ Once validated, they can be used in B sector to determine $V_{ub}\,and\,\,V_{cb}$

Golden mode: $D \rightarrow Pseudoscalar \ell v$

- Study other modes (D \rightarrow Vector $\ell \nu$) to get a complete understanding of charm semileptonic decays
- Study of hadronic systems without additional hadrons in the final state using $D \rightarrow PP' \ell \nu$

Charm SL decays at B factories

Analysis strategy @ BaBar

- Untagged analysis
- **u** Use D from $c\bar{c}$ events \Rightarrow jet like events
- Event reconstruction:
 - Define signal and recoil hemisphere

- Compute D direction (- p_{all particles ≠ K,e})
- Compute the missing energy in the lepton hemisphere
- Mass constrained fit to obtain D momentum
- Compute the kinematic variables, $q^2 = (p_D p_K)^2$

→large statistics (ε~5%) →measure B(D⁰→ K⁻e⁺v)/B(D⁰ → K⁻π⁺) →non negligeable background →poor resolution on kinematic variables $\Delta(q^2) \sim 0.07-0.2 \text{ GeV}^2$

Use control samples to determine resolution and background

Analysis strategy @ Belle

- Full reconstruction of the event: tagged analysis
- □ Search for $e^+e^- \rightarrow D^{(*)}_{tag} D^*_{sig} X$
 - $D^{(*)}_{tag}$ reconstructed in $D^{*+} \rightarrow D^0 \pi$, $D^+ \pi^0$ and $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \gamma$ with $D^{0/+} \rightarrow K(n\pi)$ n=1,2,3

- \rightarrow excellent resolution on kinematic variables $\Delta(q^2) \sim 0.015 \ GeV^2$
- → absolute BR measurement
- \rightarrow low efficiency (ϵ ~1‰)

$D^0 \rightarrow K^- e^+ v_e$, $D^0 \rightarrow \pi^- e^+ v_e$

Charm sl decays at B factories - Justine Serrano

Form factor variation

$D^0 \rightarrow K^-e^+v$: comparison with other experiments

$D^0 \rightarrow K^-e^+\nu$: comparison with LQCD

Lattice 2010, Di Vita

arXiv:1008.4562

ETMC:
$$f_{+}(0) = 0.76 (4) (?)$$

HPQCD: $f_{+}(0) = 0.747 (11) (15)$
Babar: $f_{+}(0) = 0.735 (7) (5) (5)$
Cleo-c: $f_{+}(0) = 0.739 (7) (5)$
Belle: $f_{+}(0) = 0.695 (7) (22)$

Good agreement in the full q² range

$D_s^+ \rightarrow K^+ K^- e^+ v_e, D^+ \rightarrow K^- \pi^+ e^+ v_e$

$D_s^+ \rightarrow K^+ K^- e^+ v, D^+ \rightarrow K^- \pi^+ e^+ v$

- Decay dominated by vector state (P-wave)
 - $D_{s}^{+} \rightarrow \phi e^{+} v_{e}$
 - $D^+ \rightarrow \overline{K}^* e^+ v_e$
- Possibility to study S-wave through interference with the P-wave

- **Complicated channels:**
 - 5 kinematic variables: m_{KK} , q^2 , $cosθ_e$, $cosθ_V$, χ
 - 3 form factors for each resonance (apart the S-wave): axialvector (A₁,A₂) and vector V parameterized by pole dominance

$$A_i(q^2) = \frac{A_i(0)}{1 - q^2/m_A^2} \qquad V(q^2) = \frac{V(0)}{1 - q^2/m_V^2}$$

we measure : $r_V = V(0)/A_1(0)$ $r_2 = A_2(0)/A_1(0)$ $A_1(0)$ m_A

$D_s^+ \rightarrow K^+ K^- e^+ v$

- 25000 signal events anaylised (50 times FOCUS, ~250 times CLEO-c)
- **4**D fit in the ϕ region

- Accurate determination of $D_s \rightarrow \phi ev FF$ (first measurement of q² variation for the axial vector FF, m_A=2.3±0.2±0.2 GeV/c²)
- BR normalized to $D_s^+ \to K^+K^-\pi^+$: A₁(0)=0.607±0.011±0.019±0.018

PRD 78:051101,2008 (214fb⁻¹)

K⁺K⁻S wave

Asymmetry can be seen on the mass distribution weighted by $\cos\theta_{v}$:

First measurement of S wave in this decay!

 $r_0 = 15.1 \pm 2.6 \pm 1 \ GeV^{-1}$ (S-wave relative amplitude)

13

Babar approach complementary to CLEO-c, very large statistics needed to observe the S-wave in the KK system

Between 1.01KK<1.03 GeV/c²:
$$\frac{BR(D_s^+ \to f_0 e^+ v) \times BR(f_0 \to K^+ K^-)}{BR(D_s^+ \to K^+ K^- e^+ v)} = (0.22^{+0.12}_{-0.08} \pm 0.03)\%$$

 $\frac{BR(D^+ \to K^- \pi^+ e^+ \nu)_s}{BR(D^+ \to K^- \pi^+ e^+ \nu)_{total}} = (5.79 \pm 0.16 \pm 0.15)\%$

Extrapolation to the total mass range using BES parameters for the f₀ Phys Lett B607, 243 (2005)

Fraction similar to the $K\pi$ system

$D^+ \rightarrow K^- \pi^+ e^+ v$

Preliminary

result

14

- Fit in 5D in all phase space including S-wave (phase parameterization from LASS, parameters fitted), K*(892) and K*(1410)
 - Accurate measurement of the K*(892) form factor parameters
 - Determination of the K*(892) resonance parameters
 - Search for possible higher mass state contribution

$D^+ \rightarrow \overline{K}^* e^+ v_e$ form factors

- Accurate determination of $D^+ \rightarrow \overline{K}^* e^+ v_e$ decay characteristics (first measurement of q^2 variation for the axial vector form factor, $m_A = 2.63 \pm 0.10 \pm 0.13$ GeV/c²)
- BR normalized to $D \rightarrow K^+\pi^-\pi^+$: A₁(0)=0.6226±0.0056±0.0065±0.0074

K* parameters and other contributions

Measured branching fractions :

	BaBar	PDG
$\mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e)(\%)$	$4.04 \pm 0.03 \pm 0.04 \pm 0.09$	4.1 ± 0.6
$\mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e)_{\overline{K}^{*0}}(\%)$	$3.80 \pm 0.04 \pm 0.05 \pm 0.09$	3.66 ± 0.21
$\mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e)_{S-wave}(\%)$	$0.234 \pm 0.007 \pm 0.007 \pm 0.005$	0.21 ± 0.05
${\cal B}(D^+ ightarrow \overline{K}^*(1410)^0 e^+ u_e)(\%)$	$0.30 \pm 0.12 \pm 0.18 \pm 0.06~(< 0.6 ~{\rm at}~90\%$ C.L.)	
$\mathcal{B}(D^+ o \overline{K}_2^*(1430)^0 e^+ \nu_e)(\%)$	$0.023 \pm 0.011 \pm 0.011 \pm 0.001$ (< 0.05 at 90% C.L.)	

■ S wave and K*(1410) components correspond to ~5% of total rate (large uncertainty for the K*(1410) because of small coupling to $K\pi$) ■ low limit placed on $K_2^*(1430)$

Kπ S wave phase

■ Fixing the K*(892) parameters, signal and background numbers fitted previously, the S wave phase is measured in bins of $m_{K\pi}$

D Babar in agreement with LASS (K π scattering experiment) with a difference of π

D This may help understanding the effect of the spectator π in D⁺ \rightarrow K⁻ π ⁺ π ⁺ analyses

Summary

- B factories have demonstrated their capability to do precision measurements of charm semileptonic decays
- $\Box \quad \mathsf{D}^0 \to \mathsf{K}^- \mathrm{e}^+ \mathrm{v}:$
 - Babar and CLEO-c agree on the rate and FF q² variation
 - New lattice QCD results compatible with experiments ☺
- $\square \quad \mathsf{D}_{\mathsf{s}}^{\mathsf{+}} \to \phi \mathsf{e}^{\mathsf{+}} v_{\mathsf{e}^{\mathsf{-}}} \mathsf{D}^{\mathsf{+}} \to \mathsf{K}^{*} \mathsf{e}^{\mathsf{+}} v_{\mathsf{e}}^{\mathsf{+}}$
 - Accurate measurement of decay rate and FF q² variation (first measurement of the axial-vector FF q² variation)
 - No LQCD unquenched results 8
- $\Box \quad \mathsf{D}_{\mathsf{s}} \to \mathsf{K}^{+} \,\mathsf{K}^{-} \,\mathsf{e}^{+} \mathsf{v}:$
 - First measurement of S-wave component in a D_s sl decay channel
 - Using BES parameters for the f_0 , Babar obtains a BR($D_s^+ \rightarrow f_0 e^+ v_e$) smaller than CLEO-c

 $\Box \quad D^+ \rightarrow K^- \pi^+ e^+ \nu:$

- Measurement of the Kπ S-wave phase in agreement with LASS
- Detailed measurement of the K^{*0} mass distribution
- Low limit placed on $K_2^*(1430)$ contribution in the $K^-\pi^+$ final state

Future

- Present accuracy on hadronic FF is already much higher than LQCD evaluations
- □ Other sl D decay channels can be measured at B-factories using present data: $D^0 \rightarrow \pi e \nu$, $D_s \rightarrow \eta/\eta' e \nu$, $\Lambda_c \rightarrow \Lambda e \nu$, ... (manpower?)
- To obtain higher accuracy, operating at threshold is better: low background, high resolution on kinematic variables, possibility to measure radiated photons, access rare decay modes, control of detector performances using J/ψ decays, …
- **BES III**, from FPCP 2010 (Hai-Bo Li):

Proposed Running Plan at BESIII

In the next two years `running, BES-III will collect 3.2 fb⁻¹ $@\psi(3770)$ which is more than 4 times larger than that at CLEO-c

Much more statistics would be available with a Super-flavour factory running at charm threshold (1.5 ab⁻¹ per year: 2 months of data taking= 300xCLEO-c)

Charm sl decays at B factories - Justine Serrano

Decay rate

Interference term $\alpha \cos \theta_{v}$

Charm sl decays at B factories - Justine Serrano

S wave parameterization

 \succ S wave: f_0

$$F_{10} = r_0 f_{10} (q^2) A_{f0}(m)$$
Normalisation:
Fit parameter
$$F_{10} = \frac{p_{KK} m_D}{1 - q^2 / M_A^2}$$

$$A_{f0}(m) = \frac{m_{f0} g_{\pi}}{m_{f0}^2 - m^2 - im_{f0} \Gamma_{f0}}$$

$$f_0 \text{ amplitude: Flatté (parameters from BES)}$$

$D^+ \rightarrow K^- \pi^+ e^+ \nu$

resonance	J^P	branching	mass
		fraction to $K\pi$ (%)	MeV/c^2
$K_0^*(800)$ (?)	0^+	100(?)	672 ± 40
$K^{*}(892)$	1^{-}	100	896.00 ± 0.25
$K_1(1270)$	1^{+}	0	1272 ± 7
$K_1(1400)$	1^{+}	0	1403 ± 7
$K^{*}(1410)$	1^{-}	6.6 ± 1.3	1414 ± 15
$K_0^*(1430)$	0^+	93 ± 10	1425 ± 50
$K_{2}^{*}(1430)$	2^{+}	49.9 ± 1.2	1432.4 ± 1.3
$K^{*}(1680)$	1^-	38.7 ± 2.5	1717 ± 27

LASS parametrization of the S wave phase

$$\delta_{LASS}^{1/2} = \delta_{BG}^{1/2} + \delta_{K_0^*(1430)}$$

$$\cot\left(\delta_{BG}^{1/2}\right) = \frac{1}{a_{S,BG}^{1/2} \ p^*} + \frac{b_{S,BG}^{1/2} \ p^*}{2}$$

$$\cot\left(\delta_{K_0^*(1430)}\right) = \frac{m_{K_0^*(1430)}^2 - m_{K\pi}^2}{m_{K_0^*(1430)}\Gamma_{K_0^*(1430)}(m_{K\pi})}$$

$D^+ \rightarrow K^- \pi^+ e^+ \nu$

□ Fit results

variable	$S + \overline{K}^* (892)^0$	$S + \overline{K}^*(892)^0$	$S + \overline{K}^*(892)^0$
		$\overline{K}^{*}(1410)^{0}$	$\overline{K}^*(1410)^0 + D$
$m_{K^*(892)}({\rm MeV}/c^2)$	894.77 ± 0.08	895.43 ± 0.21	895.27 ± 0.15
$\Gamma^{0}_{K^{*}(892)}(\text{MeV}/c^{2})$	45.78 ± 0.23	46.48 ± 0.31	46.38 ± 0.26
$r_{BW} ({ m GeV}/c)^{-1}$	3.71 ± 0.22	2.13 ± 0.48	2.31 ± 0.20
$m_A({ m GeV}/c^2)$	2.65 ± 0.10	2.63 ± 0.10	2.58 ± 0.09
r_V	1.458 ± 0.016	1.463 ± 0.017	1.471 ± 0.016
r_2	0.804 ± 0.020	0.801 ± 0.020	0.786 ± 0.020
r_S	-0.470 ± 0.032	-0.497 ± 0.029	-0.548 ± 0.027
$r_S^{(1)}$	0.17 ± 0.08	0.14 ± 0.06	0.03 ± 0.06
$a_{S,BG}^{1/2} ({\rm GeV}/c)^{-1}$	1.82 ± 0.14	2.18 ± 0.14	2.10 ± 0.10
$b_{S,BG}^{1/2} (\text{GeV}/c)^{-1}$	-1.66 ± 0.65	1.76 fixed	1.76 fixed
$r_{K^*(1410)^0}$		0.074 ± 0.016	0.052 ± 0.013
$\delta_{K^*(1410)^0}(degree)$		8.3 ± 13.0	0 fixed
r_D			0.78 ± 0.18
$\delta_D(degree)$			0 fixed
N_{sig}	243850 ± 699	243219 ± 713	243521 ± 688
N_{bkg}	107370 ± 593	108001 ± 613	107699 ± 583
Fit probability	4.6%	6.4%	8.8%

Charm sl decays at B factories - Justine Serrano

$D^+ \rightarrow K^- \pi^+ e^+ \nu : S$ -wave

Form factors parameterization

$$\frac{d\Gamma}{dq^2} = \frac{G_f^2 |V_{q_1 q_2}|^2 p_{P'}^3}{24\pi^3} |f_+(q^2)|^2 \quad \text{(If } \mathsf{m}_\ell \sim 0\text{)}$$

Parametrizations of $f_+(q^2)$:

• Simple pole mass :
$$f_+(q^2) = rac{f_+(0)}{1-rac{q^2}{m_{
m pole}^2}}$$

• Modified pole mass (B&K):
$$f_+(q^2) = \frac{f_+(0)}{\left(1 - \frac{q^2}{m_{D_s^*}^2}\right) \left(1 - \alpha_{\text{pole}} \frac{q^2}{m_{D_s^*}^2}\right)}$$

• Isgur-Wise:
$$f_{+}^{\text{ISGW2}}(q^2) = \frac{f_{+}(q_{max}^2)}{(1 + \alpha_I(q_{max}^2 - q^2))^2}$$

• Series expansion (model independent):

$$f_{+}(t) = \frac{1}{P(t)\Phi(t,t_0)} \sum_{k=0}^{\infty} a_k(t_0) \ z^k(t,t_0),$$

$$z(t,t_0) = \frac{\sqrt{t_+ - t} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - t} + \sqrt{t_+ - t_0}}$$
 Measure $r_1 = a_1/a_0$ and $r_2 = a_2/a_0$

Kinematic variables

