Theory status of $\mid \mathbf{V c b l}_{\mathrm{cb}}$ inclusive

Paolo Gambino
Università di Torino

The need to reexamine inclusive V_{cb}

- Discrepancy with exclusive determination, importance of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ in UT determination: ε_{k} etc
- Results of fits to semileptonic \& radiative moments are crucial input in inclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$ determination (mostly m_{b} and $\mu_{\pi}{ }^{2}$) and in normalizing $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{s} I^{+}+$
- b quark mass determinations from $\mathrm{e}^{+} \mathrm{e}^{-}$have recently improved significantly: how do they compare with fits? do we understand/trust theory errors? (see also Hoang talk)
- central m_{b} value from fits depends on radiative moments whose calculation is more problematic see G. Paz's talk
in collaboration with C. Schwanda, in progress

Inclusive semileptonic B decays: basic features

- Simple idea: inclusive decay do not depend on final state, factorize long distance dynamics of the meson. OPE allows to express it in terms of matrix elements of local operators

$$
T J(x) J(0) \approx c_{1} \bar{b} b+c_{2} \bar{b} \vec{D}^{2} b+c_{3} \bar{b} \sigma \cdot G b+\ldots
$$

- The Wilson coefficients are perturbative, matrix elements of local ops parameterize non-pert physics: double series in $\alpha_{s}, N / m_{b}$
- Lowest order: decay of a free b, linear Λ / m_{b} absent. Depends on $\mathrm{m}_{\mathrm{b}, \mathrm{c}}, 2$ parameters at $\mathrm{O}\left(\mathrm{I} / \mathrm{m}_{\mathrm{b}}{ }^{2}\right), 2$ more at $\mathrm{O}\left(\mathrm{I} / \mathrm{mb}^{3}\right)$... $\left.\mu_{\pi}^{2}(\mu)=\left.\frac{1}{2 M_{B}}\langle B| \bar{b}(i \vec{D})^{2} b\right|_{B}\right\rangle_{\mu} \quad \mu_{G}^{2}(\mu)=\frac{1}{2 M_{B}}\langle B| \bar{b} \frac{i}{2} \sigma_{\mu \nu} G^{\mu \nu} b|B\rangle_{\mu}$

The total s.l. width in the OPE

$$
\begin{aligned}
\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}\right]= & \frac{G_{F}^{2}}{192 \pi^{5}}\left|V_{c b}^{5}\right|^{2} g(r)\left[1+\frac{\alpha_{s}}{\pi} p_{c}^{(1)}(r, \mu)+\frac{\alpha_{s}^{2}}{\pi^{2}} p_{c}^{(2)}(r, \mu)\right. \\
r=\frac{m_{c}^{2}}{m_{b}^{2}} & -\frac{\mu_{\pi}^{2}}{2 m_{b}^{2}}+\left(\frac{1}{2}-\frac{2(1-r)^{4}}{g(r)}\right) \frac{\mu_{G}^{2}-\frac{\rho_{L S}^{3}+\rho_{D}^{3}}{m_{b}}}{m_{b}^{2}} \\
& \left.+\left(8 \ln r-\frac{10 r^{4}}{3}+\frac{32 r^{3}}{3}-8 r^{2}-\frac{32 r}{3}+\frac{34}{3}\right) \frac{\rho_{D}^{3}}{g(r) m_{b}^{3}}\right] \\
& +O\left(\alpha_{s} \frac{\mu_{\pi, G}^{2}}{m_{b}^{2}}\right)+O\left(\frac{1}{m_{b}^{4}}\right)
\end{aligned}
$$

OPE valid for inclusive enough measurements, away from perturbative singularities moments

Present implementations include all terms through
$O\left(\alpha_{s}^{2} \beta_{0,1} / m_{b}^{3}\right): m_{b, c,} \mu^{2} \pi, G, \rho^{3}{ }_{D, L S} 6$ parameters

Fitting OPE parameters to the moments

E_{1} spectrum

m_{x} spectrum

Total rate gives $\left|V_{c b}\right|$, global shape parameters (moments of the distributions) tell us about B structure, m_{b} and m_{c} OPE parameters describe universal properties of the B meson and of the quarks \rightarrow useful in many applications

Global HFAG fit (kinetic scheme)

Inputs	$\left\|\mathrm{V}_{\mathrm{cb}}\right\| 10^{3}$	$\mathrm{mb}^{\mathrm{km}}$	$\chi^{2 / \mathrm{ndf}}$
$\mathrm{b} \rightarrow \mathrm{c} \&$ $\mathrm{~b} \rightarrow \mathrm{~s} \gamma$	$41.85(44)(58)$	$4.590(3 \mathrm{I})$	$29.7 / 59$
$\mathrm{~b} \rightarrow \mathrm{c}$ only	$4 \mathrm{I} .68(48)(58)$	$4.646(47)$	$24.2 / 48$

Based on PG, Uraltsev, Benson et al
In the kinetic scheme the contributions of gluons with energy below $\mu \approx I \mathrm{GeV}$ are absorbed in the OPE parameters

Here scheme means also a number of different assumptions, inclusion of different data, and a recipe for theory errors

Perturbative corrections

Complete 2loop corrections to width and moments with cuts known, either in expansion $\mathrm{m}_{\mathrm{c}} / \mathrm{m}_{\mathrm{b}}$ or numerically Melnikov, Pak, Czarneck, Biswas

In kinetic scheme with $\mu=\mathrm{IGeV}$

$$
\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}\right] \propto 1-0.96 \frac{\alpha_{s}}{\pi}-0.48 \beta_{0}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+0.82\left(\frac{\alpha_{s}}{\pi}\right)^{2}+O\left(\alpha_{s}^{3}\right) \approx 0.916
$$

Good convergence, higher BLM studied by Uraltsev et al, small. Residual th error $\mathrm{O}(\mathrm{I} \%)$.

Perturbative corrections (II)

In normalized leptonic moments pert corrections cancel to large extent, in any scheme, for any cut: hard gluon emission is comparatively suppressed. In the kin scheme

$$
\begin{align*}
\left\langle E_{l}\right\rangle_{E_{l}>1 \mathrm{GeV}}= & 0.681 \frac{m_{b}}{2}\left[1+(3.179-3.199) \frac{\alpha_{s}}{\pi}\right. \tag{1}\\
& \left.+\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left((4.30-4.35) \beta_{0}+3.49(7)-3.36(8)-5.91-5.91\right)+O\left(1 / m_{b}^{2}, \alpha_{s}^{3}\right)\right]
\end{align*}
$$

- same pattern of cancellations at $O\left(\alpha_{s}\right) O\left(\beta_{0} \alpha_{s}{ }^{2}\right) O\left(\alpha_{s}{ }^{2}\right)$ confirms our estimate of th error, no appreciable change in fit
- Additional cancellations in higher central moments due to endpoint enhancement: existing results confirm cancellation pattern but numerical precision is not always sufficient.

Implementation in hadronic moments under way, but we don't expect important effects

$\mathrm{O}\left(\alpha_{s} / m_{b}{ }^{2}\right)$ effects in $B \rightarrow X_{s} \gamma$

$$
\begin{gathered}
T\left\{\bar{b}(x) \sigma_{\mu \nu} P_{L} s(x) \bar{s}(0) \sigma_{\alpha \beta} P_{R} b(0)\right\}= \\
c_{\operatorname{dim} 3} O_{\operatorname{dim} 3}+\frac{1}{m_{b}} c_{\operatorname{dim} 4} O_{\operatorname{dim} 4}+\frac{1}{m_{b}^{2}} c_{\operatorname{dim} 5} O_{\operatorname{dim} 5}+\ldots \\
O_{b}^{\mu}=\bar{b} \gamma^{\mu} b, \\
O_{1}^{\mu}=\bar{b}_{v} i D^{\mu} b_{v}, \quad O_{2}^{\mu \nu}=\bar{b}_{v} \frac{1}{2}\left\{i D^{\mu}, i D^{\nu}\right\} b_{v}, \\
O_{3}^{\mu \nu}=\bar{b}_{v} \frac{g_{s}}{2} G^{a \mu}{ }_{\alpha} \sigma^{\alpha \nu} T^{a} b_{v},
\end{gathered}
$$

One-loop matching onto local operators with HQET fields in dim reg

$$
\frac{d \Gamma_{77}}{d z}=\Gamma_{77}^{(0)}\left[c_{0}^{(0)}+c_{\lambda_{1}}^{(0)} \frac{\lambda_{1}}{2 m_{b}^{2}}+c_{\lambda_{2}}^{(0)} \frac{\lambda_{2}(\mu)}{2 m_{b}^{2}}+\frac{\alpha_{s}(\mu)}{4 \pi}\left(c_{0}^{(1)}+c_{\lambda_{1}}^{(1)} \frac{\lambda_{1}}{m_{b}^{2}}+c_{\lambda_{2}}^{(1)} \frac{\lambda_{2}(\mu)}{2 m_{b}^{2}}\right)\right]
$$ analogues of $\mu^{2}{ }_{\pi, G}$

The coefficients are highly singular at the endpoint $z=1$:

$$
\delta(\mathrm{I}-\mathrm{z}), \delta^{\prime}(\mathrm{I}-\mathrm{z}), \delta^{\prime \prime}(\mathrm{I}-\mathrm{z}),\left[\mathrm{I} /(\mathrm{I}-\mathrm{z})^{\mathrm{n}}\right]+\text { with } \mathrm{n} \leq 3
$$

The NLO effect $10-20 \%$ in coefficients of first few moments, leading to $\delta m_{b} \sim 10 \mathrm{MeV}, \delta \mu_{\pi^{2}} \sim 0.04 \mathrm{GeV}^{2} \quad$ Extension to semileptonic case in progress

More on Higher Orders

- $O\left(\alpha_{s} \mu^{2}{ }_{\pi} / \mathrm{mb}^{2}\right)$ are known numerically Becher,Boos,Lunghi 2007 they are not implemented yet, waiting for complete $O\left(\alpha_{s} / m_{b}{ }^{2}\right)$
- $\mathrm{O}\left(1 / \mathrm{mb}^{3}\right)$ corrections $\sim 3 \%$ in width, to have $\mathrm{I} \%$ accuracy we will need to compute $O\left(\alpha_{s} / \mathrm{mb}^{3}\right)$
- $\mathrm{O}\left(1 / \mathrm{mb}^{4}\right)$ corrections first computed by Dassinger et al. in 2006, new refined analysis by Mannel, Turczyk, Uraltsev to appear soon with $\mathrm{I} / \mathrm{m}^{5}$ as well.
- Structure of the expansion: Two large scales m_{b} and m_{c}

$$
\begin{aligned}
\Gamma & =\Gamma_{0}+\frac{1}{m_{b}} \Gamma_{1}+\frac{1}{m_{b}^{2}} \Gamma_{2}+\frac{1}{m_{b}^{3}} \Gamma_{3}+\frac{1}{m_{b}^{4}} \Gamma_{4} \\
& +\frac{1}{m_{b}^{3}} \log \left(m_{c}\right) \Gamma_{3,0}+\frac{1}{m_{b}^{3}} \frac{\alpha_{s}\left(m_{b}\right)}{m_{c}} \Gamma_{3,1}+\frac{1}{m_{b}^{3}} \frac{1}{m_{c}^{2}} \Gamma_{3,2}+\cdots
\end{aligned}
$$

- The Γ_{i} and $\Gamma_{i, j}$ are regular as $m_{c} \rightarrow 0$
- The Γ_{i} and $\Gamma_{i, j}$ have perturbative expansions

Bigi,Uraltsev,Zwicki

Higher power corrections

Proliferation of non-pert parameters: for ex at $\mathrm{I} / \mathrm{mb}^{4}$

$$
\begin{aligned}
2 M_{B} m_{1} & =\left\langle\left((\vec{p})^{2}\right)^{2}\right\rangle \\
2 M_{B} m_{2} & =g^{2}\left\langle\vec{E}^{2}\right\rangle \\
2 M_{B} m_{3} & =g^{2}\left\langle\vec{B}^{2}\right\rangle \\
2 M_{B} m_{4} & =g\langle\vec{p} \cdot \operatorname{rot} \vec{B}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& 2 M_{B} m_{5}=g^{2}\langle\vec{S} \cdot(\vec{E} \times \vec{E})\rangle \\
& 2 M_{B} m_{6}=g^{2}\langle\vec{S} \cdot(\vec{B} \times \vec{B})\rangle \\
& 2 M_{B} m_{7}=g\langle(\vec{S} \cdot \vec{p})(\vec{p} \cdot \vec{B})\rangle \\
& 2 M_{B} m_{8}=g\left\langle(\vec{S} \cdot \vec{B})(\vec{p})^{2}\right\rangle \\
& 2 M_{B} m_{9}=g\langle\Delta(\vec{\sigma} \cdot \vec{B})\rangle
\end{aligned}
$$

can be estimated by Ground State Saturation
$\frac{\delta \Gamma_{1 / m^{4}}+\delta \Gamma_{1 / m^{5}}}{\Gamma} \approx 0.013 \frac{\delta V_{c b}}{V_{c b}} \approx+0.4 \%$
after inclusion of the corrections in the moments. While this might set the scale of effect, how much does it depend on assumptions on expectation values?

A strip in the $m_{b}-m_{c}$ plane

Constant values

 of s.l. width at fixed $V_{c b}$

Semileptonic moments do not measure m_{b} well. They rather identify a strip in (m_{b}, m_{c}) plane along which the minimum is shallow.

Mass determinations

How reliable are mass determinations?

I.Theoretical correlations

Correlations between theory errors of moments with different cuts difficult to estimate ${ }^{4.55}$

Examples:
I. 100\% correlations
2. corr. computed from low-order expressions
3. experimental correlations (very similar to no correlation)
 always assume different central moments uncorrelated

Theoretical correlations (II)

Th correlations are also important for other OPE parameters

Not all assumptions are reasonable, as high correlations are inevitable. Black: correlations between different cuts computed using th error recipe, encodes existing correlations in computation: probably a good default!

2. How important are radiative moments? 3.Can we include other constraints?

OPE fails for bs γ, but only at $O\left(\alpha_{s}\right)$ with operators $\neq O_{7}$. Unlikely to be relevant for normalized moments, but it must be studied

At the moment the role of radiative moments in the fits is almost identical to using PDG07 bound $m_{b}\left(m_{b}\right)=4.20(7) \mathrm{GeV}$
the inclusion of additional constraints can be very useful:

Using $m_{c}(3 \mathrm{GeV})=0.986$ (13) by Karlsruhe/HPQCD we get $m_{b}^{\text {kin }}=4.535(21) \Rightarrow m_{b}\left(m_{b}\right)=4.165(45) \mathrm{GeV}$ in perfect agreement with their m_{b} determination

Which scale for $\overline{M S} \mathrm{~m}_{\mathrm{c}}$?

$$
\begin{aligned}
& \mu_{\mathbf{c}}=\mathbf{m}_{\mathbf{c}} \\
& \Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}\right] \propto 1-0.45 \frac{\alpha_{s}}{\pi}+0.23 \beta_{0}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+1.3\left(\frac{\alpha_{s}}{\pi}\right)^{2}+O\left(\alpha_{s}^{3}\right) \approx 0.985
\end{aligned}
$$

$$
\mu_{\mathrm{c}}=2 \mathrm{GeV}
$$

$$
\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}\right] \propto 1-1.24 \frac{\alpha_{s}}{\pi}-0.29 \beta_{0}\left(\frac{\alpha_{s}}{\pi}\right)^{2}-0.4\left(\frac{\alpha_{s}}{\pi}\right)^{2}+O\left(\alpha_{s}^{3}\right) \approx 0.899
$$

$$
\mu_{\mathrm{c}}=3 \mathrm{GeV}
$$

$$
\Gamma\left[\bar{B} \rightarrow X_{c} e \bar{\nu}\right] \propto 1-1.66 \frac{\alpha_{s}}{\pi}-0.46 \beta_{0}\left(\frac{\alpha_{s}}{\pi}\right)^{2}-2.2\left(\frac{\alpha_{s}}{\pi}\right)^{2}+O\left(\alpha_{s}^{3}\right) \approx 0.854
$$

The best scale seems to be close to m_{c}, as a result of accidental cancellations. Width expressed in terms of $m_{c}(3 \mathrm{GeV})$ and $m_{c}\left(m_{c}\right)$ differs by almost 3%. In the moments?

Towards a new standard fit

Radiative moments are not crucial ingredients in the fits. Their role is almost identical to using PDG07 bound $m_{b}\left(m_{b}\right)=4.20(7) \mathrm{GeV} \rightarrow m_{b}{ }^{\text {kin }}$ $=4.57(8) \mathrm{GeV}$.

But we need additional external constraints. Precise determinations of m_{c} can be used to fix m_{b}. First preliminary results are consistent with Kuhn et al./HPQCD.

New important calculation of higher order power corrections by Mannel et al. needs further study of parameter dependence.
Complete $O\left(\alpha_{s} / m_{b}{ }^{2}\right)$ coming soon.
Theoretical error on $V_{c b}$ can reach I\% but still some work to be done.

