Leptonic Charm Decays #### charm Bo Xin Purdue University CKM 2010 @ WARWICK Sep 06 - 10, 2010 ### Leptonic Decays: A Clean Way to Access QCD In the standard model: $$\Gamma(P_{Q\bar{q}} \to \ell^+ \nu_{\ell}) = \frac{G_F^2 |V_{Qq}|^2 f_{P^2}}{8\pi} m_{Q\bar{q}} m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{m_{Q\bar{q}}^2}\right)^2$$ CKM matrix element (well known from unitarity) A single number contains all QCD effects f_P is the decay constant, a measure of the overlap of the heavy and light quark wave functions. The rest: Phase space factors # Leptonic Decays & B Mixing & New Physics - B mixing proceeds through box diagrams - QCD calculations enter the formulism in a similar way to leptonic decays. #### Reasons to study D and D_s leptonic decays: - $lue{}$ Check QCD calculations of decay constants (f_D and f_{D_c}) - More confidence in the calculations of f_B, which is crucial to test SM in B mixing - Sensitive to new physics various NP scenarios can affect the leptonic D branching ratios. e.g. charged Higgs can mediate. #### The Experimental Measurements What have been measured: $$\Box D^+ \rightarrow \mu^+ \nu$$ CLEO-c and BABAR results are updated to full datasets. # Analysis Technique to Measure f_D at 3770 MeV - Candidate events are selected by reconstructing a D, called a tag, in several hadronic modes - Then we reconstruct the leptonic decay in the system recoiling from the tag Total of 460,000 tags Background 89,400 # The MM² Distribution for D⁺ $\rightarrow \mu^+ \nu$ - ☐ After finding a D tag, seek events with - only one additional oppositely charged track within |cosθ|<0.9 and - □ no additional photons > 250 MeV (to veto D⁺ \rightarrow π⁺π⁰) - □ Charged track must deposit only minimum energy in calorimeter < 300 MeV - ☐ True for 98.8% of muons - \square Rejects 45% of π 's - Compute missing mass squared (MM²). If close to zero then almost certainly we have a μ⁺ν decay. PRD 78, 052003 (2008) $$MM^{2} = (E_{beam} - E_{\mu})^{2} - (-\overrightarrow{P}_{D tag} - \overrightarrow{P}_{\mu})^{2}$$ # Fit MM² to sum of signal & background #### Fitting shapes: - $\square \mu^+ \nu$, $\tau^+ \nu$ (signal): from MC - □Checked using $D^+ \rightarrow K_S^0 \pi^+$ (ignoring the K_S^0 and look at MM²) - $\Box K^0\pi^+$ from data - ☐ Using double tag DD events where both D decays to charged K π (ignore a Kaon and look at MM²) - \square When $\tau^+ \nu / \mu^+ \nu$ is fixed to SM ratio $$\Box$$ (149.7 ± 12.0 $\mu^+ \nu$) + (25.8) $\tau^+ \nu$ $$\square \mathcal{E}(D^+ \rightarrow \mu^+ \nu) = (3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$$ □f_D+=(205.8±8.5±2.5) MeV ► best number in context of SM #### **□**When τ^+ ν / μ^+ ν is allowed to float \Box (153.9 ± 13.5 μ ⁺ ν) + (13.5 ± 15.3) τ ⁺ ν $\square \mathcal{E}(D^+ \rightarrow \mu^+ \nu) = (3.93 \pm 0.35 \pm 0.10) \times 10^{-4}$ $\Box f_D^{+}=(207.6\pm9.3\pm2.5)$ MeV \blacktriangleright Best number for use with Non-SM models □ Upper limits: $B(D^+ \rightarrow e^+ v) < 8.8 \times 10^{-6} (90\% C.L.)$ $$B(D^+ \rightarrow T^+ V) < 8.8 \times 10^{-6} (90\% C.L.)$$ PRD 78, 052003 (2008) # Analysis Technique to Measure f_{Ds} at 4170 MeV - Candidate events are selected by reconstructing a D_s in several hadronic modes - □ The tag is then combined with a well reconstructed γ , The missing mass squared against the γ -tag pair 9 D_s tag modes: N(tag)=70514 \pm 963 N(tag+ γ)=43859 \pm 936 reconstructed from ~5.5 x 10⁵ D_s* D_s events 600 pb⁻¹ @4170 (CLEO-c full dataset) ### MM² Distributions for $D_s^+ \rightarrow \mu^+ \nu$ and $\tau^+ \nu$ **□**55:45 split of $\tau^+\nu$, $\tau^+\rightarrow \pi^+$ ν events in case (i) and (ii) $\mathbf{M}\mathbf{M}^2 \equiv (\mathbf{p}_{\text{beam}} - \mathbf{p}_{Ds^-} - \mathbf{p}_{\gamma} - \mathbf{p}_{\mu})^2$ ### Fit MM² to Sum of Signal & Background fix $\tau^+ v / \mu^+ v$ to SM $\square 235.5 \pm 13.8 \ \mu^+ v$ events $\square f_{Ds} = (263.3 \pm 8.2 \pm 3.9) \text{ MeV}$ float $\tau^+ v/ \mu^+ v$ $\square B(D_s^+ \rightarrow \mu^+ v) = (0.565 \pm 0.045 \pm 0.017)\%$ \Box B(D_s⁺ \rightarrow T⁺ v)= (6.42±0.81±0.18)% $\Box f_{Ds} / f_{D} = 1.26 \pm 0.06 \pm 0.02$ Fake D_S tags Background from real D_s decays ### $D_s^- \rightarrow T^+ V, T^+ \rightarrow e^+ VV$ - $\square B(D_S^+ \rightarrow \tau^+ v) \bullet B (\tau^+ \rightarrow e^+ vv) \sim 1.3\%$ - ☐Searching for events opposite a tag with one electron and not much other energy - □Opt to use only a subset of the cleanest tags - □Find events with an e⁺ opposite D_S⁻ tags & no other tracks, with $$E_{\text{extra}}$$ <400 MeV (E_{extra} = Σ extra energy in calorimeter) - ■No need to find g from D_S* - \Box B(D_S⁺ \rightarrow T⁺V) =(5.30±0.47±0.22)% - ☐ f_{Ds}= (252.6±11.1±5.2) MeV # $D_s^- \rightarrow T^+ V$, $T^+ \rightarrow \rho^+ V$ - lacksquare Same tagging technique as $D_s^+ \rightarrow \mu^+ v$ - \Box E_{extra} (Σ extra energy in calorimeter) - ✓ used as an important discriminant - The MM2 distribution: - ✓ The signal does not peak, because there are two neutrinos. - ✓ the important backgrounds do peak. - ☐ The peaking backgrounds in MM² $$(K^0\pi\pi^0, \eta\rho^+, \text{ and } \pi\pi^0\pi^0)$$ - Branching fractions measured using a double tag technique - ☐ the same set of Ds tags $$\mathcal{B}(D_s^+ \to K^0 \pi^+ \pi^0) = (1.00 \pm 0.18 \pm 0.04)\%,$$ $$\mathcal{B}(D_s^+ \to \pi^+ \pi^0 \pi^0) = (0.65 \pm 0.13 \pm 0.03)\%,$$ $$\mathcal{B}(D_s^+ \to \eta \rho^+) = (8.9 \pm 0.6 \pm 0.5)\%.$$ PRD 80, 112004 (2009) $$\mathbf{M}\mathbf{M}^2 \equiv (\mathbf{p}_{\text{beam}} - \mathbf{p}_{Ds^-} - \mathbf{p}_{\gamma} - \mathbf{p}_{\mu})^2$$ # $D_s \bar{} \to T^+ \ V, \ T^+ \to \rho^+ V$ - □External Gaussian constraints on the expected background yields are included in the likelihood fit, allowing them to vary within the measured branching fraction error | E _{extra} | Signal yields | Efficiency | $\mathcal{B}\left(\mathbf{D}_{s}^{+}\!\!\rightarrow\!\!\tau^{+}\!\nu\right)$ | |--------------------|------------------|------------|--| | [0,0.1] GeV | 155.2 ± 16.5 | 25.3% | $(5.48 \pm 0.59)\%$ | | [0.1,0.2] GeV | 43.7 ± 11.3 | 6.9% | $(5.65 \pm 1.47)\%$ | | [0,0.2] GeV | 198.8 ± 20.0 | 32.2% | (5.52 ± 0.57 ± 0.21)% | $$\checkmark$$ f_{Ds} = (257.8±13.3±5.2) MeV PRD 80, 112004 (2009) ### $D_S^+ \rightarrow \mu^+ \nu$ at Belle - ☐ Full event reconstruction using 548 fb⁻¹ data - □ Look for e⁺e⁻→D^{±,0}K^{±,0}X(D_s*), D_s*→ D_s+ γ where X=nπ or (nπ+ γ) - Signal D_s is identified by recoil mass $M_{rec}(DKX\gamma)$, using the known beam momentum and 4-momentum conservation - Then require a candidate μ^+ and compute $M_{rec}(DKX\gamma\mu)$ - No additional charged tracks - \square B(D_S⁺ $\rightarrow \mu^+ \nu$) = (0.644±0.076±0.057)% - ☐ f_{Ds}= (275±16±12) MeV PRL 100, 241801 (2008) #### D_S⁺→I⁺v at BaBar ☐ Similar to the Belle technique: No additional charged tracks - Look for $e^+e^- \rightarrow D^{\pm,0}K^{\pm,0}X(D_s^*)$, $D_s^* \rightarrow D_s + \gamma$ where $D=D^{\pm,0}$, or Λ_c^+ , $K=K^{\pm,0}(\overline{p})$, $X=n\pi$, - Signal D_s is identified by recoil mass $m_r(DKX\gamma)$, - **1** μ⁺ν signal is reconstructed by computing m_r(DKXγμ) - □ Cross-check analysis method by measuring B(D_S⁺ → KKπ) using the same inclusive D_s sample, result consistent with CLEO-c. arXiv: 1008.4080 #### $D_S^+ \rightarrow I^+ v$ at BaBar - τ^+ ν, τ \rightarrow evν or τ \rightarrow μ νν signals are reconstructed using E_{extra} in calorimeter - τ^+ v, τ →μvv is separated from μ⁺v by requiring m_r(DKXγμ) >0.5GeV²/c⁴ - The signal yields are obtained by fitting the extra energy distributions using PDFs determined from Monte Carlo. arXiv: 1008.4080 #### Supersedes previous BABAR results | Decay | Signal Yield | $\mathcal{B}(D_s^- \to \ell^- \bar{\nu}_\ell)$ | $f_{D_s} (MeV)$ | |---|-----------------------|--|-------------------------| | $\overline{D_s^- \rightarrow e^- \bar{\nu}_e}$ | $6.1 \pm 2.2 \pm 5.2$ | $< 2.3 \times 10^{-4}$ at 90% C.L. | | | $D_s^- \rightarrow \mu^- \bar{\nu}_\mu$ | 275 ± 17 | $(6.02 \pm 0.38 \pm 0.34) \times 10^{-3}$ | $265.7 \pm 8.4 \pm 7.7$ | | $D_s^- \rightarrow \tau^- \bar{\nu}_\tau \ (\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau)$ | 408 ± 42 | $(5.07 \pm 0.52 \pm 0.68) \times 10^{-2}$ | $247 \pm 13 \pm 17$ | | $D_s^- \to \tau^- \bar{\nu}_\tau \ (\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau)$ | 340 ± 32 | $(4.91 \pm 0.47 \pm 0.54) \times 10^{-2}$ | $243 \pm 12 \pm 14$ | #### BABAR averaged f_{Ds} = (258.6±6.4±7.5) MeV #### CLEO-c f_{Ds} Average Measurements from τ^+v and $\rightarrow \mu v$ are consistent $$\frac{f_{D_s}(D_s^+ \to \tau^+ \nu)}{f_{D_s}(D_s^+ \to \mu^+ \nu)} = 1.01 \pm 0.05$$ #### Conclusions (1) ☐ Before Aug 24, 2010 In the past two years, there has been a tension between theory and experiment, which also led to much speculation about the existence of New Physics. ### Conclusions (2) ☐ Before Aug 24, 2010 In the past two years, there has been a tension between theory and experiment, which also led to much speculation about the existence of New Physics. □On Aug 24, 2010 HPQCD submitted their new results, which is 1σ from the HFAG average. ### Conclusions (3) ☐ Before Aug 24, 2010 In the past two years, there has been a tension between theory and experiment, which also led to much speculation about the existence of New Physics. □On Aug 24, 2010 HPQCD submitted their new results, which is 1σ from the HFAG average. □Also on Aug 24, 2010 BABAR submitted new fDs results using their full data set. And these supersedes their 2007 results which was an relative measurement □Experiments have achieved 4.3% precision on fD and 2.1% on fDs ### Conclusions (4) ☐Before Aug 24, 2010 In the past two years, there has been a tension between theory and experiment, which also led to much speculation about the existence of New Physics. □On Aug 24, 2010 HPQCD submitted their new results, which is 1σ from the HFAG average. □Also on Aug 24, 2010 BABAR submitted new fDs results using their full data set. And these supersedes their 2007 results which was an relative measurement □Experiments have achieved 4.3% precision on fD and 2.1% on fDs BESIII plans to take 20fb⁻¹ each at 3770 and 4170 MeV 1-2 % uncertainties on f_D and f_{Ds} expected!