Leptonic Charm Decays

charm

Bo Xin Purdue University

CKM 2010 @ WARWICK Sep 06 - 10, 2010

Leptonic Decays: A Clean Way to Access QCD

In the standard model:

$$\Gamma(P_{Q\bar{q}} \to \ell^+ \nu_{\ell}) = \frac{G_F^2 |V_{Qq}|^2 f_{P^2}}{8\pi} m_{Q\bar{q}} m_{\ell}^2 \left(1 - \frac{m_{\ell}^2}{m_{Q\bar{q}}^2}\right)^2$$

CKM matrix element (well known from unitarity)

A single number contains all QCD effects f_P is the decay constant, a measure of the overlap of the heavy and light quark wave functions.

The rest:

Phase space factors

Leptonic Decays & B Mixing & New Physics

- B mixing proceeds through box diagrams
- QCD calculations enter the formulism in a similar way to leptonic decays.

Reasons to study D and D_s leptonic decays:

- $lue{}$ Check QCD calculations of decay constants (f_D and f_{D_c})
- More confidence in the calculations of f_B, which is crucial to test SM in B mixing
- Sensitive to new physics various NP scenarios can affect the leptonic D branching ratios.
 e.g. charged Higgs can mediate.

The Experimental Measurements

What have been measured:

$$\Box D^+ \rightarrow \mu^+ \nu$$

CLEO-c and BABAR results are updated to full datasets.

Analysis Technique to Measure f_D at 3770 MeV

- Candidate events are selected by reconstructing a D, called a tag, in several hadronic modes
- Then we reconstruct the leptonic decay in the system recoiling from the tag

Total of 460,000 tags

Background 89,400

The MM² Distribution for D⁺ $\rightarrow \mu^+ \nu$

- ☐ After finding a D tag, seek events with
 - only one additional oppositely charged track within |cosθ|<0.9 and
 - □ no additional photons > 250 MeV (to veto D⁺ \rightarrow π⁺π⁰)
- □ Charged track must deposit only minimum energy in calorimeter
 < 300 MeV
 - ☐ True for 98.8% of muons
 - \square Rejects 45% of π 's
- Compute missing mass squared (MM²). If close to zero then almost certainly we have a μ⁺ν decay.

PRD 78, 052003 (2008)

$$MM^{2} = (E_{beam} - E_{\mu})^{2} - (-\overrightarrow{P}_{D tag} - \overrightarrow{P}_{\mu})^{2}$$

Fit MM² to sum of signal & background

Fitting shapes:

- $\square \mu^+ \nu$, $\tau^+ \nu$ (signal): from MC
 - □Checked using $D^+ \rightarrow K_S^0 \pi^+$ (ignoring the K_S^0 and look at MM²)
- $\Box K^0\pi^+$ from data
 - ☐ Using double tag DD events where both D decays to charged K π (ignore a Kaon and look at MM²)
- \square When $\tau^+ \nu / \mu^+ \nu$ is fixed to SM ratio

$$\Box$$
 (149.7 ± 12.0 $\mu^+ \nu$) + (25.8) $\tau^+ \nu$

$$\square \mathcal{E}(D^+ \rightarrow \mu^+ \nu) = (3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$$

□f_D+=(205.8±8.5±2.5) MeV ► best number in context of SM

□When τ^+ ν / μ^+ ν is allowed to float

 \Box (153.9 ± 13.5 μ ⁺ ν) + (13.5 ± 15.3) τ ⁺ ν

 $\square \mathcal{E}(D^+ \rightarrow \mu^+ \nu) = (3.93 \pm 0.35 \pm 0.10) \times 10^{-4}$

 $\Box f_D^{+}=(207.6\pm9.3\pm2.5)$ MeV \blacktriangleright Best number for use with Non-SM models

□ Upper limits: $B(D^+ \rightarrow e^+ v) < 8.8 \times 10^{-6} (90\% C.L.)$

$$B(D^+ \rightarrow T^+ V) < 8.8 \times 10^{-6} (90\% C.L.)$$

PRD 78, 052003 (2008)

Analysis Technique to Measure f_{Ds} at 4170 MeV

- Candidate events are selected by reconstructing
 a D_s in several hadronic modes
- □ The tag is then combined with a well reconstructed γ , The missing mass squared against the γ -tag pair

9 D_s tag modes: N(tag)=70514 \pm 963 N(tag+ γ)=43859 \pm 936 reconstructed from ~5.5 x 10⁵ D_s* D_s events

600 pb⁻¹ @4170 (CLEO-c full dataset)

MM² Distributions for $D_s^+ \rightarrow \mu^+ \nu$ and $\tau^+ \nu$

□55:45 split of $\tau^+\nu$, $\tau^+\rightarrow \pi^+$ ν events in case (i) and (ii)

 $\mathbf{M}\mathbf{M}^2 \equiv (\mathbf{p}_{\text{beam}} - \mathbf{p}_{Ds^-} - \mathbf{p}_{\gamma} - \mathbf{p}_{\mu})^2$

Fit MM² to Sum of Signal & Background

fix $\tau^+ v / \mu^+ v$ to SM $\square 235.5 \pm 13.8 \ \mu^+ v$ events $\square f_{Ds} = (263.3 \pm 8.2 \pm 3.9) \text{ MeV}$

float $\tau^+ v/ \mu^+ v$ $\square B(D_s^+ \rightarrow \mu^+ v) = (0.565 \pm 0.045 \pm 0.017)\%$

 \Box B(D_s⁺ \rightarrow T⁺ v)= (6.42±0.81±0.18)%

 $\Box f_{Ds} / f_{D} = 1.26 \pm 0.06 \pm 0.02$

Fake D_S tags

Background from real D_s decays

$D_s^- \rightarrow T^+ V, T^+ \rightarrow e^+ VV$

- $\square B(D_S^+ \rightarrow \tau^+ v) \bullet B (\tau^+ \rightarrow e^+ vv) \sim 1.3\%$
- ☐Searching for events opposite a tag with one electron and not much other energy
- □Opt to use only a subset of the cleanest tags
- □Find events with an e⁺ opposite D_S⁻ tags & no other tracks, with

$$E_{\text{extra}}$$
<400 MeV
(E_{extra} = Σ extra energy in calorimeter)

- ■No need to find g from D_S*
- \Box B(D_S⁺ \rightarrow T⁺V) =(5.30±0.47±0.22)%
- ☐ f_{Ds}= (252.6±11.1±5.2) MeV

$D_s^- \rightarrow T^+ V$, $T^+ \rightarrow \rho^+ V$

- lacksquare Same tagging technique as $D_s^+ \rightarrow \mu^+ v$
- \Box E_{extra} (Σ extra energy in calorimeter)
 - ✓ used as an important discriminant
- The MM2 distribution:
 - ✓ The signal does not peak, because there are two neutrinos.
 - ✓ the important backgrounds do peak.
- ☐ The peaking backgrounds in MM²

$$(K^0\pi\pi^0, \eta\rho^+, \text{ and } \pi\pi^0\pi^0)$$

- Branching fractions measured using a double tag technique
- ☐ the same set of Ds tags

$$\mathcal{B}(D_s^+ \to K^0 \pi^+ \pi^0) = (1.00 \pm 0.18 \pm 0.04)\%,$$

$$\mathcal{B}(D_s^+ \to \pi^+ \pi^0 \pi^0) = (0.65 \pm 0.13 \pm 0.03)\%,$$

$$\mathcal{B}(D_s^+ \to \eta \rho^+) = (8.9 \pm 0.6 \pm 0.5)\%.$$

PRD 80, 112004 (2009)

$$\mathbf{M}\mathbf{M}^2 \equiv (\mathbf{p}_{\text{beam}} - \mathbf{p}_{Ds^-} - \mathbf{p}_{\gamma} - \mathbf{p}_{\mu})^2$$

$D_s \bar{} \to T^+ \ V, \ T^+ \to \rho^+ V$

- □External Gaussian constraints on the expected background yields are included in the likelihood fit, allowing them to vary within the measured branching fraction error

E _{extra}	Signal yields	Efficiency	$\mathcal{B}\left(\mathbf{D}_{s}^{+}\!\!\rightarrow\!\!\tau^{+}\!\nu\right)$
[0,0.1] GeV	155.2 ± 16.5	25.3%	$(5.48 \pm 0.59)\%$
[0.1,0.2] GeV	43.7 ± 11.3	6.9%	$(5.65 \pm 1.47)\%$
[0,0.2] GeV	198.8 ± 20.0	32.2%	(5.52 ± 0.57 ± 0.21)%

$$\checkmark$$
 f_{Ds} = (257.8±13.3±5.2) MeV

PRD 80, 112004 (2009)

$D_S^+ \rightarrow \mu^+ \nu$ at Belle

- ☐ Full event reconstruction using 548 fb⁻¹ data
- □ Look for e⁺e⁻→D^{±,0}K^{±,0}X(D_s*), D_s*→ D_s+ γ where X=nπ or (nπ+ γ)
- Signal D_s is identified by recoil mass $M_{rec}(DKX\gamma)$, using the known beam momentum and 4-momentum conservation
- Then require a candidate μ^+ and compute $M_{rec}(DKX\gamma\mu)$
- No additional charged tracks
- \square B(D_S⁺ $\rightarrow \mu^+ \nu$) = (0.644±0.076±0.057)%
- ☐ f_{Ds}= (275±16±12) MeV

PRL 100, 241801 (2008)

D_S⁺→I⁺v at BaBar

☐ Similar to the Belle technique:

No additional charged tracks

- Look for $e^+e^- \rightarrow D^{\pm,0}K^{\pm,0}X(D_s^*)$, $D_s^* \rightarrow D_s + \gamma$ where $D=D^{\pm,0}$, or Λ_c^+ , $K=K^{\pm,0}(\overline{p})$, $X=n\pi$,
 - Signal D_s is identified by recoil mass $m_r(DKX\gamma)$,
- **1** μ⁺ν signal is reconstructed by computing m_r(DKXγμ)
- □ Cross-check analysis method by measuring B(D_S⁺ → KKπ) using the same inclusive D_s sample, result consistent with CLEO-c.

arXiv: 1008.4080

$D_S^+ \rightarrow I^+ v$ at BaBar

- τ^+ ν, τ \rightarrow evν or τ \rightarrow μ νν signals are reconstructed using E_{extra} in calorimeter
- τ^+ v, τ →μvv is separated from μ⁺v by requiring m_r(DKXγμ) >0.5GeV²/c⁴
- The signal yields are obtained by fitting the extra energy distributions using PDFs determined from Monte Carlo.

arXiv: 1008.4080

Supersedes previous BABAR results

Decay	Signal Yield	$\mathcal{B}(D_s^- \to \ell^- \bar{\nu}_\ell)$	$f_{D_s} (MeV)$
$\overline{D_s^- \rightarrow e^- \bar{\nu}_e}$	$6.1 \pm 2.2 \pm 5.2$	$< 2.3 \times 10^{-4}$ at 90% C.L.	
$D_s^- \rightarrow \mu^- \bar{\nu}_\mu$	275 ± 17	$(6.02 \pm 0.38 \pm 0.34) \times 10^{-3}$	$265.7 \pm 8.4 \pm 7.7$
$D_s^- \rightarrow \tau^- \bar{\nu}_\tau \ (\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau)$	408 ± 42	$(5.07 \pm 0.52 \pm 0.68) \times 10^{-2}$	$247 \pm 13 \pm 17$
$D_s^- \to \tau^- \bar{\nu}_\tau \ (\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau)$	340 ± 32	$(4.91 \pm 0.47 \pm 0.54) \times 10^{-2}$	$243 \pm 12 \pm 14$

BABAR averaged f_{Ds} = (258.6±6.4±7.5) MeV

CLEO-c f_{Ds} Average

Measurements from τ^+v and $\rightarrow \mu v$ are consistent

$$\frac{f_{D_s}(D_s^+ \to \tau^+ \nu)}{f_{D_s}(D_s^+ \to \mu^+ \nu)} = 1.01 \pm 0.05$$

Conclusions (1)

☐ Before Aug 24, 2010

In the past two years, there has been a tension between theory and experiment, which also led to much speculation about the existence of New Physics.

Conclusions (2)

☐ Before Aug 24, 2010

In the past two years, there has been a tension between theory and experiment, which also led to much speculation about the existence of New Physics.

□On Aug 24, 2010

HPQCD submitted their new results, which is 1σ from the HFAG average.

Conclusions (3)

☐ Before Aug 24, 2010

In the past two years, there has been a tension between theory and experiment, which also led to much speculation about the existence of New Physics.

□On Aug 24, 2010

HPQCD submitted their new results, which is 1σ from the HFAG average.

□Also on Aug 24, 2010

BABAR submitted new fDs results using their full data set. And these supersedes their 2007 results which was an relative measurement

□Experiments have achieved 4.3% precision on fD and 2.1% on fDs

Conclusions (4)

☐Before Aug 24, 2010

In the past two years, there has been a tension between theory and experiment, which also led to much speculation about the existence of New Physics.

□On Aug 24, 2010

HPQCD submitted their new results, which is 1σ from the HFAG average.

□Also on Aug 24, 2010

BABAR submitted new fDs results using their full data set. And these supersedes their 2007 results which was an relative measurement

□Experiments have achieved 4.3% precision on fD and 2.1% on fDs

BESIII plans to take 20fb⁻¹ each at 3770 and 4170 MeV 1-2 % uncertainties on f_D and f_{Ds} expected!