

BABAR time-integrated γ/ϕ_3 measurements

Giovanni Marchiori on behalf of the BABAR collaboration

Laboratoire de Physique Nucléaire et des Hautes Energies (Paris)

IN2P3/CNRS

CKM workshop 2010, Warwick September 2010

Time-integrated γ measurements from B \rightarrow D^(*)K^(*): how?

• Exploit interference between tree diagrams $b \rightarrow c$ and $b \rightarrow u$ ($V_{ub} \propto e^{-i\gamma}$) in charged $B \rightarrow D^{(*)0}K^{(*)}$ or self-tagging neutral $B^0 \rightarrow D^{(*)0}K^{*0}$ ($K^{*0} \rightarrow K^+\pi^-$) decays

News since CKM2008

- Full Y(4S) data set exploited in many measurements (468M BB pairs)
- Latest reprocessing of data using optimized algorithms: higher charged particle reconstruction and identification efficiency and purity

Measurement	CK N(BB)	M 2008 pub_status	N(BB)	changes	
GGSZ D ^{(*)0} K ^(*)	383M	PRD 78, 034023 (2008)	468M	arXiv:1005.1096 accepted by PRL	updated Dalitz model, added DK* (D→KsKK)
GLW D⁰K	382M	PRD 77, 111102 (2008)	467M	arXiv:1007.0504 accepted by PRD	improved fit technique, added CL scan of γ
ADS D ^{(*)0} K	232M	PRD 72, 032004 (2005)	467M	arXiv:1006.4241 accepted by PRD	improved fit technique, better statistical analysis, CL scan of γ
GLW+ADS D⁰K [*]	379M	preliminary	379M	PRD 80, 092001 (2009)	added CL scan of γ
GLW D ^{*0} K	382M	submitted to PRD	382M	PRD 78, 092002 (2008)	no changes
ADS D ⁰ K ^{*0}	465M	preliminary	465M	PRD 80, 031102 (2009)	no changes
GGSZ D ⁰ K ^{*0}	371M	preliminary	371M	PRD 79, 072003 (2009)	no changes

Experimental techniques

K/ π separation: Cherenkov angle + dE/dx

Continuum (qq) bkg suppression

Multivariate analysis (NN, Fisher)

Data control samples $(B \rightarrow D^{(*)}\pi)$

- nearly identical to the signal (except PID)
- abudant: BF 12 times higher than D^(*)K
- r_B~0.01: negligible CPV, useful x-check

$B^{-} \rightarrow D^{(*)}K^{(*)-}$, GGSZ method: observables

Giri, Grossman, Soffer, Zupan – Phys. Rev. D68 (2003) 054018

• Extract γ from fit to Dalitz-plot distribution of D daughters:

• D^(*)K:

$$\Gamma_{\mp}(s_{-},s_{+}) \propto |\mathcal{A}_{D\mp}|^{2} + r_{B}^{(*)2} |\mathcal{A}_{D\pm}|^{2} + 2\lambda \{x_{\mp}^{(*)} Re[\mathcal{A}_{D\mp}\mathcal{A}_{D\pm}^{*} + y_{\mp}^{(*)}] Im[\mathcal{A}_{D\mp}\mathcal{A}_{D\pm}^{*}]\}$$

 $\begin{aligned} x^{(*)}{}_{\pm} &= r_{B}^{(*)} \cos(\delta_{B}^{(*)} \pm \gamma) \\ y^{(*)}{}_{\pm} &= r_{B}^{(*)} \sin(\delta_{B}^{(*)} \pm \gamma) \\ r_{B}^{(*)2} &= x^{(*)2} + y^{(*)2} \end{aligned}$

$$= +1 \text{ for } B \rightarrow D^0 K, D^{*0} [D^0 π^0] K$$

-1 for B → D^{*0} [D⁰γ]K

• DK*:

$$\Gamma_{\mp}(s_{-},s_{+}) \propto |\mathcal{A}_{D\mp}|^{2} + r_{S}^{2}|\mathcal{A}_{D\pm}|^{2} + 2\{x_{s\mp}Re[\mathcal{A}_{D\mp}\mathcal{A}_{D\pm}^{*} + y_{s\mp}Im[\mathcal{A}_{D\mp}\mathcal{A}_{D\pm}^{*}]\}$$

 $\begin{array}{l} x_{\text{S}\pm} = kr_{\text{S}}\cos(\delta_{\text{S}}\pm\gamma) \\ y_{\text{S}\pm} = kr_{\text{S}}\sin(\delta_{\text{S}}\pm\gamma) \\ k^{2}r_{\text{S}}^{2} = x^{(^{*})2} + y^{(^{*})2} \end{array}$

k<1 (0.9±0.1) because of interfering non-K^{*} B→DK_Sπ bkg

• 2-fold
$$\gamma$$
 ambiguity: $(\gamma, \delta_B^{(*)}, \delta_S) \rightarrow (\gamma + \pi, \delta_B^{(*)} + \pi, \delta_S + \pi)$

Measurement ingredients

- Selection optimized for S/sqrt(S+B) based on:
 - K: particle identification π^0 : invariant mass, CM momentum
 - Ks: invariant mass, angle between momentum and line of flight, flight length
 - K*: invariant mass, helicity angle of decay products
 - D: invariant mass, vertex fit probability D*: D*-D mass difference
 - B: vertex fit probability

• Yield fit: ML fit to {m_{ES}, ΔE, F}, F=linear combination (Fisher) of evt. shape vars:

- $cos(\theta_T)$: angle between thrust axes of B and rest-of-event (ROE) ($q\overline{q} \sim 1$, signal ~uniform)
- $\cos(\theta_{B}^{*})$: polar angle of B in CM frame ($q\overline{q} \sim 1 + \cos^{2}\theta_{B}^{*}$, signal ~ $\sin^{2}\theta_{B}^{*}$) • $L_{0} = \sum_{i}^{ROE} p_{i}^{*}, \ L_{2} = \sum_{i}^{ROE} p_{i}^{*}(\cos\theta_{i}^{*})^{2}$ (L₂/L₀: $q\overline{q} \sim 1$, ~0.5 for signal)
- CP fit: ML fit to {m_{ES}, ΔE, shape vars, s₋, s₊} to determine x,y based on observed D Dalitz plot distribution:
 - yields and shape parameters fixed (obtained from previous step)
 - true $D^0 \rightarrow K_{s}h^+h^-$ decay amplitude from flavor tagged D^0 from $D^{*+} \rightarrow D^0\pi^+$
 - fake $D^0 \rightarrow K_{s}h^+h^-$ distribution from data/MC bkg control samples

Reconstruct **B DK**, **B D** $[D_{\pi}]K$, **B D** $[D_{\gamma}]K$, and **B DK** final states with $^{468\times10^{6}}$ • Signal and background yields in selected sample determined from ML fit (use $B \rightarrow D^{(*)0}\pi$ and $B \rightarrow D^{0}a_{1}$ as control samples):

Improved particle identification

$D \rightarrow K_S h^+h^-$ decay amplitude analysis

arXiv:1004.5053, accepted by Phys. Rev. Lett. (2010)

$D \rightarrow K_{S}h^{+}h^{-}$ decay amplitude isobar model

arXiv:1004.5053, accepted by Phys. Rev. Lett. (2010)

2

Good fit quality taking into account statistical, experimental and model uncertanties

 $B^{-} \rightarrow D^{(*)}K^{(*)-}$ GGSZ results: x,y, direct CPV arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010) $N_{B\overline{B}} = 468 \times 10^{6}$ $s_0 (GeV^{2/c^4})$ 1.8 (GeV^{2/c^4}) $B^+ \rightarrow DK^+$ (GeV²/c⁴) $B^{-} \rightarrow DK^{a}$ $B^{-} \rightarrow DK^{-}$ $B^+ \rightarrow DK^+$ s₊ (GeV²/c⁴ (GeV^{2/}) $D \rightarrow K_{S}\pi\pi$ D→KsKK $D \rightarrow K_{S}\pi\pi$ D→K_sKK ູ່ທີ 1.4 1.2 1.2 1 ⊢1 1 2 2 1.2 1 1 1.4 1.6 1.2 3 3 11 2 2 1.8 1.6 33 1 1 1.4 1.8 s₊ (GeV²/c⁴) s_ (G(Ge%)(²/c⁴) s_ (GeV²/c⁴) s₊\$G(&)¢²/¢⁴) s<mark>⊀GeV²/c</mark>4) s_{ti}GeV²/c4) ™ d) (GeV²/c⁴) B→D*K В B GeV 2 ້ ເຈັ້າ 1.44 0.2 $X^{*_{+}}, Y^{*_{+}}$ 0.2 0.2 1 1 1.2² 1 1 0 0 1¹ 1.¹2² 1.¹4⁴ 1.3.2 s_ (Geve)(24°) Cevy2, (S-, VS-X+,Y+ **-0.2** -0.2 X_{S+}, Y_{S+} -0.2 X*-, V*-3 (e)^{e)} f)^{f)} e^{e} f^f) (GeV²/c⁴) ,(GeV²/c²) -0.2 0.2 -0.2 0.2 -0.2 0 0 0 \mathbf{X}_{\mp} 39.3% and 86.5% 2D CL €ontours 12

 $B^{-} \rightarrow D^{(*)}K^{(*)-}$ GGSZ results: x,y, direct CPV arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010) $N_{B\overline{B}} = 468 \times 10^{6}$ $s_0 (GeV^{2/c^4})$ 1.8 (GeV^{2/c^4}) (GeV²/c⁴) (GeV²/c⁴) 9.1 9.1 $B^+ \rightarrow DK^+$ (GeV²/c⁴) $B^{-} \rightarrow DK^{a}$ $B^{-} \rightarrow DK^{-}$ $B^+ \rightarrow DK^+$ s₊ (GeV²/c⁴ D→KsKK $D \rightarrow K_{S}\pi\pi$ $D \rightarrow K_{S}\pi\pi$ D→K_sKK າ ທີ_{1.4} † Ś 1.2 1.2 1 ⊢1 1 2 2 1.2 1 1 1.4 1.6 1.2 11 2 2 1.8 1.6 3 3 33 1 1 1.4 1.8 s₊ (GeV²/c⁴) s_ (GeV²/c⁴) s_ (G(G)²⁴)C²⁴/C⁴) s₊\$G(&)¢²/¢⁴) sv €Gev²/c⁴) sv€(Gev²/c4) N d) Ŷ ,₊_(GeV²/c⁴) ___(GeV²/c′ B→D*K B→D ອ້າ ເຊິ່າ 1.44 $X^{*_{+}}, Y^{*_{+}}$ 0.2 0.2 0.2 $+Y_{1}$ 1.2² δΒ 1 0 1 ¹ 1 0 1.¹2² 1.¹4⁴ 1.2 s_(Gerex24c⁴) Cevy, c, y_S-, y_S-X+, Y+ -0.2 -0.2 X_{S+}, Y_{S+} -0.2 X*-, Y*-3 (e)^{e)} f)^{f)} e^{e} f^f) (GeV²/c⁴) ,(GeV²/c 0.2 -0.2 -0.2 0.2 -0.2 0 0 0 \mathbf{X}_{\mp} 39.3% and 86.5% 2D CL €ontours 12

 $B^{-} \rightarrow D^{(*)}K^{(*)-}$ GGSZ results: x,y, direct CPV arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010) $N_{B\overline{B}} = 468 \times 10^{6}$ $s_0 (GeV^{2/c^4})$ 1.8 (GeV^{2/c^4}) s₊ (GeV²/c⁴), s₊(GeV²/c⁴), (GeV²/c⁴) (GeV²/c⁴) 9'1 $B^+ \rightarrow DK^+$ $B^{-} \rightarrow DK^{a}$ $B^{-} \rightarrow DK^{-}$ $B^+ \rightarrow DK^+$ $D \rightarrow K_{S}\pi\pi$ $D \rightarrow K_{S}\pi\pi$ D→KsKK D→K_sKK ູ່ທີ 1.4 1.2 1.2 1 1 ⊢1 1.2 2 2 1.4 1.6 1 1 3 3 11 2 2 33 1.2 1 1.8 1 1.4 1.6 1.8 s₊ (GeV²/c⁴) s_ (GeV²/c⁴) s. (G(G)(2)/C⁴/C⁴/C⁴) s₊\$G(&)¢²/¢⁴) sv €Gev²/c⁴) sv €Gev²/c⁴) sv 6Gev²/c¢) r_Bd) Ŷ ,₊_(GeV²/c⁴) ___(GeV²/c′ B→D*k B 201.66 (0,0)ی هن 1.4⁴ rB 0.2 $x^{*_{+}}, y^{*_{+}}$ 0.2 0.2 $d=2r_B|\sin\gamma|\neq 0$ $+Y_{1}$.2 1.²2 δΒ 1 ⇒direct CPV 0 1 ¹ 1 0 Significafice.8 1.2 s_(Gerex24c⁴) B→DK: 2.7σ X+,Y+ -0.2 -0.2 X_{S+}, Y_{S+} -0.2 B→D*K: 2.8σ X*-, Y*-3 (e)^{e)} f)^{f)} e^{e} $B \rightarrow DK^*$: 1.9 $\sigma^{(t)}$ (GeV²/c⁴), (GeV²/c²) 0.2 -0.2 0.2 -0.2 -0.2 0 0 0 combined: 3.5σ \mathbf{X}_{\mp} 39.3% and 86.5% 2D CL €ontours 12

^

x_±^{*} B⁻→D^(*)K^{(*)-} GGSZ results: γ, r, δ

arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010)

<u>Мв</u>в = 468х10⁶

• Use a frequentist method to obtain the common weak phase γ and the 3 (r_B, δ_B) from the 3 (x_±,y_±) sets (12 observables)

• Still statistically limited (small $r_B \sim 0.1$). Consistent with Belle

x^{*}_↓ $B^- \rightarrow D^{(*)}K^{(*)-}$ GGSZ results: γ, r, δ

arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010)

 $N_{B\overline{B}} = 468 \times 10^{6}$

• Use a frequentist method to obtain the common weak phase γ and the 3 (r_B, δ_B) from the 3 (x_±,y_±) sets (12 observables)

- Still statistically limited (small r_B ~0.1). Consistent with Belle
- Smaller stat. error: more data, improved reconstruction, slightly higher $r_B (\sigma_Y \approx 1/r_B)$ 13

×^{*}_∓ B⁻→D^(*)K^(*)- GGSZ results: γ, r, δ

arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010)

<mark>≫</mark> N_{BĒ} = 468x10⁶

• Use a frequentist method to obtain the common weak phase γ and the 3 (r_B, δ_B) from the 3 (x_±,y_±) sets (12 observables)

- Still statistically limited (small $r_B \sim 0.1$). Consistent with Belle
- Smaller stat. error: more data, improved reconstruction, slightly higher $r_B (\sigma_V \approx 1/r_B)$ 13
- Smaller syst. error: larger data/MC samples; improved analysis of tagged $D \rightarrow K_{s}hh^{-1}$

Systematic uncertainties

- **Experimental uncertainties**: many contributions, most important are:
 - dominant contribution for DK*: non-K* DK_Sπ bkg (k=0.9+-0.1)
 - fixed PDF shape parameters: vary by $\pm 1\sigma$
 - bkg DP distribution: replace BB bkg DP distribution from MC with phase space distribution; replace qq bkg DP distribution from data sidebands with MC PDF
 - fraction of bkg events containing a real D and either a K⁺ or a K⁻ (from fit only for qq bkg in K_Sππ, fixed from MC in other cases): vary between nominal value and 0.5

• True D decay amplitude uncertainties: several contributions of ~similar size

- uncertainties on the amplitude and phases from the analysis of the D* control sample
- use alternative models (add/remove resonances; vary BW parameters; replace Kmatrix with BW; vary form factors; use helicity formalism instead of Zemach tensors; ...)

B⁻→DK⁻, GLW method

Gronau, London, Weder, Dhue Lett D052 (1001) 102, Dhue Lett D055 (1001) 170

- D reconstructed in OP-eigenstates (OP=+: Κ'Κ , π'π'; OP=-: Ksπ°, Ksω, Ksφ) and in Cabibbo-allowed Kπ final state
- Use measured B[±] yields to determine the 4 GLW-observables:

Measurement strategy

- Selection optimized for S/sqrt(S+B), based on kinematic quantities similar to GGSZ measurement (+ ϕ/ω selection)
- Use $B \rightarrow D\pi$ as normalization and control sample
 - split selected samples in two: " $B \rightarrow DK$ " (track from B passes tight kaon ID) and " $B \rightarrow D\pi$ " (track from B fails tight kaon ID)
- Yield fit: ML fit to $\{m_{ES}, \Delta E, F\}$ (F = Fisher discriminant based on same variables used in GGSZ measurement + ratio of 2nd and 0th order Fox-Wolfram moments)
 - simultaneous fit to the subsamples corresponding to different D decays \Rightarrow constrain common parameters to the same value (e.g. A_{CP±}, R_{CP±}, ..)
 - simultaneous fit to B⁺ and B⁻ subsamples ⇒ extract A_{CP} likelihood
 - simultaneous fit to $B \rightarrow DK$ and $B \rightarrow D\pi$ control sample
 - obtain from data ($B \rightarrow D\pi$) the $B \rightarrow DK$ signal shape parameters
 - obtain from data the K/π mistag rate
 - normalize BF(B \rightarrow DK) to BF(B \rightarrow D π) in order to reduce systematic uncertainties from: reconstruction efficiencies, PID, secondary BFs, $K_S/\pi^0/D...$ efficiencies

18

0.4

$B^- \rightarrow D^{(*)}K^-$, ADS method

Atwood, Dunietz, Soni - Phys.Rev.Lett 78, 3257 (1997)

 Reconstruct DCS D⁰ final states [f]_D=K⁺π⁻ in order to equalize the magnitude of the interfering amplitudes:

- CP asymmetry can be very large, O(50%)
- Very small BFs (~10⁻⁷)
- Use CA final states as normalization channel and control sample, measure

$$\mathcal{R}^{(*)\pm} \equiv \frac{\Gamma([K \oplus \pi^{\pm}]_D K \oplus)}{\Gamma([K \oplus \pi^{\pm}]_D K \oplus)} = r_B^{(*)2} + r_D^2 + 2\lambda r_B^{(*)} r_D \cos(\pm\gamma + \delta_D + \delta_B^{(*)})$$

- compare events with opposite-sign (DCS) and same-sign (CA) kaons
- reconstruct DK, D*K (D* \rightarrow D π^{0}) and D*K (D* \rightarrow D γ) \Rightarrow 6 observables, 5 unknowns
- 4 discrete ambiguities: $(\gamma, \delta_B^{(*)}) \leftrightarrow (\gamma + \pi, \delta_B^{(*)} + \pi) \quad (\gamma, \delta_B^{(*)}) \leftrightarrow (-\gamma, -\delta_B^{(*)} 2\delta_D)$ 19

Measurement strategy

- Very low BF
 - use entire Y(4S) data sample: **2x more data** wrt previous measurement
 - reduce bkg as much as possible
- Selection: PID + kinematic quantities (similar to previous analyses); veto bkg from B⁻→DK⁻, D→K⁻π⁺ (K↔π misid) and B⁻→Dπ⁻, D→K⁺K⁻
- **Dominant bkg:** $q\overline{q}$ (esp. $c\overline{c} \rightarrow D^0\overline{D}^0X$, CA $D^0 \rightarrow K^-\pi^+$ and $\overline{D}^0 \rightarrow K^+X$): discriminated from signal using **neural network (NN) of 8 variables**
 - use same 4 evt. shape vars as in GGSZ analysis, + 4 for additional discrimination (example: vertex separation between 2 B candidates; presence of leptons)
 - trained with simulated signal and continuum bkg events
 - validated on off-peak data and signal-enriched same-sign data control sample
- Yield fit: simultaneous ML fit to {m_{ES}, NN} distributions of same-sign and oppositesign subsamples to discriminate bkg and extract R^{(*)±}

• Recent progress on γ based on final BaBar dataset

-0.2

0

0.2

 $\mathbf{X}_{\mathbf{S}_{+}^{-}}$

0.2

 X_{\pm}^{\star}

Recent progress on γ based on final BaBar dataset

 ^(γ) ~70° (consistent with SM CKM fits), precision
 (σ_γ~15°) dominated by the D^(*)K^(*) Dalitz analysis
 -0.2

-0.2

0

0.2

 X_{\pm}^{*}

- Recent progress on γ based on final BaBar dataset
 - $\langle \gamma \rangle \sim 70^{\circ}$ (consistent with SM CKM fits), precision $(\sigma_{\gamma} \sim 15^{\circ})$ dominated by the D^(*)K^(*) Dalitz analysis
- $3.5\sigma^{0.2}$ direct CPV evidence in $B \rightarrow D^{(*)}K^{(*)}$, $D \rightarrow K_{S}h^{+}h^{-}$

0.2

 $X_{s_{+}}$

- Recent progress on γ based on final BaBar dataset
 - $\langle \gamma \rangle \sim 70^{\circ}$ (consistent with SM CKM fits), precision $(\sigma_{\gamma} \sim 15^{\circ})$ dominated by the D^(*)K^(*) Dalitz analysis
- $3.5\sigma^{0.2}$ direct CPV evidence in $B \rightarrow D^{(*)}K^{(*)}$, $D \rightarrow K_{S}h^{+}h^{-}$
- ^{0.2} x[●]_∓ 3.6σ diffect CPV evidence in B→D_{CP+}K

- Recent progress on γ based on final BaBar dataset
 - $\langle \gamma \rangle \sim 70^{\circ}$ (consistent with SM CKM fits), precision $(\sigma_{\gamma} \sim 15^{\circ})$ dominated by the D^(*)K^(*) Dalitz analysis
- $3.5\sigma^{0.2}$ direct CPV evidence in $B \rightarrow D^{(*)}K^{(*)}$, $D \rightarrow K_{S}h^{+}h^{-}$
- ^{0.2} x[●]_∓ 3.6σ diffect CPV evidence in B→D_{CP+}K
 - Hint of ADS signal in $B \rightarrow DK$ and $B \rightarrow D^*K$

- Recent progress on γ based on final BaBar dataset
 - $\langle \gamma \rangle \sim 70^{\circ}$ (consistent with SM CKM fits), precision $(\sigma_{\gamma} \sim 15^{\circ})$ dominated by the D^(*)K^(*) Dalitz analysis
- $3.5\sigma^{-0.2}$ direct CPV evidence in $B \rightarrow D^{(*)}K^{(*)}$, $D \rightarrow K_{S}h^{+}h^{-}$
- ^{0.2} x[●]_∓ 3.6σ diffect CPV evidence in B→D_{CP+}K
 - Hint of ADS signal in $B \rightarrow DK$ and $B \rightarrow D^*K$
 - Interference effects (r) confirmed to be small for charged B decays (0.1-0.2)

• Close to last word from BaBar x_{τ}^{\star}

.2

- still statistically limited (need $\approx 100x$ to reach $\sigma_{\gamma}=1^{\circ}$)
- BaBar "legacy" γ average from GLW, ADS and GGSZ methods in progress

More details..

ADS: $B^- \rightarrow D^{(*)}K^-$ selection

- K, π identification: ~85% efficiency, 3% misidentification
- D⁰: |m-m_{PDG}|<20 MeV
- D*0: $|\Delta m \Delta m_{PDG}| < 4 \text{ MeV } (D\pi^0)$, 15 MeV (D γ)
- B: m_{ES} in [5.2, 5.29) GeV, |ΔE|<40 MeV
- vetoes for $B^- \rightarrow D[K^-K^+]\pi^-$ and $B^- \rightarrow D[K^-\pi^+]K^-$: $|m-m_{PDG}(D)| < 20 \text{ MeV}$
- arbitration (<multiplicity> ~1.4 in DK and ~2 in D*K): min $|\Delta E|$
 - ε=27% (DK), 13% (Dπ⁰K), 17% (DγK)
 - remaining peaking bkg (undistinguishable from signal):
 - charmless B⁻→K⁻K⁺π⁻, estimated from BF(PDF) and efficiency(MC), checked with D mass sidebands (6.0+-0.8 for DK, negligible for D(*)K)
 - $B^- \rightarrow Dh^-$ failing the vetoes: 2.6+-0.4
 - other B decays: 4+-3 events (fit to mES in BB MC)

ADS: NN variables for cc suppression

• Use L₀, L₂, $cos(\theta_T)$, $cos(\theta_B)$, and additionally:

 Δt between two B decays: ~τ_B for signal, ~0 for bkg (random combinations of particles assigned to B and ROE)

• $\Delta q = \sum_{i \notin B}^{D \ hemi} q_i^{trk} - \sum_{i \notin B}^{other \ hemi} q_i^{trk}$: ~0 for signal (tracks from ROE randomly assigned to 2 hemispheres); [2/3 - (1-1)] - [-2/3 - 1] = 7/3 for fake B+

- $q_B \times \sum_{i \notin B} q_i^K$: ~ -1 for signal (K⁻ often produced from other B⁻ in b→c→s), ~0 for bkg (typically no additional kaons)
- invariant mass between K from B and highest momentum lepton (0 if no l): fewer leptons in cc, from D→Klv
 K⁻↑

ADS: $B^{-} \rightarrow D^{(*)}K^{-}$ systematic uncertainties

• R:

- signal NN: replace PDF from MC OS DK with that from SS Dpi data sample
- non-peaking BB bkg NN: replace PDF from DK with that from BB MC
- qq bkg NN: use off-peak data
- BB comb bkg shape: vary ARGUS param
- peaking bkg: vary by +-1 σ BFs, yields
- BB comb. bkg (fixed in D*K): vary by +-25%

Error source	$\Delta \mathcal{R}(10^{-2})$	$\Delta \mathcal{R}(10^{-2})$	$\Delta \mathcal{R}(10^{-2})$
	DK	$D_{D\pi^0}^*K$	$D_{D\gamma}^*K$
Signal NN	± 0.1	± 0.1	± 0.3
$B\overline{B}$ background NN	± 0.1	± 0.3	± 0.4
$q\bar{q}$ background NN	± 0.1	± 0.1	± 0.1
$B\overline{B}$ comb. bkg shape $(m_{\rm ES})$	± 0.1	± 0.1	± 0.1
Peaking background WS	± 0.2	± 0.3	± 0.6
Peaking background RS	± 0.0	± 0.1	± 0.1
Floating $B\overline{B}$ comb. bkg	-	± 0.1	± 0.2
Combined	± 0.2	± 0.4	± 0.8

• A:

- detector charge asymmetry: +-0.01 (from Dpi control sample)
- WS peaking bkg (indendent B+ and B- Poisson fluctuations): +0.11 -0.14
- K⁻K⁺π⁻ peaking bkg Acp (0+-10%)

GLW: $B^{-} \rightarrow D_{CP}K^{-}$ selection

- improvements: +22% more data; +30% from no cut on Fisher; +10-15% from inclusion of dE/dx likelihood for DK/Dpi discrimination; +20% reco efficiency
- π⁰: |m-m_{PDG}|<2.5σ (σ~6 MeV); E>O(200) MeV
- K_S: $|m-m_{PDG}| < 2.5\sigma$ ($\sigma \sim 2.1$ MeV); flight length significance>2
- ϕ : $|m-m_{PDG}| < 6.5 \text{ MeV} (\sigma \sim 1 \text{ MeV}, \Gamma \sim 4.3 \text{ MeV}); |cos \theta_{hel}| > 0.4$
- ω: |m-m_{PDG}|<17 MeV (σ~6.9 MeV, Γ~8.5 MeV); cos²θ_Nsin²θ_{ππ}>0.046
- D⁰: |m-m_{PDG}|<2σ (6-45MeV); |cosθ_D|<0.74 (ππ), 0.99 (K_Sπ⁰)
- B: m_{ES} in [5.2, 5.29) GeV, -80<ΔE<120 MeV (~1.5σ)
- arbitration (multiple candidates in ~16% of events): min χ^2 (B, D, ω , ϕ , K_S, π^0) (probability > 98%, no impact on mD shape)
 - ε=10-44% (CP), 52% (CA)

D^0 mode	Efficiency after	Efficiency in	Purity in
	full selection	signal-enriched	signal-enriched
		subsample	subsample
$K^{-}\pi^{+}$	52%	22%	96%
K^+K^-	44%	18%	85%
$\pi^+\pi^-$	38%	17%	68%
$K^0_S \pi^0$	24%	10%	83%
$K^0_S \phi$	20%	9%	91%
$K^0_S\omega$	10%	4%	71%

GLW: $B^{-} \rightarrow D_{CP}K^{-}$ systematic uncertainties

Overall										
	Source	A_{CP+}	A_{CP-}	R_{CP+}	R_{CP-}					
	Fixed fit parameters	0.004	0.005	0.026	0.022					
	Peaking background	0.014	0.005	0.017	0.013					
	Bias correction	0.004	0.004	0.006	0.005					
	Detector charge asym.	0.014	0.014	-	-		/1	0.56	-0.06	0
	Opposite- <i>CP</i> background	-	0.003	-	0.006	C $[\vec{u}] =$		1	0	0
	$R_{CP\pm}$ vs. R_{\pm}	-	-	0.026	0.023	$C_{(syst)}[g] =$			1	0.13
	Signal self cross-feed	0.000	0.001	_	-					1 /
	$\varepsilon(\pi)/\varepsilon(K)$	-	-	0.009	0.008					
	$\Delta E_{\texttt{shift}} \text{ PDFs}$	0.007	0.011	0.029	0.024					
	Total	0.022	0.020	0.051	0.043					

Peaking bkg: vary by +-1 sigma; |A_{CP}|<10% (KKK, KKpi), 20% other modes

Fit bias: half the bias $R_{CP} \text{ vs R: } \frac{1 + r_{B\pi}^2 r_D^2 + 2r_{B\pi} r_D \cos(\delta_{B\pi} - \delta_D) \cos \gamma}{1 + r_{B\pi}^2 \pm 2r_{B\pi} \cos \delta_{B\pi} \cos \gamma} \qquad r_{B\pi} = r_B \tan^2 \theta_{C}.$ Detector charge asymmetry: (-0.95+-0.44)% Opposite CP bkg: ~22% Ks\u03c6, <10% in Ks\u03c6, from helicity distribution in D\u03c7 $S_{\text{stat}} = \sqrt{2 \ln(\mathcal{L}_{\text{nom}}/\mathcal{L}_{\text{null}})} = 3.7.$ $S_{\text{stat+syst}} = \frac{S_{\text{stat}}}{\sqrt{1 + \frac{\sigma_{\text{syst}}^2}{\sigma_{\text{stat}}^2}}} = 3.6.$

GGSZ: $B^- \rightarrow D^{(*)}K^{(*)-}$ selection

- K_S: $|m-m_{PDG}| < 9$ MeV; flight length significance>10, $cos(\alpha) > -0.99$
- K*: |m-m_{PDG}|<55 MeV; |cosθ_{hel}|>0.35
- D⁰: |m-m_{PDG}|<12 MeV, χ²(vtx)>0
- D*0: $|\Delta m \Delta m_{PDG}| < 2.5 \text{ MeV} (D\pi^0)$, 10 MeV (D γ)
- B: m_{ES} in [5.2, 5.29) GeV, χ^2 (vtx)>0, -80< Δ E<120 MeV (yield fit) / $|\Delta$ E|<30 MeV (CP fit)
- arbitration (multiple candidates in ~10% of events): min $\chi^2(D, \Delta m, K^*, \pi^0)$
 - ε=14-26%

GGSZ: isobar model

 $A_r^J(\mathbf{m}^2) = F_D F_r M_r^J T_r(\mathbf{m}^2)$

- Vertex form factors
 - Blatt-Weisskopf (R=1.5GeV⁻¹)
- Angular distribution for spin J
 - Zemach Tensors
- Resonance propagator
 - Relativistic BW
 - Gounaris-Sakurai ρ lineshape
 - K-matrix approach for $\pi\pi$ and $K\pi$ S-waves in $D^0 \rightarrow K_S\pi\pi$

$$F_{1}\left(m_{\pi\pi}^{2}\right) = \sum_{j} \left[I - K\left(m_{\pi\pi}^{2}\right)\rho\left(m_{\pi\pi}^{2}\right)\right]_{1j}^{-1} P_{j}\left(m_{\pi\pi}^{2}\right)$$

$$K_{ij}\left(m_{\pi\pi}^{2}\right) = \left[f_{ij}^{\text{scatt}} \frac{1 - s_{0}^{\text{scatt}}}{m_{\pi\pi}^{2} - s_{0}^{\text{scatt}}} + \sum_{\alpha} \frac{g_{i}^{(\alpha)}g_{j}^{(\alpha)}}{m_{\alpha}^{2} - m_{\pi\pi}^{2}}\right] \left\{\frac{1 - s_{A0}}{m_{\pi\pi}^{2} - s_{A0}}\left(m_{\pi\pi}^{2} - \frac{s_{A}m_{\pi}^{2}}{2}\right)\right\}$$

$$P_{j}\left(m_{\pi\pi}^{2}\right) = f_{11}^{\text{prod}} f_{r,1j}^{\text{prod}} \frac{1 - s_{0}^{\text{prod}}}{m_{\pi\pi}^{2} - s_{0}^{\text{prod}}} + \sum_{\alpha} \frac{\beta_{\alpha}g_{j}^{(\alpha)}}{m_{\alpha}^{2} - m_{\pi\pi}^{2}}$$

m_{lpha}	$g^{lpha}_{\pi^+\pi^-}$	$g^{\alpha}_{K\overline{K}}$	$g^{lpha}_{4\pi}$	$g^{lpha}_{\eta\eta}$	$g^{lpha}_{\eta\eta^\prime}$
0.65100	0.22889	-0.55377	0.00000	-0.39899	-0.34639
1.20360	0.94128	0.55095	0.00000	0.39065	0.31503
1.55817	0.36856	0.23888	0.55639	0.18340	0.18681
1.21000	0.33650	0.40907	0.85679	0.19906	-0.00984
1.82206	0.18171	-0.17558	-0.79658	-0.00355	0.22358
$s_0^{ m scatt}$	f_{11}^{scatt}	f_{12}^{scatt}	f_{13}^{scatt}	f_{14}^{scatt}	f_{15}^{scatt}
-3.92637	0.23399	0.15044	-0.20545	0.32825	0.35412
s_{A0}	s_A	1			
-0.15	1	1			

GGSZ: systematic uncertainties

Dominant error is statistical

• Similar contributions to total syst. error from Dalitz model and exp.

TABLE II: Summary of the main contributions to the D^0 decay amplitude model systematic uncertainty on the *CP* parameters. We evaluate the different contributions using a similar, but not identical, procedure to that adopted in our previous analysis [9]. The reference D^0 decay amplitude models and parameters are used to generate 10 data-sized signal samples of pseudo-experiments of $D^{*+} \rightarrow D^0 \pi^+$ and $D^{*-} \rightarrow \overline{D}^0 \pi^-$ events, and $10 B^{\mp} \rightarrow D^{(*)} K^{\mp}$ and $B^{\mp} \rightarrow D K^{*\mp}$ signal samples 100 times larger than each measured signal yield in data, with $D^0 \rightarrow K_S^0 h^+ h^-$. The *CP* parameters are generated with values in the range found in data. We then compare experiment-by-experiment the values of $z_{\mp}^{(*)}$ and $z_{s\mp}$ obtained from the *CP* fits using the reference amplitude models and a set of alternative models obtained by repeating the $D^0 \rightarrow K_S^0 h^+ h^-$ amplitude analyses on the pseudo-experiments with alternative assumptions [13]. This technique, although it requires large computing resources, helps

Source	x_{-}	y_{-}	x_+	y_+	x_{-}^{*}	y_{-}^{*}	x_+^*	y_+^*	x_{s-}	y_{s-}	x_{s+}	y_{s+}
Mass and width of Breit-Wigner's	0.001	0.001	0.001	0.002	0.001	0.002	0.001	0.002	0.001	0.002	0.001	0.002
$\pi\pi$ S-wave parameterization	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002
$K\pi$ S-wave parameterization	0.001	0.004	0.003	0.008	0.001	0.006	0.002	0.004	0.003	0.002	0.003	0.007
Angular dependence	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.002	0.001
Blatt-Weisskopf radius	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001
Add/remove resonances	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.002
DP efficiency	0.003	0.002	0.003	0.001	0.001	0.001	0.001	0.001	0.004	0.002	0.003	0.001
Background DP shape	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Mistag rate	0.003	0.003	0.002	0.001	0.001	0.001	0.001	0.001	0.003	0.003	0.001	0.001
Effect of mixing	0.003	0.001	0.003	0.001	0.001	0.001	0.001	0.001	0.003	0.001	0.003	0.001
DP complex amplitudes	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.002
Total D^0 decay amplitude model	0.006	0.006	0.007	0.009	0.002	0.007	0.003	0.006	0.007	0.006	0.006	0.008

Source	x_{-}	y_{-}	x_+	y_+	x_{-}^{*}	y_{-}^{*}	x_+^*	y_+^*	x_{s-}	y_{s-}	x_{s+}	y_{s+}
$m_{\rm ES}, \Delta E, \mathcal{F} {\rm shapes}$	0.001	0.001	0.001	0.001	0.004	0.006	0.008	0.004	0.006	0.003	0.004	0.002
Real D^0 fractions	0.002	0.001	0.001	0.001	0.003	0.003	0.002	0.002	0.004	0.001	0.001	0.001
Charge-flavor correlation	0.003	0.003	0.002	0.001	0.005	0.005	0.008	0.002	0.001	0.001	0.003	0.001
Efficiency in the DP	0.003	0.001	0.003	0.001	0.001	0.001	0.001	0.001	0.003	0.001	0.002	0.001
Background DP distributions	0.005	0.002	0.005	0.003	0.003	0.002	0.004	0.004	0.010	0.004	0.007	0.002
$B^- \to D^{*0} K^-$ cross-feed	-	—	—	-	0.002	0.003	0.009	0.002	—	—	—	—
CP violation in $D\pi$ and $B\overline{B}$	0.002	0.001	0.001	0.001	0.017	0.001	0.008	0.004	0.017	0.002	0.011	0.001
Non- $K^* B^- \to D K^0_S \pi^-$ decays	—	—	—	—	—	—	_	—	0.020	0.026	0.025	0.036
Total experimental	0.007	0.004	0.006	0.004	0.019	0.009	0.017	0.008	0.029	0.027	0.029	0.036

Dalitz model: used alternative models, with different resonance parameters or parameterizations, add/ remove resonances

Experimental contributions: vary PDF parameters; assume flat efficiency; use background Dalitz shape from MC instead of data sideband, or flat shape

GGSZ: interference between DK^{*} and DK π

• GGSZ formulae still valid after replacement

$$\begin{aligned} x_{\mp}^{(*)} &\to x_{s\mp} = \kappa r_s \cos(\delta_s \mp \gamma) \\ y_{\mp}^{(*)} &\to y_{s\mp} = \kappa r_s \sin(\delta_s \mp \gamma) \end{aligned} \quad r_s^2 = \frac{\int A_u^2(p) dp}{\int A_c^2(p) dp} \quad , \ \kappa e^{i\delta_s} = \frac{\int A_c(p) A_u(p) e^{i\delta(p)} dp}{\sqrt{\int A_c^2(p) dp \int A_u^2(p) dp}} \end{aligned}$$

- Additional parameter k (0..1) can be evaluated using a Dalitz isobar model B for the decay amplitude (including, for B⁻: K^{*}(892)⁻, K^{*}₀(1410)⁻, K^{*}₂(1430)⁻, D^{*} (2010)⁻, D^{*}₂(2460)⁻) by randomly varying magnitudes (+/-30%) and phases (0..2π), A_u/A_c fixed to ~0.4
 - $B^- \rightarrow D^0 K^{*-}$: k = 0.9±0.1
 - $B^0 \rightarrow anti-D^0K^{*0}$: k = 0.95±0.03

Frequentist procedure for extracting γ

• From the measured $z = \{x^{(*)}_{(s)\pm}, y^{(*)}_{(s)\pm}\}$ with covariance matrix $V_{stat+syst}$, construct a multivariate gaussian PDF for the physical parameters $p = \{\gamma, r^{(*)}_{B,s}, \delta^{(*)}_{B,s}\}$:

$$\mathcal{L}(\mathbf{z};\mathbf{p};V) = \frac{1}{(2\pi)^{n/2}\sqrt{|V|}} e^{-\frac{1}{2}(\mathbf{z}-\mathbf{z}^{(t)})^T V^{-1}(\mathbf{z}-\mathbf{z}^{(t)})} \equiv \frac{1}{(2\pi)^{n/2}\sqrt{|V|}} e^{-\frac{1}{2}\chi^2(\mathbf{z};\mathbf{p};V)}$$

- For each value μ₀ of the parameter μ, minimize χ²min(μ₀,q)=-2lnL with respect to the other parameters, q=p-{μ}: χ²min(μ₀,q₀).
- In a 100% gaussian case, the CL is given by

$$\Delta \chi^{2}(\mu_{0}) = \chi^{2}_{\min}(\mu_{0}, \mathbf{q_{0}}) - \chi^{2}_{\min}$$

CL = 1 - α = $Prob(\Delta \chi^{2}(\mu_{0}), \nu = 1) = \frac{1}{\sqrt{2^{\nu}}\Gamma(\nu/2)} \int_{\Delta \chi^{2}(\mu_{0})}^{\infty} e^{-t/2} t^{\nu/2-1} dt$

- In practice, use toy MC to evaluate CL:
 - generate a sample of z' according to V and assuming z(true)=z(μ0,q0)
 - determine $\Delta \chi^2'(\mu_0) = \chi^2'_{min}(\mu_0, \mathbf{q}_0') \chi^2'_{min}$ (letting **q** free to vary)
 - count how many times $\Delta \chi^2'(\mu_0) < \Delta \chi^2(\mu_0)$

R_{CP}, A_{CP}: comparison with other experiments

- Consistency with other experiments' determinations
- World's most precise measurement of $A_{CP\pm}$ and $R_{CP\pm}$

RADS, AADS: comparison with other experiments

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

x (GGSZ): comparison with Belle

		$D_{Dalitz}^{(*)}K^{(*)}x_{+}$	Averages HFAG FPCP 2010 PRELIMINARY		$\mathbf{D}_{\mathbf{Dalitz}}^{(*)}\mathbf{K}^{(*)}\mathbf{x}_{\mathbf{L}}$	Averages HFAG FPCP 2010 PRELIMINARY
	¥	BaBar arXiv:1005.1096	-0.103 ± 0.037 ± 0.006	×	BaBar arXiv:1005.1096	0.060 ± 0.039 ± 0.007
\mathbf{X}_{0}	Dalitz	Belle PRD 81 (2010) 112002	-0.107 ± 0.043 ± 0.011	Datitz	Belle PRD 81 (2010) 112002	0.105 ± 0.047 ± 0.011
\square	р Г	Average HFAG correlated average	-0.104 ± 0.029		Average HFAG correlated average	0.085 ± 0.030
	¥ N	BaBar arXiv:1005.1096	0.147 ± 0.053 ± 0.017	¥ N	BaBar arXiv:1005.1096	-0.104 ± 0.051 ± 0.019
\leq	Dalit	Belle PRD 81 (2010) 112002	0.083 ± 0.092	Datit	Belle PRD 81 (2010) 112002	-0.036 ± 0.127
0*0		Average HFAG correlated average	0.130 ± 0.048		Average HFAG correlated average	-0.090 ± 0.050
	¥	BaBar arXiv:1005.1096	-0.151 ± 0.083 ± 0.029	¥	BaBar arXiv:1005.1096	0.075 ± 0.096 ± 0.029
*	alitz	Belle	-0.105 ^{+0.177} _{-0.167} ± 0.006	alitz	Belle PBD 73, 12009 (2006)	$-0.784^{+0.249}_{-0.295} \pm 0.029$
		Average HFAG correlated average	-0.152 ± 0.077		Average HFAG correlated average	-0.043 ± 0.094
	-1	-0.8 -0.6 -0.4 -0.2 0	0.2 0.4 0.6 0.8 1	-1	-0.8 -0.6 -0.4 -0.2 0	0.2 0.4 0.6 0.8 1

y (GGSZ): comparison with Belle

		$\mathbf{D}_{\mathbf{Dalitz}}^{(*)}\mathbf{K}^{(*)}\mathbf{y}$, Averages	HFAG FPCP 2010 PRELIMINARY		$\mathbf{D}_{\mathbf{Dalitz}}^{(*)}\mathbf{K}^{(*)}$	⁾ y ₋ Avei	ages	HFAG FPCP 2010 PRELIMINARY
	¥	BaBar arXiv:1005.1096	н -0.02	1 ± 0.048 ± 0.004	¥	BaBar arXiv:1005.1096	l+ ≠ 4	0.062 ±	0.045 ± 0.004
\mathbf{X}_{0}	Datitz	Belle PRD 81 (2010) 112002	-0.06	7 ± 0.059 ± 0.018	Datitz	Belle PRD 81 (2010) 112002	*	0.177 ±	0.060 ± 0.018
\bigcirc		Average HFAG correlated average		-0.038 ± 0.038		Average HFAG correlated average			0.105 ± 0.036
	¥ N	BaBar arXiv:1005.1096	-0.03	2 ± 0.077 ± 0.008	¥	BaBar arXiv:1005.1096	*	-0.052 ±	0.063 ± 0.009
\leq	Dalitz	Belle PRD 81 (2010) 112002	≥ + ★ ·	0.157 ± 0.109	Dalitz	Belle PRD 81 (2010) 112002			-0.249 ± 0.118
0*0		Average HFAG correlated average	ă *	0.031 ± 0.063		Average HFAG correlated average			-0.099 ± 0.056
	*	BaBar arXiv:1005.1096	. 0.04	5 ± 0.106 ± 0.036	×	BaBar arXiv:1005.1096	<mark>⊢ ★</mark> 1	0.127 ±	0.095 ± 0.027
*	alitz	Belle PRD 73, 112009 (2006)	-0.	.004 $^{+0.164}_{-0.156} \pm 0.013$	alitz ⁻	Belle PRD 73, 112009 (2006)	FAG P 20	-0.281	$1_{-0.335}^{+0.440} \pm 0.046$
		Average HFAG correlated average		0.024 ± 0.091		Average HFAG correlated average			0.091 ± 0.096
	-1	-0.8 -0.6 -0.4 -0.2 () 0.2 0.4 0).6 0.8 1	-1	-0.8 -0.6 -0.4 -0.2	0 0.2	0.4 0.6	0.8 1

x (DK): GGSZ vs GLW

