

BABAR time-integrated γ / ϕ_{3} measurements

Giovanni Marchiori
on behalf of the BABAR collaboration
Laboratoire de Physique Nucléaire et des Hautes Energies (Paris) IN2P3/CNRS

IN2P3
CKM workshop 2010, Warwick September 2010

Time-integrated γ measurements from $B \rightarrow D^{(*)} K^{(*)}$: how?

- Exploit interference between tree diagrams $b \rightarrow c$ and $b \rightarrow u\left(V_{u b} \propto e^{-i \gamma}\right)$ in charged $B \rightarrow D^{(*)} K^{(*)}$ or self-tagging neutral $B^{0} \rightarrow D^{(*)} K^{* 0}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right)$decays

- use final states accessible from both $\mathrm{D}^{(*) 0}$ and $\overline{\mathrm{D}}^{(*) 0}$
- GLW: CP eigenstates (Cabibbo suppressed): many modes, small asymmetries
- ADS: doubly Cabibbo suppressed: smaller rates, larger asymmetries
- GGSZ: Cabibbo favored multibody decays: larger rates, asymmetry varying across the Dalitz plane
- hadronic parameters $\mathrm{r}_{\mathrm{B}}=|\mathrm{A}(\mathrm{b} \rightarrow \mathrm{u}) / \mathrm{A}(\mathrm{b} \rightarrow \mathrm{c})|$ and $\delta_{\mathrm{B}}=$ strong phase (CP conserving) between $A(b \rightarrow u)$ and $A(b \rightarrow c)$ determined experimentally
- largely unaffected by New Physics

- difficult because of small BFs (few events) and small r_{B} (small interference)

News since CKM2008

- Full Y(4S) data set exploited in many measurements (468M B \bar{B} pairs)
- Latest reprocessing of data using optimized algorithms: higher charged particle reconstruction and identification efficiency and purity

Measurement	CKM 2008		CKM 2010		changes
	$\mathrm{N}(\mathrm{B} \overline{\mathrm{B}})$	pub. status	$\mathrm{N}(\mathrm{B} \overline{\mathrm{B}})$	pub. status	
GGSZ $\mathbf{D}^{(*) 0} \mathbf{K}{ }^{(*)}$	383M	PRD 78, 034023 (2008)	468M	arXiv:1005.1096 accepted by PRL	updated Dalitz model, added $\mathrm{DK}^{\star}(\mathrm{D} \rightarrow \mathrm{KsKK})$
GLW D ${ }^{\text {² }}$	382M	$\begin{gathered} \text { PRD } 77,111102 \\ (2008) \end{gathered}$	467M	arXiv:1007.0504 accepted by PRD	improved fit technique, added CL scan of γ
ADS $\mathrm{D}^{(*) 0} \mathrm{~K}$	232M	PRD 72, 032004 (2005)	467M	arXiv:1006.4241 accepted by PRD	improved fit technique, better statistical analysis, CL scan of γ
GLW+ADS ${ }^{\text {²}}{ }^{*}$	379M	preliminary	379M	PRD 80, 092001 (2009)	added CL scan of γ
GLW D**K	382M	submitted to PRD	382M	$\begin{aligned} & \text { PRD 78, } 092002 \\ & \text { (2008) } \end{aligned}$	no changes
ADS $\mathrm{D}^{0} \mathrm{~K}^{*}$	465M	preliminary	465M	$\begin{aligned} & \text { PRD 80, } 031102 \\ & (2009) \end{aligned}$	no changes
GGSZ ${ }^{0}{ }^{*}{ }^{*}$	371M	preliminary	371M	$\begin{aligned} & \text { PRD 79, } 072003 \\ & \text { (2009) } \end{aligned}$	no changes

Experimental techniques

$B^{-} \rightarrow D^{(H)} K^{(4)}$, GGSZ method: basics

Giri, Grossman, Soffer, Zupan - Phys. Rev. D68 (2003) 054018

- Neglecting CPV and mixing in D system:

$B^{-} \rightarrow D^{()} K^{(4)}$, GGSZ method: observables

Giri, Grossman, Soffer, Zupan - Phys. Rev. D68 (2003) 054018

- Extract γ from fit to Dalitz-plot distribution of D daughters:
- $D^{(*)}$ K:

$$
\Gamma_{\mp}\left(s_{-}, s_{+}\right) \propto\left|\mathcal{A}_{D \mp}\right|^{2}+r_{B}^{(*) 2}\left|\mathcal{A}_{D \pm}\right|^{2}+2 \lambda\left\{x_{\mp}^{(*)} \operatorname{Re}\left[\mathcal{A}_{D \mp} \mathcal{A}_{D \pm}^{*}+y_{\mp}^{(*)} \operatorname{Im}\left[\mathcal{A}_{D \mp} \mathcal{A}_{D \pm}^{*}\right]\right\}\right.
$$

$$
\begin{aligned}
& x^{*}{ }_{ \pm}=r_{B}{ }^{(*)} \cos \left(\delta_{B}{ }^{(*)} \pm \gamma\right) \\
& y^{(*)} \pm=r_{B}{ }^{\left({ }^{*}\right)} \sin \left(\delta_{B}{ }^{\left({ }^{*}\right)} \pm \gamma\right) \\
& r_{B}{ }^{(*)}{ }^{2}=x^{(*)} 2+y^{(*)}{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
\lambda= & +1 \text { for } B \rightarrow D^{0} K, D^{*}\left[D^{0} \pi \pi^{0}\right] K \\
& -1 \text { for } B \rightarrow D^{*}\left[D^{0} \gamma\right] K
\end{aligned}
$$

- DK*:

$$
\Gamma_{\mp}\left(s_{-}, s_{+}\right) \propto\left|\mathcal{A}_{D \mp}\right|^{2}+r_{S}^{2}\left|\mathcal{A}_{D \pm}\right|^{2}+2\left\{x_{s \mp} \operatorname{Re}\left[\mathcal{A}_{D \mp} \mathcal{A}_{D \pm}^{*}+y_{s \mp} \operatorname{Im}\left[\mathcal{A}_{D \mp} \mathcal{A}_{D \pm}^{*}\right]\right\}\right.
$$

$$
\begin{gathered}
\mathrm{x}_{s \pm}=\mathrm{krs} \cos (\delta s \pm \gamma) \\
\mathrm{y}_{s \pm}=\mathrm{krs} \sin (\delta s \pm \gamma) \\
\left.\mathrm{k}^{2} \mathrm{rs}^{2}=\mathrm{x}^{(*) 2}+\mathrm{y}^{*}\right)^{\left.()^{2}\right)} \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{k}<1(0.9 \pm 0.1) \text { because of } \\
& \text { interfering non- } \mathrm{K}^{*} \mathrm{~B} \rightarrow \mathrm{DK} s \pi \text { bkg }
\end{aligned}
$$

- 2-fold γ ambiguity: $\left(\gamma, \delta_{B}^{(*)}, \delta_{S}\right) \rightarrow\left(\gamma+\pi, \delta_{B}^{(*)}+\pi, \delta_{S}+\pi\right)$

Measurement ingredients

- Selection optimized for S/sqrt(S+B) based on:
- K: particle identification $\quad \pi^{0}$: invariant mass, CM momentum
- Ks: invariant mass, angle between momentum and line of flight, flight length
- K*: invariant mass, helicity angle of decay products
- D: invariant mass, vertex fit probability
D^{*} : D^{\star}-D mass difference
- B: vertex fit probability
- Yield fit: ML fit to $\left\{\mathrm{mes}_{\mathrm{Es}}, \Delta \mathrm{E}, \mathrm{F}\right\}$, $\mathrm{F}=$ linear combination (Fisher) of evt. shape vars:
- $\cos \left(\theta_{T^{*}}\right)$: angle between thrust axes of B and rest-of-event (ROE) ($q \bar{q} \sim 1$, signal \sim uniform)
- $\cos \left(\theta_{B}{ }^{*}\right)$: polar angle of B in CM frame ($q \bar{q} \sim 1+\cos ^{2} \theta_{B}{ }^{*}$, signal $\left.\sim \sin ^{2} \theta_{B}{ }^{*}\right)$
- $L_{0}=\sum_{i}^{R O E} p_{i}^{*}, L_{2}=\sum_{i}^{R O E} p_{i}^{*}\left(\cos \theta_{i}^{*}\right)^{2} \quad\left(\mathrm{~L}_{2} / \mathrm{L} 0: \mathrm{q} \overline{\mathrm{q}} \sim 1, \sim 0.5\right.$ for signal)
- CP fit: ML fit to $\left\{\mathrm{m}_{\mathrm{Es}}, \boldsymbol{\Delta E}\right.$, shape vars, $\left.\mathrm{s}_{-}, \mathrm{s}_{+}\right\}$to determine x, y based on observed D Dalitz plot distribution:
- yields and shape parameters fixed (obtained from previous step)
- true $\mathbf{D}^{\mathbf{0}} \rightarrow \mathbf{K} \mathbf{s h}^{+} \mathbf{h}^{-}$decay amplitude from flavor tagged D^{0} from $\mathbf{D}^{*+} \rightarrow \mathbf{D}^{0} \boldsymbol{\pi}^{+}$
- fake $\mathbf{D}^{\mathbf{0}} \boldsymbol{\rightarrow} \mathbf{K s h}^{+} \mathbf{h}^{-}$distribution from data/MC bkg control samples

Yield and shape parameter extraction

- Signal and background yields in selected sample determined from ML fit (use $B \rightarrow D^{(100} \pi$ and $B \rightarrow D^{0} a_{1}$ as control samples):

- Yields increased by ~50\% wrt to previous BaBar measurement: +22\% more data and 20-40\% relative increase in selection efficiency
- reprocessed data with improved track reconstruction
- improved particle identification

Yields

arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010)

$N_{B \bar{B}}=468 \times 10^{6}$

1507 D $^{0} \rightarrow K_{\text {s }}$ tut events

$268 \mathrm{D}^{0} \rightarrow \mathrm{~K}_{\text {s KK events }}$

$\mathrm{D} \rightarrow \mathrm{Ksh}^{+} \mathrm{h}^{-}$decay amplitude analysis

arXiv:1004.5053, accepted by Phys. Rev. Lett. (2010)

- Extract D decay amplitude from independent analysis of flavor-tagged D^{0} mesons ($\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}$)
- Nominal model determined without D-mixing (\Rightarrow syst. uncertainties)
- Fit for amplitudes relative to $\mathrm{K}_{\mathrm{s}} \rho(770)$ and $\mathrm{K}_{s} a_{0}(980)$, assume no direct CPV

$\mathrm{D} \rightarrow \mathrm{K}^{\mathrm{sh}}{ }^{+} \mathrm{h}^{-}$decay amplitude isobar model

 arXiv:1004.5053, accepted by Phys. Rev. Lett. (2010)

Good fit quality taking into account statistical, experimental and model uncertanties

$B^{-} \rightarrow D^{(*)} K^{(*)-}$ GGSZ results: x, y, direct CPV

arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010)
$\mathrm{N}_{\mathrm{B} \overline{\mathrm{E}}}=468 \times 10^{6}$

$B^{-} \rightarrow D^{(*)} K^{(*)-}$ GGSZ results: x, y, direct CPV

arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010)
$\mathrm{N}_{\mathrm{B} \overline{\mathrm{B}}}=468 \times 10^{6}$

$B^{-} \rightarrow D^{(*)} K^{(*)-}$ GGSZ results: x, y, direct CPV

arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010)
$\mathrm{N}_{\mathrm{B} \overline{\mathrm{E}}}=468 \times 10^{6}$

$B^{-} \rightarrow D^{(1)} K^{(1)-}$ GGSZ results: γ, r, δ

arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010)
$N_{B \bar{B}}=468 \times 10^{6}$

- Use a frequentist method to obtain the common weak phase γ and the 3 (r_{B}, $\delta_{\text {B }}$) from the $3\left(x_{ \pm}, y_{ \pm}\right)$sets (12 observables)

$\gamma\left(\bmod 180^{\circ}\right)=(68 \pm 14 \pm 4 \pm 3)^{\circ}$
stat syst model
- Still statistically limited (small $r_{\mathrm{B}} \sim 0.1$). Consistent with Belle

$B^{-} \rightarrow D^{(H)} K^{\left.()^{(}\right)-}$GGSZ results: γ, r, δ

arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010)
$N_{B \bar{B}}=468 \times 10^{6}$

- Use a frequentist method to obtain the common weak phase γ and the 3 (r_{B}, δ_{B}) from the $3\left(x_{ \pm}, y_{ \pm}\right)$sets (12 observables)

$\gamma\left(\bmod 180^{\circ}\right)=(68 \pm(14) \pm 4 \pm 3)^{\circ}$
stat syst model
- Still statistically limited (small $r_{B} \sim 0.1$). Consistent with Belle
- Smaller stat. error: more data, improved reconstruction, slightly higher $r_{B}\left(\sigma_{\gamma} \approx 1 / r_{B}\right)$

$B^{-} \rightarrow D^{(1)} K^{(1)-}$ GGSZ results: γ, r, δ

arXiv:1005.1096, accepted by Phys. Rev. Lett. (August 2010)
$N_{B \bar{B}}=468 \times 10^{6}$

- Use a frequentist method to obtain the common weak phase γ and the 3 (r_{B}, $\delta_{\text {B }}$) from the $3\left(x_{ \pm}, y_{ \pm}\right)$sets (12 observables)

$\gamma\left(\bmod 180^{\circ}\right)=(68 \pm(14) \pm 4 \pm 3)^{\circ}$
our previous result: $(76 \pm(22) \pm 5 \pm 5)^{\circ}$
- Still statistically limited (small $r_{B} \sim 0.1$). Consistent with Belle
- Smaller stat. error: more data, improved reconstruction, slightly higher $r_{B}\left(\sigma_{\mathrm{V}} \approx 1 / r_{\mathrm{B}}\right)$
- Smaller syst. error: larger data/MC samples; improved analysis of tagged $D \rightarrow K$ shh

Systematic uncertainties

- Experimental uncertainties: many contributions, most important are:
- dominant contribution for DK*: non-K* DKs π bkg (k=0.9+-0.1)
- fixed PDF shape parameters: vary by $\pm 1 \sigma$
- bkg DP distribution: replace $B \bar{B}$ bkg DP distribution from MC with phase space distribution; replace $q \bar{q}$ bkg DP distribution from data sidebands with MC PDF
- fraction of bkg events containing a real D and either a K^{+}or a K^{-}(from fit only for q \bar{q} bkg in $K_{s} \pi \pi$, fixed from MC in other cases): vary between nominal value and 0.5
- True D decay amplitude uncertainties: several contributions of \sim similar size
- uncertainties on the amplitude and phases from the analysis of the D^{*} control sample
- use alternative models (add/remove resonances; vary BW parameters; replace Kmatrix with BW; vary form factors; use helicity formalism instead of Zemach tensors; ...)

$\mathrm{B}^{-} \rightarrow \mathrm{DK}^{-}$, GLW method

Gronau, London, Wyler - Phys. Lett. B253 (1991) 483; Phys. Lett. B265 (1991) 172

- D reconstructed in CP-eigenstates (CP=+: $\mathrm{K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}$; $\left.\mathrm{CP}=-: \mathrm{K}_{s} \pi^{0}, \mathrm{~K}_{s} \omega, \mathrm{~K}_{s} \phi\right)$ and in Cabibbo-allowed $\mathrm{K} \pi$ final state
- Use measured $\mathrm{B}^{ \pm}$yields to determine the 4 GLW-observables:

- 8-fold γ ambiguity: $\quad\left(\gamma, \delta_{B}\right) \leftrightarrow\left(\gamma+\pi, \delta_{B}+\pi\right) \quad\left(\gamma, \delta_{B}\right) \leftrightarrow\left(-\gamma,-\delta_{B}\right) \quad\left(\gamma, \delta_{B}\right) \leftrightarrow\left(\delta_{B}, \gamma\right)$
- BFs ~ 10^{-6} (Cabibbo suppression of D decays to CP eigenstates)
- small asymmetries (<~ 20-30\%) because of small rB
- Extract also $X_{ \pm}$for combination with Dalitz-analysis results (Ks ϕ removed):

$$
x_{ \pm}=\frac{R_{C P+}\left(1 \mp A_{C P+}\right)-R_{C P-}\left(1 \mp A_{C P-}\right)}{4}
$$

Measurement strategy

- Selection optimized for $\mathrm{S} /$ sqrt(S+B), based on kinematic quantities similar to GGSZ measurement (+ ϕ / ω selection)
- Use $B \rightarrow D \pi$ as normalization and control sample
- split selected samples in two: "B \rightarrow DK" (track from B passes tight kaon ID) and " $B \rightarrow D \pi$ " (track from B fails tight kaon ID)
- Yield fit: ML fit to $\left\{\mathrm{m}_{\mathrm{Es}}, \Delta \mathrm{E}, \mathrm{F}\right\}(\mathrm{F}=$ Fisher discriminant based on same variables used in GGSZ measurement + ratio of $2^{\text {nd }}$ and $0^{\text {th }}$ order FoxWolfram moments)
- simultaneous fit to the subsamples corresponding to different D decays \Rightarrow constrain common parameters to the same value (e.g. $\left.A_{C P_{ \pm}}, R_{C P_{ \pm}}, ..\right)$
- simultaneous fit to B^{+}and B^{-}subsamples \Rightarrow extract Acp likelihood
- simultaneous fit to $B \rightarrow D K$ and $B \rightarrow D \pi$ control sample
- obtain from data $(B \rightarrow D \pi)$ the $B \rightarrow D K$ signal shape parameters
- obtain from data the K / π mistag rate
- normalize $\mathrm{BF}(\mathrm{B} \rightarrow \mathrm{DK})$ to $\mathrm{BF}(\mathrm{B} \rightarrow \mathrm{D} \pi)$ in order to reduce systematic uncertainties from: reconstruction efficiencies, PID, secondary BFs, $\mathrm{K}_{\mathrm{s}} / \pi^{0} / \mathrm{D}$... efficiencies

Using the full $\mathrm{Y}(4 \mathrm{~S})$ dataset:

$$
N_{C P_{+}}=477 \pm 28
$$

$$
N_{\text {CP- }}=506 \pm 26
$$

$$
N_{k_{\pi}}=3361 \pm 82
$$

$A_{C P+}$	$=$	$0.25 \pm 0.06 \pm 0.02$
$A_{C P-}$	$=$	$-0.09 \pm 0.07 \pm 0.02$
$R_{C P+}$	$=$	$1.18 \pm 0.09 \pm 0.05$
$R_{C P-}$	$=$	$1.07 \pm 0.08 \pm 0.04$

$$
\left(\begin{array}{rlr}
x_{+} & = & -0.057 \pm 0.039 \pm 0.015 \\
x_{-} & = & 0.132 \pm 0.042 \pm 0.018 \\
r_{B}^{2} & = & 0.105 \pm 0.067 \pm 0.035
\end{array}\right)
$$

CP-even

CP-odd

- Yields increased by 100% compared to previous publication: $+22 \%$ more data, $+80 \%$ from latest reprocessing, improved selection, revised fit strategy (no cut on F)
- Direct CPV at 3.6o in $B \rightarrow D_{C P+} K$ decays !
- most precise measurement of $A_{\mathrm{CP}_{ \pm}}$and $\mathrm{R}_{\mathrm{CP} \pm} ; \mathrm{X}_{ \pm}$competitive with Dalitz-analysis results
- large value of r_{B} favored (but large uncertainty: less than 2σ from 0)

γ from $\mathrm{B}^{-} \rightarrow \mathrm{D}_{\text {(cp) })} \mathrm{K}^{-}(\mathrm{GLW}$ method)

arXiv:1007.0504, accepted by Phys. Rev. D (August 2010)

- Use frequentist interpretation (similar to Dalitz plot method) to obtain weak phase γ and hadronic parameters $\mathrm{r}_{\mathrm{B}}, \delta_{\mathrm{B}}$ from $\mathrm{R}_{\mathrm{CP} \pm}, \mathrm{A}_{\mathrm{CP}}{ }_{ \pm}$

	$\gamma \bmod 180\left[{ }^{\circ}\right]$	r_{B}
$68 \% \mathrm{CL}$	$[11.3,22.7]$	$[0.24,0.45]$
	$[80.9,99.1]$	
		$[157.3,168.7]$
$95 \% \mathrm{CL}$	$[7.0,173.0]$	$[0.06,0.51]$

γ from $\mathrm{B}^{-} \rightarrow \mathrm{D}_{\text {(cp) })} \mathrm{K}^{-}(\mathrm{GLW}$ method)

arXiv:1007.0504, accepted by Phys. Rev. D (August 2010)

- Use frequentist interpretation (similar to Dalitz plot method) to obtain weak phase γ and hadronic parameters $\mathrm{r}_{\mathrm{B}}, \delta_{\mathrm{B}}$ from $\mathrm{R}_{\mathrm{CP} \pm}, \mathrm{A}_{\mathrm{CP} \pm}$

	$\gamma \bmod 180\left[{ }^{\circ}\right]$	r_{B}
$68 \% \mathrm{CL}$	$[11.3,22.7]$	$[0.24,0.45]$
	$[80.9,99.1]$	
	$[157.3,168.7]$	
$95 \% \mathrm{CL}$	$[7.0,173.0]$	$[0.06,0.51]$

BaBar GGSZ result (68\% and 95\% CL)

$B^{-} \rightarrow D^{(3)} K^{-}$, ADS method

Atwood, Dunietz, Soni - Phys.Rev.Lett 78, 3257 (1997)

- Reconstruct DCS D^{0} final states $[f]_{D}=\mathrm{K}^{+} \pi^{-}$in order to equalize the magnitude of the interfering amplitudes:

$$
\begin{aligned}
& \underset{\text { favored }}{B_{(b \rightarrow c)}^{-} \rightarrow D^{0} K^{-}} \quad \text { followed by } \quad \underset{\text { suppressed }(c \rightarrow d)}{D^{0} \rightarrow K^{+}} \\
& \text {interferes with }
\end{aligned}
$$

- CP asymmetry can be very large, $\mathrm{O}(50 \%)$
- Very small BFs ($\sim 10^{-7}$)
- Use CA final states as normalization channel and control sample, measure

$$
\left.\mathcal{R}^{(*) \pm} \equiv \frac{\Gamma\left(\left[K^{\oplus} \pi^{ \pm}\right]_{D} K^{\oplus}\right)}{\left.\Gamma\left(\left[K^{\oplus}\right)^{\mp}\right]_{D} K^{\oplus}\right)}\right)=r_{B}^{(*) 2}+r_{D}^{2}+2 \lambda r_{B}^{(*)} r_{D} \cos \left(\pm \gamma+\delta_{D}+\delta_{B}^{(*)}\right)
$$

- compare events with opposite-sign (DCS) and same-sign (CA) kaons
- reconstruct $\mathrm{DK}, \mathrm{D}^{*} \mathrm{~K}\left(\mathrm{D}^{*} \rightarrow \mathrm{D} \pi^{0}\right)$ and $\mathrm{D}^{*} \mathrm{~K}\left(\mathrm{D}^{*} \rightarrow \mathrm{D} \gamma\right) \Rightarrow 6$ observables, 5 unknowns
- 4 discrete ambiguities: $\left(\gamma, \delta_{B}^{(*)}\right) \leftrightarrow\left(\gamma+\pi, \delta_{B}^{(*)}+\pi\right) \quad\left(\gamma, \delta_{B}^{(*)}\right) \leftrightarrow\left(-\gamma,-\delta_{B}^{(*)}-2 \delta_{D}\right) \quad 19$

Measurement strategy

- Very low BF
- use entire $\mathrm{Y}(4 \mathrm{~S})$ data sample: $2 x$ more data wrt previous measurement
- reduce bkg as much as possible
- Selection: PID + kinematic quantities (similar to previous analyses); veto bkg from $\mathrm{B}^{-} \rightarrow \mathrm{DK} \mathrm{K}^{-}, \mathrm{D} \rightarrow \mathrm{K}^{-} \pi^{+}\left(\mathrm{K} \leftrightarrow \pi\right.$ misid) and $\mathrm{B}^{-} \rightarrow \mathrm{D} \pi \pi^{-}, \mathrm{D} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$
- Dominant bkg: $\mathrm{q} \overline{\mathrm{q}}$ (esp. $\mathbf{c} \overline{\mathbf{c}} \rightarrow \mathrm{D}^{0} \overline{\mathrm{D}}^{0} \mathrm{X}, \mathrm{CA} \mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}$and $\overline{\mathrm{D}}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{X}$): discriminated from signal using neural network (NN) of 8 variables
- use same 4 evt. shape vars as in GGSZ analysis, + 4 for additional discrimination (example: vertex separation between 2 B candidates; presence of leptons)
- trained with simulated signal and continuum bkg events
- validated on off-peak data and signal-enriched same-sign data control sample
- Yield fit: simultaneous ML fit to \{mes, NN\} distributions of same-sign and oppositesign subsamples to discriminate bkg and extract $R^{\left({ }^{(}\right) \pm}$

$B^{-} \rightarrow D^{(1)} K^{-}: A D S$ results

$$
\mathcal{R}_{D K} \equiv \frac{1}{2}\left(\mathcal{R}_{D K}^{+}+\mathcal{R}_{D K}^{-}\right)
$$

$$
\underset{\text { arxiv:1006.4241, accepted by Phys. Rev. D (September 2010) }}{\left.\mathrm{B}^{-} \rightarrow \mathrm{D}^{(}\right) \mathrm{K}} \mathrm{~K}^{-}: \mathrm{ADS} \text { reSults } \equiv \frac{\mathcal{R}_{D K}^{-}-\mathcal{R}_{D K}^{+}}{\mathcal{R}_{D K}^{-}+\mathcal{R}_{D K}^{+}}
$$

- Hint of ADS signals in $\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}(2.1 \sigma)$ and $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{\star} \mathrm{K}^{ \pm}(2.2 \sigma)$
- Large CP asymmetries

$$
\binom{\mathcal{R}_{D K}=(1.1 \pm 0.6 \pm 0.2) \times 10^{-2}}{\mathcal{A}_{D K}=-0.86 \pm 0.47_{-0.16}^{+0.12}}
$$

$$
\begin{aligned}
& \mathcal{R}_{\left(D \pi^{0}\right) K}^{*}=(1.8 \pm 0.9 \pm 0.4) \times 10^{-2} \\
& \mathcal{A}_{\left(D \pi^{0}\right) K}^{*}=+0.77 \pm 0.35 \pm 0.12
\end{aligned}
$$

$$
\mathcal{R}_{(D \gamma) K}^{*}=(1.3 \pm 1.4 \pm 0.8) \times 10^{-2}
$$

$$
\mathcal{A}_{(D \gamma) K}^{*}=+0.36 \pm 0.94_{-0.41}^{+0.25}
$$

γ from ADS $\mathrm{B}^{-} \rightarrow \mathrm{D}^{(3)} \mathrm{K}^{-}$

arXiv:1006.4241, accepted by Phys. Rev. D (September 2010)
$N_{B \bar{B}}=467 \times 10^{6}$

- Use frequentist interpretation (similar to Dalitz plot method) to obtain weak phase γ and hadronic parameters $\mathrm{r}^{(4)} \mathrm{B}, \delta^{\left.()_{B}\right)}$ from $\mathrm{R}^{(\text {(") }}$

$$
\text { inputs: } \quad r_{D} \equiv\left|\frac{A\left(\bar{D}^{0} \rightarrow K^{-} \pi^{+}\right)}{A\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}\right|=(5.78 \pm 0.08) \%
$$

$$
\delta_{D} \equiv \arg \frac{A\left(\bar{D}^{0} \rightarrow K^{-} \pi^{+}\right)}{A\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}=\left(201.9_{-12.4}^{+11.4}\right)^{\circ}
$$

HFAG

γ from ADS $\mathrm{B}^{-} \rightarrow \mathrm{D}^{(3)} \mathrm{K}^{-}$

arXiv:1006.4241, accepted by Phys. Rev. D (September 2010)
$N_{B \bar{B}}=467 \times 10^{6}$

- Use frequentist interpretation (similar to Dalitz plot method) to obtain weak phase γ and hadronic parameters $\mathrm{r}^{(4)} \mathrm{B}, \delta^{\left.()_{B}\right)}$ from $\mathrm{R}^{(\text {(") }}$

Summary

Summary

- Recent progress on γ based on final BaBar dataset

Summary

- Recent progress on γ based on final BaBar dataset
- $\langle\gamma\rangle \sim 70^{\circ}$ (consistent with SM CKM fits), precision $\left(\sigma_{\gamma \sim 15} \sim\right)^{\circ}$ dominated by the $\mathrm{D}^{(*)} \mathrm{K}^{(4)}$ Dalitz analysis

Summary

- Recent progress on γ based on final BaBar dataset
- $\langle\gamma\rangle \sim 70^{\circ}$ (consistent with SM CKM fits), precision $\left(\sigma_{\gamma} \sim 15^{\circ}\right)$ dominated by the $\mathrm{D}^{(1)} \mathrm{K}^{(1)}$ Dalitz analysis
- 3.5σ direct CPV evidence in $B \rightarrow D^{(*)} K^{(*)}$, $D \rightarrow K^{\text {sh }}{ }^{+} h^{-}$

Summary

- Recent progress on γ based on final BaBar dataset
- $\langle\gamma\rangle \sim 70^{\circ}$ (consistent with SM CKM fits), precision $\left(\sigma_{\gamma} \sim 15^{\circ}\right)$ dominated by the $\mathrm{D}^{(4)} \mathrm{K}^{(4)}$ Dalitz analysis
- 3.5 σ direct CPV evidence in $B \rightarrow D^{()} K^{(*)}$, $\mathrm{D} \rightarrow \mathrm{K}_{\text {sh }}{ }^{+} \mathrm{h}^{-}$
- 3.6σ direct CPV evidence in $B \rightarrow D_{c P+} K$

Summary

- Recent progress on γ based on final BaBar dataset
- $\langle\gamma\rangle \sim 70^{\circ}$ (consistent with SM CKM fits), precision $\left(\sigma_{\gamma} \sim 15^{\circ}\right)$ dominated by the $\mathrm{D}^{(4)} \mathrm{K}^{(4)}$ Dalitz analysis
- 3.5σ direct CPV evidence in $B \rightarrow D^{(*)} K^{(*)}$, $\mathrm{D} \rightarrow \mathrm{Ksh}^{+} \mathrm{h}^{-}$
- 3.6 σ direct CPV evidence in $B \rightarrow D_{C P+} K$
- Hint of $A D S$ signal in $B \rightarrow D K$ and $B \rightarrow D * K$

23

Summary

- Recent progress on γ based on final BaBar dataset
- $\langle\gamma\rangle \sim 70^{\circ}$ (consistent with SM CKM fits), precision $\left(\sigma_{\gamma} \sim 15^{\circ}\right)$ dominated by the $\mathrm{D}^{(4)} \mathrm{K}^{(4)}$ Dalitz analysis
- 3.5σ direct CPV evidence in $B \rightarrow D^{()} K^{(\#)}, D \rightarrow K$ sh+h ${ }^{-}$
- 3.6σ direct CPV evidence in $B \rightarrow D_{c P+} K$
- Hint of ADS signal in $B \rightarrow D K$ and $B \rightarrow D^{*} K$
- Interference effects (r) confirmed to be small for charged B decays (0.1-0.2)

Outlook

- Close to last word from BaBar
- still statistically limited (need $\approx 100 x$ to reach $\sigma_{\gamma}=1^{\circ}$)
- BaBar "legacy" γ average from GLW, ADS and GGSZ methods in progress

+ older results from: $\mathrm{B} \rightarrow \mathrm{D}^{*} \mathrm{~K}$ GLW, $\mathrm{B} \rightarrow \mathrm{DK}^{*} \mathrm{GLW}+A D S, \mathrm{~B}^{0} \rightarrow \mathrm{DK}^{* 0}$ ADS+GGSZ

More details..

ADS: $\mathrm{B}^{-} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{-}$selection

- K, π identification: $\sim 85 \%$ efficiency, 3% misidentification
- D^{0} : $\mid \mathrm{m}-\mathrm{mpDG}_{\text {Pa }}<20 \mathrm{MeV}$
- $\mathrm{D}^{* 0}:\left|\Delta \mathrm{m}-\Delta \mathrm{m}_{\mathrm{PDG}}\right|<4 \mathrm{MeV}\left(\mathrm{D} \pi^{0}\right), 15 \mathrm{MeV}(\mathrm{D} \gamma)$
- B: mes in $[5.2,5.29) \mathrm{GeV},|\Delta \mathrm{E}|<40 \mathrm{MeV}$
- vetoes for $\mathrm{B}^{-} \rightarrow \mathrm{D}\left[\mathrm{K}^{-} \mathrm{K}^{+}\right] \pi^{-}$and $\left.\mathrm{B}^{-} \rightarrow \mathrm{D}\left[\mathrm{K}^{-} \pi^{+}\right] \mathrm{K}^{-}: \mid m-\mathrm{mpdg}^{(\mathrm{D}}\right) \mid<20 \mathrm{MeV}$
- arbitration (<multiplicity> ~1.4 in DK and ~2 in D*K): min $|\Delta E|$
- $\varepsilon=27 \%(D K), 13 \%\left(D \pi^{0} K\right), 17 \% ~(D \gamma K)$
- remaining peaking bkg (undistinguishable from signal):
- charmless $\mathrm{B}^{-} \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \pi^{-}$, estimated from $\mathrm{BF}(\mathrm{PDF})$ and efficiency(MC), checked with D mass sidebands (6.0+-0.8 for DK, negligible for $D\left({ }^{*}\right) K$)
- $\mathrm{B}^{-} \rightarrow \mathrm{Dh}^{-}$failing the vetoes: $2.6+-0.4$
- other B decays: 4+-3 events (fit to mES in BB MC)

ADS: NN variables for cc suppression

- Use $\left.\mathrm{L}_{0}, \mathrm{~L}_{2}, \cos \left(\theta_{\mathrm{T}}\right)^{\prime}\right), \cos \left(\theta_{\mathrm{B}^{*}}\right)^{\prime}$, and additionally:

(a) $D^{0} K$ signal

$A D S: B^{-} \rightarrow D^{(*)} K^{-}$systematic uncertainties

- R:
- signal NN: replace PDF from MC OS DK with that from SS Dpi data sample
- non-peaking $B B$ bkg NN: replace PDF from DK with that from BB MC
- qq bkg NN: use off-peak data
- BB comb bkg shape: vary ARGUS param
- peaking bkg: vary by +-1 σ BFs, yields
- BB comb. bkg (fixed in D*K): vary by +-25\%

Error source	$\Delta \mathcal{R}\left(10^{-2}\right)$		
	$D K$	$\Delta \mathcal{R}\left(10^{-2}\right)$	$\Delta \mathcal{R}\left(10^{-2}\right)$
Signal $N N$	± 0.1	$D_{D \pi^{0}}^{*} K$	$D_{D \gamma}^{*} K$
$B \bar{B}$ background $N N$	± 0.1	± 0.3	± 0.3
$q \bar{q}$ background $N N$	± 0.1	± 0.1	± 0.1
$B \bar{B}$ comb. bkg shape $\left(m_{\mathrm{ES}}\right)$	± 0.1	± 0.1	± 0.1
Peaking background WS	± 0.2	± 0.3	± 0.6
Peaking background RS	± 0.0	± 0.1	± 0.1
Floating $B \bar{B}$ comb. bkg	-	± 0.1	± 0.2
Combined	± 0.2	± 0.4	± 0.8

- A:
- detector charge asymmetry: +-0.01 (from Dpi control sample)
- WS peaking bkg (indendent B+ and B- Poisson fluctuations): +0.11-0.14
- $\mathrm{K}^{-} \mathrm{K}^{+} \pi^{-}$peaking bkg Acp (0+-10\%)

GLW: $\mathrm{B}^{-} \rightarrow \mathrm{D}_{\mathrm{cp}}{ }^{-}$selection

- improvements: +22\% more data; +30\% from no cut on Fisher; +10-15\% from inclusion of $\mathrm{dE} / \mathrm{dx}$ likelihood for DK/Dpi discrimination; +20\% reco efficiency
- $\pi^{0}:\left|m-m_{\text {PDG }}\right|<2.5 \sigma(\sigma \sim 6 \mathrm{MeV})$; $\mathrm{E}>\mathrm{O}(200) \mathrm{MeV}$
- $\mathrm{K}_{\mathrm{s}}:\left|\mathrm{m}-\mathrm{m}_{\mathrm{PDG}}\right|<2.5 \sigma(\sigma \sim 2.1 \mathrm{MeV})$; flight length significance>2
- $\phi:\left|m-\mathrm{m}_{\mathrm{PDG}}\right|<6.5 \mathrm{MeV}(\sigma \sim 1 \mathrm{MeV}, \Gamma \sim 4.3 \mathrm{MeV})$; $\left|\cos \theta_{\text {hel }}\right|>0.4$
- $\omega:\left|m-m_{\text {PDG }}\right|<17 \mathrm{MeV}(\sigma \sim 6.9 \mathrm{MeV}, \Gamma \sim 8.5 \mathrm{MeV}) ; \cos ^{2} \theta_{N} \sin ^{2} \theta_{\pi \pi}>0.046$
- $\mathrm{D}^{0}:\left|\mathrm{m}-\mathrm{m}_{\mathrm{PDG}}\right|<2 \sigma(6-45 \mathrm{MeV})$; $\left|\cos \theta_{\mathrm{D}}\right|<0.74(\pi \pi), 0.99\left(\mathrm{~K}_{s} \pi^{0}\right)$
- B: mes in $[5.2,5.29) \mathrm{GeV},-80<\Delta \mathrm{E}<120 \mathrm{MeV}(\sim 1.5 \sigma)$
- arbitration (multiple candidates in $\sim 16 \%$ of events): min $\chi^{2}\left(B, D, \omega, \phi, K_{s}, \pi^{0}\right)$ (probability > 98\%, no impact on mD shape)
- $\varepsilon=10-44 \%$ (CP), 52% (CA)
$\left.\begin{array}{lccc}\hline \hline D^{0} \text { mode Efficiency after } \\ \text { full selection }\end{array} \begin{array}{c}\text { Efficiency in } \\ \text { sugnal-enriched } \\ \text { subsample }\end{array} \quad \begin{array}{c}\text { Purity in } \\ \text { signal-enriched } \\ \text { subsample }\end{array}\right]$

GLW: $\mathrm{B}^{-} \rightarrow \mathrm{D}_{\mathrm{cp}} \mathrm{K}^{-}$systematic uncertainties

Overall

Source	$A_{C P+}$	$A_{C P-}$	$R_{C P+}$	$R_{\text {CP- }}$				
Fixed fit parameters	0.004	0.005	0.026	0.022				
Peaking background	0.014	0.005	0.017	0.013				
Bias correction	0.004	0.004	0.006	0.005				
Detector charge asym.	0.014	0.014	-	-	$C_{(\text {syst })}[\vec{y}]=$	$\left(\begin{array}{cccc}1 & 0.56 & -0.06 & 0 \\ & 1 & 0 & 0 \\ & & 1 & 0.13 \\ & & & 1\end{array}\right)$		
Opposite- $C P$ background	-	0.003	-	0.006				
$R_{C P \pm}$ vs. $R_{ \pm}$	-	-	0.026	0.023				
Signal self cross-feed	0.000	0.001	-	-				
$\varepsilon(\pi) / \varepsilon(K)$	-	-	0.009	0.008				
$\Delta E_{\text {shift }}$ PDFs	0.007	0.011	0.029	0.024				
Total	0.022	0.020	0.051	0.043				

Peaking bkg: vary by +-1 sigma; |Acp|<10\% (KKK, KKpi), 20\% other modes
Fit bias: half the bias
RCP vs R: $\frac{1+r_{B \pi}^{2} r_{D}^{2}+2 r_{B \pi} r_{D} \cos \left(\delta_{B \pi}-\delta_{D}\right) \cos \gamma}{1+r_{B \pi}^{2} \pm 2 r_{B \pi} \cos \delta_{B \pi} \cos \gamma} \quad r_{B \pi}=r_{B} \tan ^{2} \theta_{C}$,
Detector charge asymmetry: (-0.95+-0.44)\%
Opposite CP bkg: $\sim 22 \% \mathrm{Ks} \phi,<10 \%$ in $\mathrm{Ks} \omega$, from helicity distribution in $\mathrm{D} \pi$

$$
S_{\text {stat }}=\sqrt{2 \ln \left(\mathcal{L}_{\text {nom }} / \mathcal{L}_{\text {null }}\right)}=3.7 . \quad S_{\text {stat }+ \text { syst }}=\frac{S_{\text {stat }}}{\sqrt{1+\frac{\sigma_{\text {sse }}}{\sigma_{\text {stat }}^{2}}}}=3.6 .
$$

GGSZ: $B^{-} \rightarrow D^{(*)} K^{(*)-}$ selection

- Ks: $\left|m-m_{p d G}\right|<9 \mathrm{MeV}$; flight length significance>10, $\cos (\alpha)>-0.99$
- K^{*} : $\left|\mathrm{m}-\mathrm{m}_{\text {PDG }}\right|<55 \mathrm{MeV}$; $\left|\cos \theta_{\text {hel }}\right|>0.35$
- $\mathrm{D}^{0}:\left|\mathrm{m}-\mathrm{m}_{\text {PDG }}\right|<12 \mathrm{MeV}, \chi^{2}(\mathrm{vtx})>0$
- $\mathrm{D}^{* 0}:\left|\Delta \mathrm{m}-\Delta_{\mathrm{mpDG}}\right|<2.5 \mathrm{MeV}\left(\mathrm{D} \pi^{0}\right), 10 \mathrm{MeV}(\mathrm{D} \gamma)$
- B: $m_{E S}$ in $[5.2,5.29) \mathrm{GeV}, \chi^{2}(v t x)>0,-80<\Delta \mathrm{E}<120 \mathrm{MeV}$ (yield fit) $/|\Delta \mathrm{E}|<30 \mathrm{MeV}$ (CP fit)
- arbitration (multiple candidates in $\sim 10 \%$ of events): $\min \chi^{2}\left(D, \Delta m, K^{*}, \pi^{0}\right)$
- $\varepsilon=14-26 \%$

GGSZ: results

Parameter	68.3% CL	95.4% CL
$\gamma\left(^{\circ}\right)$	$68_{-14}^{+15}\{4,3\}$	$[39,98]$
$r_{B}(\%)$	$9.6 \pm 2.9\{0.5,0.4\}$	$[3.7,15.5]$
$r_{B}^{*}(\%)$	$13.3_{-3.9}^{+4.2}\{1.3,0.3\}$	$[4.9,21.5]$
$\kappa r_{s}(\%)$	$14.9_{-6.6}^{+6.6}\{2.6,0.6\}$	<28.0
$\delta_{B}\left({ }^{\circ}\right)$	$119_{-20}^{+19}\{3,3\}$	$[75,157]$
$\delta_{B}^{*}\left({ }^{\circ}\right)$	$-82 \pm 21\{5,3\}$	$[-124,-38]$
$\delta_{s}\left({ }^{\circ}\right)$	$111 \pm 32\{11,3\}$	$[42,178]$
Value \pm total error $\{ \pm$ syst., \pm model $\}$		

GGSZ: isobar model

$A_{r}^{J}\left(\mathbf{m}^{2}\right)=F_{D} F_{r} M_{r}^{J} T_{r}\left(\mathbf{m}^{2}\right)$

- Vertex form factors
- Blatt-Weisskopf ($\mathrm{R}=1.5 \mathrm{GeV}^{-1}$)
- Angular distribution for spin J
- Zemach Tensors
- Resonance propagator
- Relativistic BW
- Gounaris-Sakurai ρ lineshape
- K-matrix approach for $\pi \pi$ and $\mathrm{K} \pi$ S-waves in $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi \pi$

$$
\begin{aligned}
& F_{1}\left(m_{\pi \pi}^{2}\right)=\sum_{j}\left[I-K\left(m_{\pi \pi}^{2}\right) \rho\left(m_{\pi \pi}^{2}\right)\right]_{j 1}^{-1} P_{j}\left(m_{\pi \pi}^{2}\right) \\
& K_{i j}\left(m_{\pi \pi}^{2}\right)=\left|f_{i j}^{\text {scatt }} \frac{1-s_{0}^{\text {seate }}}{m_{\pi \pi}^{2} s_{0}^{\text {satt }}}+\sum_{\alpha} \frac{g_{\alpha}^{(\alpha)} g_{\alpha}^{(\alpha)}}{m_{\alpha}^{2}-m_{\pi \pi}^{2}}\right|\left\{\frac{1-s_{A 0}}{m_{\pi \pi}^{2} s_{A 0}}\left(m_{\pi \pi}^{2}-\frac{s_{A} m_{\pi}^{2}}{2}\right)\right\} \\
& P_{j}\left(m_{\pi \pi}^{2}\right)=f_{11}^{\text {prod }} f_{r, 1 j}^{\text {prod }} \frac{1-s_{0}^{\text {prod }}}{m_{\pi \pi}^{2}-s_{0}^{\text {prod }}}+\sum_{\alpha} \frac{\beta_{\alpha} g_{j}^{(\alpha)}}{m_{\alpha}^{2}-m_{\pi \pi}^{2}}
\end{aligned}
$$

GGSZ: systematic uncertainties

- Dominant error is statistical

- Similar contributions to total syst. error from Dalitz model and exp.

TABLE II: Summary of the main contributions to the D^{0} decay amplitude model systematic uncertainty on the $C P$ parameters. We evaluate the different contributions using a similar, but not identical, procedure to that adopted in our previous analysis [9]. The reference D^{0} decay amplitude models and parameters are used to generate 10 data-sized signal samples of pseudo-experiments of $D^{*+} \rightarrow D^{0} \pi^{+}$and $D^{*-} \rightarrow \bar{D}^{0} \pi^{-}$events, and $10 B^{\mp} \rightarrow D^{(*)} K^{\mp}$ and $B^{\mp} \rightarrow D K^{* \mp}$ signal samples 100 times larger than each measured signal yield in data, with $D^{0} \rightarrow K_{S}^{0} h^{+} h^{-}$. The $C P$ parameters are generated with values in the range found in data. We then compare experiment-by-experiment the values of $\mathbf{z}_{\mp}^{(*)}$ and $\mathbf{z}_{s \mp}$ obtained from the $C P$ fits using the reference amplitude models and a set of alternative models obtained by repeating the $D^{0} \rightarrow K_{S}^{0} h^{+} h^{-}$amplitude analyses on the pseudo-experiments with alternative assumptions [13]. This technique, although it requires large computing resources, helps

Source	x_{-}	y_{-}	x_{+}	y_{+}	x_{-}^{*}	y_{-}^{*}	x_{+}^{*}	y_{+}^{*}	x_{s-}	y_{s-}	x_{s+}	y_{s+}
Mass and width of Breit-Wigner's	s 0.001	0.001	0.001	0.002	2.001	0.002	0.001	0.002	0.001	0.002	0.001	0.002
$\pi \pi$ S-wave parameterization	0.001	0.001	0.001	0.001	- 0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002
$K \pi$ S-wave parameterization	0.001	0.004	0.003	0.008	0.001	0.006	0.002	0.004	0.003	0.002	0.003	0.007
Angular dependence	0.001	0.001	0.002	0.001	- 0.001	0.001	0.001	0.002	0.002	0.001	0.002	0.001
Blatt-Weisskopf radius	0.001	0.001	0.001	0.001	- 0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001
Add/remove resonances	0.001	0.001	0.001	0.001	- 0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.002
DP efficiency	0.003	0.002	0.003	0.001	10.001	0.001	0.001	0.001	0.004	0.002	0.003	0.001
Background DP shape	0.001	0.001	0.001	0.001	10.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Mistag rate	0.003	0.003	0.002	0.001	- 0.001	0.001	0.001	0.001	0.003	0.003	0.001	0.001
Effect of mixing	0.003	0.001	0.003	0.001	- 0.001	0.001	0.001	0.001	0.003	0.001	0.003	0.001
DP complex amplitudes	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.002	0.002	0.001	0.001	0.002
Total D^{0} decay amplitude model	0.006	0.006	0.007	0.009	0.002	0.007	0.003	0.006	0.007	0.006	0.006	0.008
Source	x_{-}	y_{-}	x_{+}	y_{+}	x_{-}^{*}	y_{-}^{*}	x_{+}^{*}	y_{+}^{*}	x_{s-}	y_{s-}	x_{s+}	y_{s+}
$m_{\text {ES }}, \Delta E, \mathcal{F}$ shapes	0.001	0.001	0.001	0.001	0.004	0.006	0.008	0.004	0.006	0.003	0.004	0.002
Real D^{0} fractions	0.002	0.001	0.001	0.001	0.003	0.003	0.002	0.002	0.004	0.001	0.001	0.001
Charge-flavor correlation	0.003	0.003	0.002	0.001	0.005	0.005	0.008	0.002	0.001	0.001	0.003	0.001
Efficiency in the DP	0.003	0.001	0.003	0.001	0.001	0.001	0.001	0.001	0.003	0.001	0.002	0.001
Background DP distributions	0.005	0.002	0.005	0.003	0.003	0.002	0.004	0.004	0.010	0.004	0.007	0.002
$B^{-} \rightarrow D^{* 0} K^{-}$cross-feed	-	-	-	(0.002	0.003	0.009	0.002	-	-	-	-
$C P$ violation in $D \pi$ and $B \bar{B}$	0.002	0.001	0.001	0.001	0.017	0.001	0.008	0.004	0.017	0.002	0.011	0.001
Non- $K^{*} B^{-} \rightarrow D K_{S}^{0} \pi^{-}$decays	-	-	-	-	-	-	-		0.020	0.026	0.025	0.036
Total experimental	0.007	0.004	0.006	0.004	0.019	0.009	0.017	0.008	0.029	0.027	0.029	0.036

GGSZ: interference between DK^{*} and $\mathrm{DK} \pi$

- GGSZ formulae still valid after replacement

$$
\begin{aligned}
& x_{\underset{(*)}{(*)} \rightarrow x_{s \mp}=\kappa r_{s} \cos \left(\delta_{s} \mp \gamma\right)}^{y_{\mp}^{(*)} \rightarrow y_{s \mp}=\kappa r_{s} \sin \left(\delta_{s} \mp \gamma\right) .} \quad \quad r_{s}^{2}=\frac{\int A_{u}^{2}(p) \mathrm{d} p}{\int A_{c}^{2}(p) \mathrm{d} p}, \kappa e^{i \delta_{s}}=\frac{\int A_{c}(p) A_{u}(p) e^{i \delta(p)} \mathrm{d} p}{\sqrt{\int A_{c}^{2}(p) \mathrm{d} p \int A_{u}^{2}(p) \mathrm{d} p}} . . .2{ }^{2} .
\end{aligned}
$$

- Additional parameter k (0..1) can be evaluated using a Dalitz isobar model B for the decay amplitude (including, for $B^{-}: K^{*}(892)^{-}, K_{0}^{*}(1410)^{-}, K_{2}^{*}(1430)^{-}$, D^{*} $(2010)^{-}, D_{2}^{*}(2460)^{-)}$by randomly varying magnitudes (+/-30\%) and phases (0..2 2π), $\mathrm{A}_{\mathrm{u}} / \mathrm{A}_{\mathrm{c}}$ fixed to ~ 0.4
- $\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{*}: \mathrm{k}=0.9 \pm 0.1$
- $B^{0} \rightarrow$ anti- $D^{0} K^{* 0}: k=0.95 \pm 0.03$

Frequentist procedure for extracting γ

- From the measured $\mathbf{z}=\left\{\mathbf{x}^{(*)}(\mathrm{s}) \pm, \mathrm{y}^{(*)}(\mathrm{s}) \pm\right\}$ with covariance matrix $\mathbf{V}_{\text {stat+syst }}$, construct

$$
\mathcal{L}(\mathbf{z} ; \mathbf{p} ; V)=\frac{1}{(2 \pi)^{n / 2} \sqrt{|V|}} e^{-\frac{1}{2}\left(\mathbf{z}-\mathbf{z}^{(\mathrm{t})}\right)^{T} V^{-1}\left(\mathbf{z}-\mathbf{z}^{(\mathrm{t})}\right)} \equiv \frac{1}{(2 \pi)^{n / 2} \sqrt{|V|}} e^{-\frac{1}{2} \chi^{2}(\mathbf{z} ; \mathbf{p} ; V)}
$$

- For each value μ_{0} of the parameter $\mu_{\text {, minimize }} \chi^{2} \min \left(\mu_{0}, \mathbf{q}\right)=-2 \ln L$ with respect to the other parameters, $\mathbf{q}=\mathbf{p}-\{\mu\}: \chi^{2} \min \left(\mu_{0}, \mathbf{q}_{0}\right)$.
- In a 100% gaussian case, the CL is given by

$$
\begin{gathered}
\Delta \chi^{2}\left(\mu_{0}\right)=\chi_{\min }^{2}\left(\mu_{0}, \mathbf{q}_{\mathbf{0}}\right)-\chi_{\min }^{2} \\
\mathrm{CL}=1-\alpha=\operatorname{Prob}\left(\Delta \chi^{2}\left(\mu_{0}\right), \nu=1\right)=\frac{1}{\sqrt{2^{\nu}} \Gamma(\nu / 2)} \int_{\Delta \chi^{2}\left(\mu_{0}\right)}^{\infty} e^{-t / 2} t^{\nu / 2-1} d t
\end{gathered}
$$

- In practice, use toy MC to evaluate CL:
- generate a sample of \mathbf{z}^{\prime} according to V and assuming $\mathbf{z}($ true $)=\mathbf{z}\left(\mu_{0}, \mathbf{q}_{0}\right)$
- determine $\Delta \chi^{2}{ }^{\prime}\left(\mu_{0}\right)=\chi^{2}{ }^{\prime}{ }_{\min }\left(\mu_{0}, \mathbf{q} 0^{\prime}\right)-\chi^{2}{ }^{\prime}{ }^{\min }$ (letting \mathbf{q} free to vary)
- count how many times $\Delta \chi^{2}{ }^{3}\left(\mu_{0}\right)<\Delta \chi^{2}\left(\mu_{0}\right)$

$R_{c P}, A_{c P}$: comparison with other experiments

- Consistency with other experiments' determinations
- World's most precise measurement of $\mathrm{AcPa}_{ \pm}$and $\mathrm{RCP}_{\mathrm{CP}}$

Rads, AADs: comparison with other experiments

x (GGSZ): comparison with Belle

y (GGSZ): comparison with Belle

x (DK): GGSZ vs GLW

Merged B \rightarrow DK x+ HFAG
 ICHEP 2010

