

Measurements of moments in B \rightarrow X_cIv and fits for |V_{cb}|

Christoph Schwanda
Austrian Academy of Sciences
On behalf of the Belle collaboration

6th International Workshop on the Unitarity Triangle

September 6-10, 2010, University of Warwick, UK

Outline of the talk

- The theoretical framework
 - As seen by an experimentalist

- Review of recent moment measurements
 - BaBar 2010 [PRD81, 032003]
 - Belle 2007 [PRD75, 032001; PRD75, 032005]
- |V_{cb}| and m_b from the global fit

The semileptonic width

- Semileptonic decays b → c are a weak transition plus QCD corrections
- The theoretical tool is the operator product expansion (OPE)

Perturbative corrections $(\alpha_s \text{ expansion})$

$$\Gamma(\bar{B} \to X_c \ell \bar{\nu}) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 (1 + A_{\text{ew}}) A^{\text{pert}}(r, \mu) F(r, \frac{\mu_{\pi}^2}{m_b^2}, \frac{\mu_{\text{G}}^2}{m_b^2}, \frac{\rho_{\text{D}}^3}{m_b^3}, \frac{\rho_{\text{LS}}^3}{m_b^3}, \mu)$$

$$r=rac{m_c}{m_b}$$
 Leading order (free quark)

Non-perturbative corrections $(\Lambda/m_h \text{ expansion})$

- Perturbative corrections known to $O(\alpha_s^2)$ for the leading terms
- Non-perturbative corrections to O(1/m³_b) typically used in analyses
- However, this prediction depends on the quark masses (m_b , m_c) and the heavy quark parameters (μ^2_{π} , μ^2_{G} , ρ^3_{D} , ρ^3_{LS}) which are poorly constrained by theory

Moments of the E_1 and M_X^2 spectrum

Also other observables in B \rightarrow XIv can be expanded into an OPE with the same heavy quark parameters, e.g.,

The nth moment of the (truncated) lepton energy spectrum

$$R_n(E_{\text{cut}}, \mu) = \int_{E_{\text{cut}}} (E_{\ell} - \mu)^n \frac{d\Gamma}{dE_{\ell}} dE_{\ell}, \quad \langle E_{\ell}^n \rangle_{E_{\text{cut}}} = \frac{R_n(E_{\text{cut}}, 0)}{R_0(E_{\text{cut}}, 0)}$$

The nth moment of the (truncated) M²_x spectrum

$$\langle m_X^{2n} \rangle_{E_{\text{cut}}} = \frac{\int_{E_{\text{cut}}} (m_X^2)^n \frac{d\Gamma}{dm_X^2} dm_X^2}{\int_{E_{\text{cut}}} \frac{d\Gamma}{dm_X^2} dm_X^2}$$

Master plan:

- Measure the quark masses and heavy quark parameters using moments
- Substitute them in the formula of the semileptonic width
- Determine |V_{cb}| from the semileptonic branching fraction

Two sets of theoretical calculations

- Kinetic running mass
 - [P.Gambino, N.Uraltsev, Eur.Phys.J. C34, 181 (2004)]
 - [D.Beson, I.Bigi, N.Uraltsev, Nucl.Phys. B710, 371 (2005)]
- 1S mass
 - [C.Bauer, Z.Ligeti, M.Luke, A.Manohar, M.Trott, Phys.Rev. D70, 094017 (2004)]
- Non-perturbative parameters in the 1/m_h expansion

	Kinetic scheme	1S scheme	
O(1)	m _b , m _c	m _b	
O(1/m ² _b)	μ^2_{π} , μ^2_{G}	λ_1 , λ_2	
O(1/m ³ _b)	ρ^3_D , ρ^3_{LS}	ρ_{1} , $ au_{1-3}$	

BaBar hadronic moments

232M BB

 Fully reconstruct the hadronic decay of one B in Y(4S) → BB (efficiency ~0.4%, purity ~80%)

- Require one identified lepton amongst the signal-side particles (p > 0.8 GeV/c)
- Combine all remaining particles to the X system and do a kinematic fit
 - 4-momentum conservation
 - Missing mass consistent with zero mass neutrino

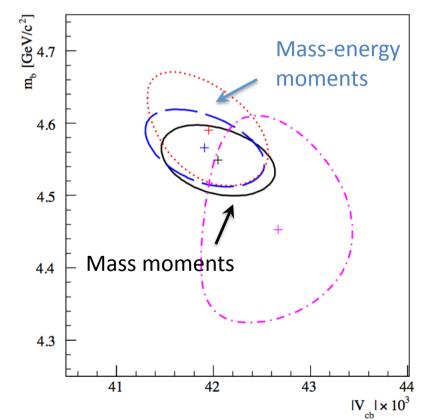
Moment measurement

PRD 81, 032003 (2010)

232M BB

 Hadronic mass spectrum after kinematic fit

Linear correction of the measured moments in bins of X multiplicity, E_{miss} -cp_{miss} and lepton momentum


- Moments of the hadronic mass spectrum up to M_X^6 for E_{cut} between 0.8 and 1.9 GeV are measured
- Also mixed mass-energy moments are determined and the electron energy moments from [PRD69, 111104] are re-evaluated

BaBar only HQE fit

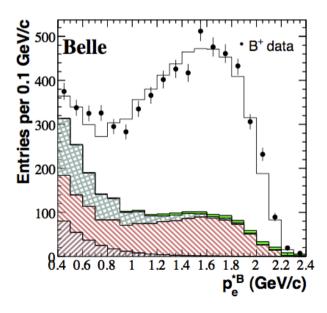
232M BB

- Two OPE fits in the kinetic scheme to
 - 12 hadronic mass moments, or
 12 combined mass-energy moments
 - 13 energy moments (including partial branching fractions)
 - − 3 photon energy moments in B \rightarrow X_s γ

	Hadronic moments	Mass-energy moments
V _{cb} (10 ⁻³)	42.05 +/- 0.45 +/- 0.70	41.91 +/- 0.48 +/- 0.70
m _b (GeV ² /c ²)	4.549 +/- 0.031 +/- 0.038	4.556 +/- 0.034 +/- 0.041
Br(B \rightarrow X _c Iv) (%)	10.64 +/- 0.17 +/- 0.06	10.64 +/- 0.17 +/- 0.06
χ^2 /ndf	10.9 / 28	8.2 / 28

First error is experimental, second theoretical

Belle E_I and M²_X moments


[PRD 75, 032001 (2007)] [PRD 75, 032005 (2007)]

152M BB

- For both the E_1 and M_X^2 measurements, similar experimental method using fully reconstructed events
- The finite detector resolution is unfolded with SVD algorithm [NIM A372, 469 (1996)]
- $\langle E_e^n \rangle$ measured for n=0,...,4 and E_{cut} =0.4-2.0 GeV

• $\langle M^{2n}_{X} \rangle$ measured for n=1,2 and $E_{cut} = 0.7-1.9$ GeV

[PRD 78, 032016 (2008)]

Belle only HQE fit

152M BB

- 14 energy moments
- 7 mass moments
- 4 photon energy moments in B
 → X_sγ

Fits in kinetic and 1S schemes

	Kinetic scheme	1S scheme
V _{cb} (10 ⁻³)	41.58 +/- 0.90	41.56 +/- 0.68
$Br(B \to X_c v)$ (%)	10.49 +/- 0.23	10.60 +/- 0.28
χ^2 /ndf	4.7 / 18	7.3 / 18

HFAG global fit

- Combine moment measurements of different experiments (BaBar, Belle, CLEO, CDF, DELPHI)
- Kinetic scheme fit
 - 7 free parameters: the quark masses m_b and m_c , the HQ parameters μ^2_{π} , μ^2_{G} , ρ^3_{D} and ρ^3_{LS} and the b \rightarrow c branching fraction
 - $-|V_{ch}|$ calculated using [Nucl. Phys. B665, 367 (2003)]
- 1S scheme fit
 - 7 free parameters: m_b , λ_1 , ρ_1 , τ_1 , τ_2 , τ_3 and $|V_{cb}|$
- Only external input: B lifetime

• 66 measurements used (29 from BaBar, 25 from Belle and 12 from other expts)

BaBar	$: n=0,1,2,3 \text{ [PRD 69, 111104 (2004), PRD 81, 032003 (2010)]}$ $: n=1,2,3 \text{ [PRD 81, 032003 (2010)]}$ $: n=1,2 \text{ [PRL 97, 171803 (2006), PRD 72, 052004 (2005)]}$
Belle	$\langle E^{n}_{l} \rangle$: n=0,1,2,3 [PRD 75, 032001 (2007)] $\langle M^{2n}_{\chi} \rangle$: n=1,2 [PRD 75, 032005 (2007)] $\langle E^{n} \gamma \rangle$: n=1,2 [PRL 103, 241801 (2009)]
CDF	<m<sup>2n_X>: n=1,2 [PRD 71, 051103 (2005)]</m<sup>
CLEO	$: n=1,2 [PRD 70, 032002 (2004)]$ $: n=1 [PRL 87, 251807 (2001)]$
DELPHI	<e<sup>n_I>: n=1,2,3 <m<sup>2n_X>: n=1,2 [EPJ C45, 35 (2006)]</m<sup></e<sup>

P.S. The 1S analysis still uses the 2004 BaBar hadronic moments

Input	V _{cb} (10 ⁻³)	m ^{kin} b (GeV)	μ^2_{π} (GeV ²)	χ^2 /ndf
All moments	41.85+/-0.42(fit)+/-0.09 (τ _B)+/-0.59(th)	4.591+/-0.031	0.454+/-0.038	29.7/59
X _c lv only	41.68+/-0.44(fit)+/-0.09 (τ _B)+/-0.58(th)	4.646+/-0.047	0.439+/-0.042	24.2/48

Input	V _{cb} (10 ⁻³)	m¹S (GeV)	$λ_1$ (GeV 2)	χ²/ndf
All moments	41.87 +/- 0.25	4.685 +/- 0.029	-0.373 +/- 0.052	32.0/57
X _c l√ only	42.31 +/- 0.36	4.619 +/- 0.047	-0.427 +/- 0.057	24.2/46

Discussion

• |V_{cb}| from the global fit

	V _{cb} (10 ⁻³)	χ²/ndf
Kinetic scheme	41.85 +/- 0.73	29.7/59
1S scheme	41.87 +/- 0.25	32.0/57

- $|V_{ch}|$ from B \rightarrow D*Iv
 - $-F(1)|V_{cb}| = (36.04 + /-0.52) \times 10^{-3}$ [HFAG end of 2009]
 - F(1) = (0.921 + /- 0.013 + /- 0.020) [PRD 79, 014506 (2009)]
 - $|V_{cb}| = (38.9 + /- 0.7(exp) + /- 1.0(th)) \times 10^{-3}$
 - ~2.3 σ difference between inclusive and exclusive
- Is there anything in the global fit that can account for this discrepancy?

Theory error correlations in the kinetic scheme fit

- For many moments used in the fit, the theory error is larger than the experimental uncertainty
 - Theory errors and their correlations thus strongly influence the result of the fit
- The default fit assumes that
 - The theory error is 100% correlated for the same moment at different $E_{\rm cut}$
 - The theory errors on different moments (e.g., $\langle E_l \rangle$ and $\langle E_l^2 \rangle$, $\langle E_l \rangle$ and $\langle M_X^2 \rangle$, etc.) are uncorrelated

An alternative model for theory correlations

 Having the FORTRAN codes for the theory expressions, I can derive the theory error correlations using a toy MC approach

Results for $|V_{cb}|$, m_b and μ^2_{π}

	V _{cb} (10 ⁻³)	m ^{kin} b (GeV)	μ^2_{π} (GeV ²)	χ²/ndf
Default	41.67 +/- 0.73	4.601 +/- 0.034	0.440 +/- 0.040	29.7/57
Alternative	40.85 +/- 0.89	4.605 +/- 0.031	0.312 +/- 0.060	54.2/57
Alternative without correlations	41.95 +/- 0.81	4.589 +/- 0.042	0.446 +/- 0.063	25.9/57

- 'Alternative without correlations' means that in the alternative scenario, correlations between different moments are artifically set to zero
- In these three fits, only the theory error correlations are different
 - Experimental measurements and theory central values and errors are identical

Short message on theory error correlations

- As long as theory correlations between different moments are set to zero, fit results are very similar in terms of $|V_{cb}|$
- Introducing correlations between different moments lowers the value of $|V_{cb}|$ and increases the χ^2 of the fit

Summary

- The OPE can describe inclusive observables in B \rightarrow X_cIv and provides a reliable way of extracting |V_{cb}| from inclusive decays
- High precision measurements of the partial B → X_clv width and the moments of the lepton energy and hadronic mass spectrum are available, mainly from the B factories
- This allows to determine $|V_{cb}|$ with a global fit analysis

	V _{cb} (10 ⁻³)	χ²/ndf
Kinetic scheme	41.85 +/- 0.73	29.7/59
1S scheme	41.87 +/- 0.25	32.0/57