

Measurement of $B \rightarrow D(*)$ & Decays and Status of $B \rightarrow D^{**}(D(*)n\pi)$ &

David Lopes Pegna (Princeton University)

CKM Workshop, Warwick, UK 9 September 2010

Exclusive B \rightarrow D(*) ℓ_V

$$\begin{split} \frac{d\Gamma}{dw}(\overline{B} \to D^* \ell \overline{\nu}_{\ell}) &= \frac{G_F^2}{48\pi^3} |V_{cb}|^2 m_{D^*}^3 (w^2 - 1)^{1/2} P(u(\mathcal{F}(w))^2) \\ \frac{d\Gamma}{dw}(\overline{B} \to D \ell \overline{\nu}_{\ell}) &= & \text{form factor} \\ \frac{G_F^2}{48\pi^3} |V_{cb}|^2 (m_B + m_D)^2 m_D^3 (w^2 - 1)^{3/\ell} (\mathcal{G}(w))^2 , \qquad w \equiv v \cdot v' \end{split}$$

- The F(w) and G(w) form factors can be parameterized based on HQET and dispersion relations (Caprini et al, Nucl.Phys. B530, 153 (1998))
 Form-factor parameters are ρ², R₂, R₂ (ρ²) for D*(D)
- F(1) and G(1) from lattice QCD
- Experiments fit the FF parameterization over nearly the entire phase space
- Up to now, $B \rightarrow D^* \ell v$ uncertainty dominated by theory error (lattice),
 - $B \rightarrow D\ell v$ by experimental uncertainty

F(1) = 0.921 +/- 0.013 +/- 0.020	C.Bernard et al. [Phys.Rev.D79, 014506 (2009)]
G(1) = 1.074 +/- 0.018 +/- 0.016	M.Okamoto et al. [Nucl.Phys.Proc.Suppl. 140, 461 (2005)]

B → D*ℓv Recent Results

B → D*ℓv Recent Results

David Lopes Pegna

4

B → D*ℓv Recent Results

- Differences between the 2 Belle analysis:
- Data sample (140fb⁻¹ \rightarrow 711fb⁻¹), D^o modes (K π ,K3 π vs K π only)
- Enhanced background calibration
- Soft π investigation
- Newer PDG numbers for D branching ratios etc.

	$B^0 ightarrow D^{*-} \ell u$, ICHEP08	$B^0 ightarrow D^{*-} \ell u$, ICHEP2010
ρ^2	$1.293 \pm 0.045 \pm 0.029$	$1.214 \pm 0.034 \pm 0.009$
<i>R</i> ₁ (1)	$1.495 \pm 0.050 \pm 0.062$	$1.401 \pm 0.034 \pm 0.018$
<i>R</i> ₂ (1)	$0.844 \pm 0.034 \pm 0.019$	$0.864 \pm 0.024 \pm 0.008$
${\cal B}(B o D^* \ell^+ u_\ell)$	$(4.42 \pm 0.03 \pm 0.25)\%$	$(4.56 \pm 0.03 \pm 0.26)\%$
$\mathcal{F}(1) V_{cb} \times 10^3$	$34.4\pm0.2\pm1.0$	$34.5\pm0.2\pm1.0$
$R_{K3\pi/K\pi}$	$\textbf{2.153} \pm \textbf{0.011}$	
P_{χ^2}	82.0%	28.2%

B → D*ℓv Comparison

\mathcal{B}		$B^+ o ar{D}^{*0} \ell \iota$	$ u \qquad B^0 ightarrow D^{*-} \ell u$
BELLE	ρ^2	1.376 \pm 0.074 \pm	$0.056 \qquad 1.214 \pm 0.034 \pm 0.009$
	<i>R</i> ₁ (1)	1.620 \pm 0.091 \pm	$0.092 \hspace{0.5cm} 1.401 \pm 0.034 \pm 0.018$
	<i>R</i> ₂ (1)	$0.805\pm0.064\pm$	$0.036 \qquad 0.864 \pm 0.024 \pm 0.008$
	${\cal B}(B o D^*\ell^+ u_\ell)$	$(4.84 \pm 0.04 \pm 0.04)$.56)% $(4.56 \pm 0.03 \pm 0.26)\%$
	$\mathcal{F}(1) \left V_{cb} ight imes 10^3$	$35.0\pm0.4\pm2$	2.2 $34.5 \pm 0.2 \pm 1.0$
	$R_{K3\pi/K\pi}$	2.072 ± 0.02	23
	P_{χ^2}	3.7%	28.2%
		(1, 1, 1) $(1, -3)$	\mathbb{P} F(1) V _{cb} = 35.9 ± 0.2 ± 1.2
<u> </u>	$V(1) V_{cb} = (34.4 \pm 0.3)$	$3 \pm 1.1) \times 10^{\circ}$	
	$\rho^2 = 1.191 \pm 0.$	048 ± 0.028	$\rho^2(D^*) = 1.22 \pm 0.02 \pm 0.07$
			Global DXIv, Phys.Rev.D79:012002, 200
	$R_1(1) = 1.429 \pm 0.$	061 ± 0.044	
	$R_2(1) = 0.827 \pm 0.$	$038 \pm 0.022.$	$F(1) V_{cb} = 35.9 \pm 0.6 \pm 1.4$
	- ()		$\rho^2(D^*) = 1.16 \pm 0.06 \pm 0.08$
	D*+l √, Phys.Rev.D77:03	2002,2000	
			D*0lv, Phys.Rev.Lett. 100, 231803, 20

B → D*ℓv Comparison

\mathcal{B}			$B^+ o ar{D}^{*0} \ell u$	$B^0 o D^{st -} \ell u$	
BELLE		ρ^2	$1.376 \pm 0.074 \pm 0.056$	$1.214 \pm 0.034 \pm 0.009$	
		<i>R</i> ₁ (1)	$1.620 \pm 0.091 \pm 0.092$	$1.401 \pm 0.034 \pm 0.018$	
		<i>R</i> ₂ (1)	$0.805 \pm 0.064 \pm 0.036$	$0.864 \pm 0.024 \pm 0.008$	
		${\cal B}(B o D^*\ell^+ u_\ell)$	$(4.84 \pm 0.04 \pm 0.56)\%$	$(4.56 \pm 0.03 \pm 0.26)\%$	
		$\mathcal{F}(1) V_{cb} imes 10^3$	$35.0\pm0.4\pm2.2$	$34.5\pm0.2\pm1.0$	
		$R_{K3\pi/K\pi}$	2.072 ± 0.023		
		P_{χ^2}	3.7%	28.2%	
	_				

$$\begin{split} \mathcal{F}(1)|V_{cb}| &= (34.4 \pm 0.3 \pm 1.1) \times 10^{-3} \\ \rho^2 &= 1.191 \pm 0.048 \pm 0.028 \\ R_1(1) &= 1.429 \pm 0.061 \pm 0.044 \\ R_2(1) &= 0.827 \pm 0.038 \pm 0.022. \end{split} \begin{array}{l} \mathcal{B}(B^- \to D^{*0}\ell\overline{\nu}) &= (5.49 \pm 0.19)\% \\ \mathcal{B}(B^- \to D^{*0}\ell\overline{\nu}) &= (1.20 \pm 0.04) \\ \rho^2_{D^*} &= 1.20 \pm 0.04 \\ \mathcal{F}(1)|V_{cb}| &= (34.8 \pm 0.8) \times 10^{-3}. \\ \mathcal{F}(1)|V_{cb}| &= (34.8 \pm 0.8) \times 10^{-3}. \\ \mathcal{F}(1)|V_{cb}| &= (34.8 \pm 0.8) \times 10^{-3}. \\ \mathcal{F}(1)|V_{cb}| &= (1.20 \pm 0.02) \\ \mathcal{F}(1)|V_{cb}| &= (1.20 \pm 0$$

 $B \rightarrow D^* \ell_V$: HFAG Averages

$B \rightarrow D^* \ell v$ Comments

- Can we still improve the sensitivity for $B \rightarrow D^* \ell v$? (In)-famous HFAG puzzle on the $|V_{ch}|$ average
- More disturbing, at least for the Branching Fractions, is the tagged-untagged disagreement: Belle untagged: BF(D*⁺ℓv)= (4.6 ± 0.3)%, BF(D*⁰ℓv)= (4.8 ± 0.6)% BaBar untagged: BF(D*⁺ℓv)= (5.1 ± 0.2)%, BF(D*⁰ℓv)= (5.5 ± 0.2)% BaBar tagged: BF(D*⁺ℓv)= (5.4 ± 0.3)%, BF(D*⁰ℓv)= (5.8 ± 0.3)%
 Connected to the incl - excl BF puzzle (see later)
 BaBar |V_{ub}| analysis on tagged samples clearly favors higher BF (>5%) for B → D*ℓv
- It would be important to get an update on the tagged samples from Belle (e.g. Belle Phys. Rev. D 72, 051109 (2005), BF(D*⁰*t*v)= (6.1 ± 0.3)%)

$B \rightarrow D\ell v Recent Results$

- Hadronic tag: Reduced background (higher S/N)
 Fully exploit kinematic constraints (w resolution ~0.01)
 Avoid neutrino reconstruction
- Identify semileptonic B decays through the missing mass squared in the event:

$$m_{\text{miss}}^2 = [p(\Upsilon(4S)) - p(B_{\text{tag}}) - p(D) - p(\ell)]^2$$

- Binned maximum likelihood fit, MC shapes to different signal and background components
- Inclusive $B \rightarrow X \ell v$ used as normalization

Phys.Rev.Lett.

104:011802,2010

 $B \rightarrow D\ell v$ Recent Results

Extract w spectrum by fitting m_{2miss} in 10 w bins χ^2 fit to w spectrum to measure G(1)|V_{cb}| and ρ^2 , reweighting MC template

$$\begin{split} G(1)|V_{cb}| &= (42.3 \pm 1.9 \pm 1.4) \times 10^{-3} \\ \rho^2 &= 1.20 \pm 0.09 \pm 0.04 \\ Br(B^0 {\rightarrow} D\ell v) {=} (2.15 \pm 0.06 \pm 0.07)\% \end{split}$$

Normalization of the FF at w=1 available in quenched and unquenched (2+1) calculations Computation of G(w) at w>1 start to be available Tantalo et al. (PLB655,45 (2007)) with quenched approximation, and more recently T. Mannel et al. (arXiv:0809.0222) using LCSR

w	G(w)	
1.00	1.074±0.024 unquenched	d LAT05 (Okamoto) 🗂
1.00	1.058±0.020 quenched	PRD61,014502 (2005)
1.00	1.026±0.017 quenched	PLB655, 45 2007
1.03	1.001±0.019 "	**
1.05	0.987±0.015 "	55
1.10	0.943±0.011 "	55
1.20	0.853±0.021 "	55
w _{max}	0.61±0.16 LCSR	arXiv.0809.0222 (2008)
max		· · ·

David Lopes Pegna

11

 $B \rightarrow D\ell v$ Recent Results

Reduce the model dependence determining $G(w')|V_{cb}|$ from a fit in a limited region of phase-space $w' |V_{cb}|G(w')/G(w') = 10^{-3}$

Experimental error interpolating 4 bins around w=1.2 is competitive with the extrapolation to w=1 using the full phase-space We expect lattice community provide un-quenched (2+1) computation of the FF at w=1 and at w>1

B → Dℓv: HFAG Averages

David Lopes Pegna

 $B \rightarrow D(*)\ell v$ Uncertainty

$B \rightarrow D^* \ell v$	Untagged	Tagged	
Yield	~10e5	~10e3	
Measured	BF, ρ^2 , $ V_{cb} $, R_1 , R_2	BF	
Uncertainty	4% (BF),~3% (FF)	5% (BF)	
$B \to D\ell v$			
Yield	~ 10e4	~10e3	
Measured	BF, ρ^2 , $ V_{cb} $	BF, ρ^2 , $ V_{cb} $	
Uncertainty	5% (V _{cb}) 6% (ρ²)	5% (V _{cb}), 8% (ρ²)	

$$\begin{split} \mathsf{B} &\rightarrow \mathsf{D}^* \ell \mathsf{v} \qquad & \sigma(|\mathsf{V}_{cb}|) \sim 1.5\% \oplus 2.6 \ \% \\ \mathsf{B} &\rightarrow \mathsf{D} \ell \mathsf{v} \qquad & \sigma(|\mathsf{V}_{cb}|) \sim 3.5\% \oplus 2.2 \ \% \ (\text{unquenched}) \\ & 1.7\% \ (\text{quenched}) \end{split}$$

David Lopes Pegna

 $B \rightarrow D(*)\ell v$ Future (2011)

• $B \rightarrow D^* \ell v$

Can untagged analysis reduce the uncertainties?

 \rightarrow Still, 4-d B \rightarrow D^{*} ℓv on BaBar full dataset highly desirable

Can tagged analysis measure FF? Tough, need very high statistics

 \rightarrow new tagged analysis from Babar (new tag, 2.5-3x more efficient) will attempt it

$\bullet \ \mathsf{B} \to \mathsf{D}\ell \mathsf{v}$

 \rightarrow Untagged analysis on full dataset necessary from BaBar and Belle

 \rightarrow new tagged analysis from BaBar expected

(personal) Claim: $|V_{ch}|$ from $B \rightarrow D\ell v$ can go down to ~ 1.5-2%

The X_c System in $B \rightarrow X_c \wedge Decays$

David Lopes Pegna

Spectroscopy of excited D mesons

David Lopes Pegna

$B \rightarrow D^{(*)}\pi\ell\nu$ Branching Fractions

Clean samples of $B \rightarrow D^{(*)}\pi\ell v$ events in both BaBar and Belle analysis, similar techniques and excellent agreement in the measurement of branching fractions $\mathcal{B}(B^- \rightarrow D^{(*)+}\pi\ell^-\bar{\nu}_\ell) = (1.55 \pm 0.10)\%$ HFAG 2010

 $\mathcal{B}(\bar{B}^0 \to D^{(*)0} \pi \ell^- \bar{\nu}_\ell) = (1.38 \pm 0.14)\%$

$B \rightarrow D^{**} \ell v (BaBar)$

PRL 101,261802(2008)

- ♦ Reconstruct B → D^(*)π[±]lν in events tagged by hadronic B
- Simultaneous fit to M(D^(*)π)-M(D^(*)), including cross-feed
- Background yield constrained from fit to m_{ES}, shape checked on wrong-sign data combinations
- Large rate for broad states!!

$B \rightarrow D^{**} \ell v$ (Belle)

605 fb⁻¹

- Hadronic tag analysis from Belle
- Similar technique to BaBar, independent fits for different final states
- Confirm signals for narrow D₁ and D₂, sees only broad D₀*, no D₁'

David Lopes Pegna

Comparison BaBar-Belle

Decay Mode	Yield	$\mathcal{B} \ (\bar{B} \to D^{**} \ell^- \bar{\nu}_\ell \) \times \to (D^{**} \to D^{(*)} \pi) \ \% (\text{BELLE})$	BABAR Yield	balan branching reaction
	$D\pi$ invariant mass fit			
$B^- \rightarrow D_0^{*0} \ell^- \bar{\nu}_\ell$	102 ± 19	$0.24 \pm 0.04 \pm 0.06$	137 ± 26	$0.26 \pm 0.05 \pm 0.04$
$B^- \rightarrow D_2^0 \ell^- \bar{\nu}_\ell$	94 ± 13	$0.22 \pm 0.03 \pm 0.04$	97 ± 16	$0.15 \pm 0.02 \pm 0.01$
$\bar{B}^0 \rightarrow D_0^{*+} \ell^- \bar{\nu}_\ell$	61 ± 22	$0.20 \pm 0.07 \pm 0.05$	142 ± 26	$0.44 \pm 0.08 \pm 0.07$
$\bar{B}^0 \rightarrow D_2^+ \ell^- \bar{\nu}_\ell$	68 ± 13	$0.22 \pm 0.04 \pm 0.04$	29 ± 13	$0.07 \pm 0.03 \pm 0.01$
		$D^*\pi$ invariant mass fit		
$B^- \rightarrow D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	-5 ± 11	< 0.07 @ 90 CL	142 ± 21	$0.27 \pm 0.04 \pm 0.05$
$B^- \rightarrow D_1^0 \ell^- \bar{\nu}_\ell$	81 ± 13	$0.42 \pm 0.07 \pm 0.07$	165 ± 18	$0.29 \pm 0.03 \pm 0.03$
$B^- \rightarrow D_2^0 \ell^- \bar{\nu}_\ell$	35 ± 11	$0.18 \pm 0.06 \pm 0.03$	40 ± 7	$0.07 \pm 0.01 \pm 0.006$
$\bar{B}^0 \rightarrow D_1^{\prime \bar{+}} \ell^- \bar{\nu}_\ell$	4 ± 8	< 0.5 @ 90 CL	86 ± 18	$0.31 \pm 0.07 \pm 0.05$
$\bar{B}^0 \rightarrow D_1^+ \ell^- \bar{\nu}_\ell$	20 ± 7	$0.54 \pm 0.19 \pm 0.09$	88 ± 14	$0.27 \pm 0.05 \pm$
$\bar{B}^0 \rightarrow D_2^+ \ell^- \bar{\nu}_\ell$	1 ± 6	< 0.3 @ 90CL	12 ± 5	$0.03 \pm 0.01 \pm 0.006$

Result for the D^{*} broad state consistent between BaBar and BELLE

- BaBar observes the D,', not present in the BELLE data
- Narrow D** results consistent with preliminary untagged BaBar results and D0 measurement (PRL 95, 171803 (2005)). PRL 103,051803(2009)

Consistency: the big Picture

Excellent agreement of the most precise measurements, in particular the tagged and untagged Babar analysis

Consistency: the big Picture

Situation more complicated for the broad states.....

David Lopes Pegna

- → BaBar and Belle measure $\mathscr{C}(B \rightarrow D^{(*)}\pi\ell\nu) \sim 1.5\%$
- About 0.6% of this rate is due to the narrow D_1 and D_2 states
- What is the rest?
- BaBar measures about 0.9% for the broad states Belle agrees for the D₀*, while it sets a very stringent upper limit for the D₁'
- We are left with 2 puzzles:
- The broad rate is in contrast with theoretical predictions (3/2 vs 1/2 puzzle, see backup)
- What is the difference between the inclusive rate and the Σ Excl(D/D*/D^(*)πℓν)?

25

RELEWISHING

- → How likely is that we will observe $B \rightarrow D^{(*)}\pi \pi \ell v$ decays?
- The hadronic tag is the most obvious choice
- Challenging however, high multiplicity on the SL side affects hadronic tag selection/purity
- ♦ If we assume a rate of 0.2% for B → D_{1,2} ℓv, D_{1,2} → D^(*)ππ, we should see ~ tens of events in the full Belle dataset
- BaBar has a new hadronic tag algorithm, expect about >2x improvement in signal yield w.r.t. previous BaBar tagged analysis

Signal yields extracted via unbinned extended maximum likelihood fit to Missing mass

$$M_m^2 = (E_{beam} - E_Y)^2 - |ec{p_Y}|^2 = m_
u^2$$
 $Y = D_s K \ell$ candidate

leading systematic uncertainty: signal MC modelling (~3%- 8% depending on channel)
 Signal MC statistics (~2%)
 342 fb⁻¹

$${\cal B}(B o D_s^+ K^- \ell^- ar{
u}_\ell) = (6.13^{+1.04}_{-1.03} stat. \pm 0.43_{syst.} \pm 0.51 ({\cal B}(D_s))) imes 10^{-4}$$

- Result in agreement with ARGUS measurement: ${\cal B}(B o D_s^+ K^- \ell^- ar{
 u}_\ell) < 5 imes 10^{-3}$
- BR too small to solve the BR puzzle

 Despite many years of measurements, puzzles in B → D^(*,**)ℓv remain Branching fraction? |V_{cb}| and FF averages
 Large rate for the broad components
 Large difference between the BaBar and Belle results
 Role of D → D^(*)ππ decays

→ Dℓv had a slow start, but can be potentially extremely interesting
 We need unquenched lattice determinations of G(w), w=1, w>1
 It is worth!!

|V_{ch}| measurement is a B-factory legacy!!!

$$|V_{cb}| = (41.5 \pm 0.7) \times 10^{-3}$$
 (inclusive)
 $|V_{cb}| = (38.7 \pm 1.1) \times 10^{-3}$ (exclusive).

Backup Slides

On the 3/2 vs 1/2 puzzle

- Both Babar and Belle include the possibility for a non-resonant D^(*) component, finding a rate consistent with zero
- A study of the helicity distribution can be used to confirm/not if the fitted "broad" component is consistent with the expected quantum numbers

Belle only reports the helicity study for the $D_2(D\pi)$ and $D_0^*(D\pi)$ channels

Fit of the invariant mass in helicity bins; fit |hely| with theoretical shapes for tensor and scalar states Confirm predictions for these two states

David Lopes Pegna

- The helicity distributions can help in confirm the nature of the measured "broad" states, but current statistics is a problem
- It was also suggested (I. Bigi) that the measured broad states are radial excitations (p-wave)
- Also in this case, an helicity study could help, but statistics may be a limiting factor also for the full dataset/final measurement from BaBar and Belle

HFAG average for $|V_{cb}|$ from B $\rightarrow D^* \ell v$ very challenging (measurements from almost 2 decades, very different assumptions: FF, BF etc.) historically affected by very low chi2 due to large spread of measurements Subtle bug discovered, chi2 improved, but still low (especially adding latest, very precise, measurements)

ArXiv:0808.0333 [hep-ex], PRL 103,051803(2009)

David Lopes Pegna

Exclusive reconstruction

$$egin{aligned} D_s &
ightarrow \phi(K^+K^-)\pi \ D_s &
ightarrow ar{K}^{*0}(K^\pm\pi^\mp)K \ \end{bmatrix} egin{aligned} &--- \ D_s &
ightarrow K_s^0(\pi^+\pi^-)K \end{aligned}$$

Feed Forward NN to suppress combinatorial bkg.

- lepton (p $_{\rm lep}$ > 0.8 GeV/c) and Kaon added to D $_{\rm a}$ candidate

• Bkg from $B \rightarrow DD_s$ reduced using angular correlation between D_s and D (signal events no correlation)

David Lopes Pegna