Measurement of $B \rightarrow D(*)$ dr Decays and Status
 of $B \rightarrow D^{* *}\left(D\left(^{*}\right) n \pi\right) \ldots$
 David Lopes Pegna (Princeton University)

CKM Workshop, Warwick, LK 9 September 2010

Exclusive B \rightarrow D(*)\&

$$
\begin{aligned}
& \left.\frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}\right)=\frac{G_{F}^{2}}{48 \pi^{3}}\left|V_{c b}\right|^{2} m_{D^{*}}^{3}\left(w^{2}-1\right)^{1 / 2} P(u)(\mathcal{F}(w))^{2}\right) \\
& \frac{d \Gamma}{d w}\left(\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}\right)= \\
& \frac{G_{F}^{2}}{48 \pi^{3}}\left|V_{c b}\right|^{2}\left(m_{B}+m_{D}\right)^{2} m_{D}^{3}\left(w^{2}-1\right)^{3 /(\mathcal{G}(w))^{2}} \quad \text { form factor } \\
& w \equiv v \cdot v^{\prime}
\end{aligned}
$$

* The $F(w)$ and $G(w)$ form factors can be parameterized based on HQET and dispersion relations (Caprini et al, Nucl.Phys. B530, 153 (1998))
\rightarrow Form-factor parameters are $\rho^{2}, R_{2}, R_{2}\left(\rho^{2}\right)$ for $D^{*}(D)$
$\rightarrow F(1)$ and $G(1)$ from lattice QCD
\rightarrow Experiments fit the FF parameterization over nearly the entire phase space
\rightarrow Up to now, $\mathrm{B} \rightarrow \mathrm{D}^{*}$ ov uncertainty dominated by theory error (lattice), $\mathrm{B} \rightarrow$ Dev by experimental uncertainty

$\mathrm{F}(1)=0.921+/-0.013+/-0.020$	C.Bernard et al. [Phys.Rev.D79, 014506 (2009)]
$\mathrm{G}(1)=1.074+/-0.018+/-0.016$	M.Okamoto et al.
[Nucl.Phys.Proc.Suppl. 140, 461 (2005)]	

$B \rightarrow D * \not \subset$ Recent Results

ICHEP 2010 [arXiv:0810.1657] preliminary
\rightarrow Untagged analysis of $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*+} \omega^{\nu}$ based on $711 \mathrm{fb}^{-1}$ ($\mathrm{B}^{+}: 140 \mathrm{fb}^{-1}$),
\rightarrow Reconstruct $\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi_{\mathrm{s}}$, $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi\left(\mathrm{~B}^{+}: \mathrm{D}^{* 0} \rightarrow \mathrm{D}^{0} \pi^{0}{ }_{\mathrm{s}^{\prime}}\right.$, also $\left.\mathrm{D}^{0} \rightarrow \mathrm{~K} 3 \pi\right)$
\rightarrow Reconstruct B momentum using
 kinematics and the remaining particles in the event
\rightarrow Calculate w and three angles that fully describe the decay
\rightarrow Fit these 4 variables to the differential width (binned fit to the projections in w , $\cos \theta_{\iota} \cos \theta_{v}$ and $\left.\chi\right)$

$B \rightarrow D * \not \subset$ Recent Results

David Lopes Pegna

$B \rightarrow D * \not \subset$ Recent Results

* Differences between the 2 Belle analysis:
\rightarrow Data sample ($140 \mathrm{fb}^{-1} \rightarrow 711 \mathrm{fb}^{-1}$), D^{0} modes $(\mathrm{K} \pi, \mathrm{K} 3 \pi$ vs K π only)
- Enhanced background calibration

Soft π investigation
Newer PDG numbers for D branching ratios etc.

	$B^{0} \rightarrow D^{*-} \ell_{\nu}$, ICHEP08	$B^{0} \rightarrow D^{*-\ell \nu, \text { ICHEP2010 }}$
ρ^{2}	$1.293 \pm 0.045 \pm 0.029$	$1.214 \pm 0.034 \pm 0.009$
$R_{1}(1)$	$1.495 \pm 0.050 \pm 0.062$	$1.401 \pm 0.034 \pm 0.018$
$R_{2}(1)$	$0.844 \pm 0.034 \pm 0.019$	$0.864 \pm 0.024 \pm 0.008$
$\mathcal{B}\left(B \rightarrow D^{*} \ell^{+} \nu_{\ell}\right)$	$(4.42 \pm 0.03 \pm 0.25) \%$	$(4.56 \pm 0.03 \pm 0.26) \%$
$\mathcal{F}(1)\left\|V_{c b}\right\| \times 10^{3}$	$34.4 \pm 0.2 \pm 1.0$	$34.5 \pm 0.2 \pm 1.0$
$R_{K 3 \pi / K \pi}$	2.153 ± 0.011	
$P_{\chi^{2}}$	82.0%	28.2%

$B \rightarrow D^{*} \mathbb{C}$ Comparison

	$B^{+} \rightarrow \bar{D}^{* 0} \ell \nu$	$B^{0} \rightarrow D^{*-} \ell \nu$
ρ^{2}	$1.376 \pm 0.074 \pm 0.056$	$1.214 \pm 0.034 \pm 0.009$
$R_{1}(1)$	$1.620 \pm 0.091 \pm 0.092$	$1.401 \pm 0.034 \pm 0.018$
$R_{2}(1)$	$0.805 \pm 0.064 \pm 0.036$	$0.864 \pm 0.024 \pm 0.008$
$\mathcal{B}\left(B \rightarrow D^{*} \ell^{+} \nu_{\ell}\right)$	$(4.84 \pm 0.04 \pm 0.56) \%$	$(4.56 \pm 0.03 \pm 0.26) \%$
$\mathcal{F}(1)\left\|V_{c b}\right\| \times 10^{3}$	$35.0 \pm 0.4 \pm 2.2$	$34.5 \pm 0.2 \pm 1.0$
$R_{K 3 \pi / K \pi}$	2.072 ± 0.023	
$P_{\chi^{2}}$	3.7%	28.2%

$$
\begin{aligned}
\mathcal{F}(1)\left|V_{c b}\right| & =(34.4 \pm 0.3 \pm 1.1) \times 10^{-3} \\
\rho^{2} & =1.191 \pm 0.048 \pm 0.028 \\
R_{1}(1) & =1.429 \pm 0.061 \pm 0.044 \\
R_{2}(1) & =0.827 \pm 0.038 \pm 0.022
\end{aligned}
$$

D*+lv, Phys.Rev.D77:032002,2008

$$
\begin{aligned}
& F(1)\left|V_{c b}\right|=35.9 \pm 0.2 \pm 1.2 \\
& \rho^{2}\left(D^{*}\right)=1.22 \pm 0.02 \pm 0.07
\end{aligned}
$$

Global DXlv, Phys.Rev.D79:012002, 2009

$$
\begin{array}{|l}
\hline F(1)\left|V_{c b}\right|=35.9 \pm 0.6 \pm 1.4 \\
\rho^{2}\left(D^{*}\right)=1.16 \pm 0.06 \pm 0.08 \\
D^{*}(\mathrm{Olv}, \text { Phys.Rev.Lett. } 100,231803,2008
\end{array}
$$

$B \rightarrow D^{*} \mathbb{U}$ Comparison

	$B^{+} \rightarrow \bar{D}^{* 0} \ell \nu$	$B^{0} \rightarrow D^{*-} \ell \nu$	
	ρ^{2}	$1.376 \pm 0.074 \pm 0.056$	$1.214 \pm 0.034 \pm 0.009$
$R_{1}(1)$	$1.620 \pm 0.091 \pm 0.092$	$1.401 \pm 0.034 \pm 0.018$	
$R_{2}(1)$	$0.805 \pm 0.064 \pm 0.036$	$0.864 \pm 0.024 \pm 0.008$	
$\mathcal{B}\left(B \rightarrow D^{*} \ell^{+} \nu_{\ell}\right)$	$(4.84 \pm 0.04 \pm 0.56) \%$	$(4.56 \pm 0.03 \pm 0.26) \%$	
$\mathcal{F}(1) \mid V_{C b} \times 10^{3}$	$35.0 \pm 0.4 \pm 2.2$	$34.5 \pm 0.2 \pm 1.0$	
	2.072 ± 0.023		
$R_{K 3 \pi / K \pi}$	3.7%	28.2%	
$P_{\chi^{2}}$			

$$
\begin{aligned}
\mathcal{F}(1)\left|V_{c b}\right| & =(34.4 \pm 0.3 \pm 1.1) \times 10^{-3} \\
\rho^{2} & =1.191 \pm 0.048 \pm 0.028 \\
\cline { 2 - 3 }\left(\mathcal{B}\left(B^{-} \rightarrow D^{* 0} \ell \bar{\nu}\right)\right. & =(5.49 \pm 0.19) \% \\
\hline R_{1}(1) & =1.429 \pm 0.061 \pm 0.044 \\
R_{2}(1) & =0.827 \pm 0.038 \pm 0.022 .
\end{aligned} \rho_{D^{*}}^{2}=1.20 \pm 0.04, \mathcal{F}(1)\left|V_{c b}\right|=(34.8 \pm 0.8) \times 10^{-3} .
$$

Phys.Rev.D77:032002,2008
Phys.Rev.D79:012002, 2009

David Lopes Pegna

$B \rightarrow D^{*} q_{v}: H F A G$ Averages

David Lopes Pegna

$B \rightarrow D^{*} \&$ Comments

\rightarrow Can we still improve the sensitivity for $B \rightarrow D^{*} \notin v$ (In)-famous HFAG puzzle on the $\left|\mathrm{V}_{\mathrm{cb}}\right|$ average

* More disturbing, at least for the Branching Fractions, is the taggeduntagged disagreement:
Belle untagged: $\operatorname{BF}\left(D^{*+} \subset\right)=(4.6 \pm 0.3) \%, B F\left(D^{* 0} v\right)=(4.8 \pm 0.6) \%$ BaBar untagged: $\mathrm{BF}\left(\mathrm{D}^{*+} \vee\right)=(5.1 \pm 0.2) \%, \mathrm{BF}\left(\mathrm{D}^{* 0} \vee\right)=(5.5 \pm 0.2) \%$ BaBar tagged: $B F\left(D^{*+} v\right)=(5.4 \pm 0.3) \%, B F\left(D^{* 0} v\right)=(5.8 \pm 0.3) \%$
\rightarrow Connected to the incl - excl BF puzzle (see later) BaBar $\left|\mathrm{V}_{\text {ub }}\right|$ analysis on tagged samples clearly favors higher BF ($>5 \%$) for $B \rightarrow D^{*}$ v
It would be important to get an update on the tagged samples from Belle (e.g. Belle Phys. Rev. D 72, 051109 (2005), BF(D*0 v) $=(6.1 \pm$ 0.3)\%)

$B \rightarrow$ D\&V Recent Results

- Hadronic tag:

Reduced background (higher S/N)

Phys.Rev.Lett.
104:011802,2010

Fully exploit kinematic constraints (w resolution ~ 0.01)
Avoid neutrino reconstruction
\rightarrow Identify semileptonic B decays through the missing mass squared in the event:
$m_{\text {miss }}^{2}=\left[p(Y(4 S))-p\left(B_{\text {tag }}\right)-p(D)-p(\ell)\right]^{2}$

* Binned maximum likelihood fit, MC shapes to different signal and background components
\rightarrow Inclusive $B \rightarrow X \in V$ used as normalization $417 \mathrm{fb}^{-1}$

B \rightarrow D \mathbb{C} Recent Results

Extract w spectrum by fitting m2miss in 10 w bins
χ^{2} fit to w spectrum to measure $G(1)\left|V_{c b}\right|$ and ρ^{2}, reweighting MC template

David Lopes Pegna
11
9 September 2010
Normalization of the FF at $w=1$ available in quenched and unquenched ($2+1$) calculations Computation of $G(w)$ at $w>1$ start to be available Tantalo et al. (PLB655,45 (2007)) with quenched approximation, and more recently T. Mannel et al. (arXiv:0809.0222) using LCSR

w	$\mathrm{G}(\mathrm{w})$	
1.00	1.074 ± 0.024 unquenched LAT05 (Okamoto)	
1.00	1.058 ± 0.020 quenched	PRD61,014502 (2005)
1.00	1.026 ± 0.017 quenched	PLB655, 452007
1.03	$1.001 \pm 0.019 "$	$"$
1.05	$0.987 \pm 0.015 "$	$"$
1.10	$0.943 \pm 0.011 "$	$"$
1.20	$0.853 \pm 0.021 "$	
		arXiv.0809.0222 (2008)

$B \rightarrow$ D\& Recent Results

Reduce the model dependence determining $G\left(w^{\prime}\right)\left|V_{c b}\right|$ from a fit in a limited region of phase-space

w'	$\left\|V_{c b}\right\| G\left(w^{\prime}\right) / \mathrm{G}\left(\mathrm{w}^{\prime}\right) 10^{-3}$	Full PS
	unquenched (FNAL)	
1.00	$\begin{aligned} & 39.2 \pm 1.8 \pm 1.3 \pm 0.9 \\ & \text { enched } \quad \text { (Tantalo) } \end{aligned}$	
1.00	$40.9 \pm 1.8 \pm 1.3 \pm 0.7$	
1.03	$40.2 \pm 5.6 \pm 1.3 \pm 0.8$	-4 bins
1.05	$40.0 \pm 5.0 \pm 1.4 \pm 0.6$	
1.10	$40.0 \pm 3.4 \pm 1.4 \pm 0.5$	
1.20	$40.7 \pm 1.3 \pm 1.4 \pm 1.0$	4 bins
	stat syst FF	

Experimental error interpolating 4 bins around $w=1.2$ is competitive with the extrapolation to $w=1$ using the full phase-space We expect lattice community provide un-quenched $(2+1)$ computation of the FF at $w=1$ and at $w>1$

$B \rightarrow$ DGv: HFAG Averages

$B \rightarrow D(*) \&$ Uncertainty

$B \rightarrow D^{*} \downarrow v$	Untagged	Tagged
Yield	$\sim 10 \mathrm{e} 5$	$\sim 10 \mathrm{e} 3$
Measured	$\mathrm{BF}, \rho^{2},\left\|\mathrm{~V}_{\mathrm{cb}}\right\|, \mathrm{R}_{1}, \mathrm{R}_{2}$	BF
Uncertainty	$4 \%(\mathrm{BF}), \sim 3 \%(\mathrm{FF})$	$5 \%(\mathrm{BF})$
$\mathrm{B} \rightarrow \mathrm{D} \subset v$		
Yield	$\sim 10 \mathrm{e} 4$	$\sim 10 \mathrm{e} 3$
Measured	$\mathrm{BF}, \rho^{2},\left\|V_{c b}\right\|$	$\mathrm{BF}, \rho^{2},\left\|V_{c b}\right\|$
Uncertainty	$5 \%\left(\left\|V_{c b}\right\|\right) 6 \%\left(\rho^{2}\right)$	$5 \%\left(\left\|V_{c b}\right\|\right), 8 \%\left(\rho^{2}\right)$

$$
\begin{array}{ll}
B \rightarrow D^{*} C v & \sigma\left(\left|V_{c b}\right|\right) \sim 1.5 \% \oplus 2.6 \% \\
B \rightarrow D C v & \sigma\left(\left|V_{c b}\right|\right) \sim 3.5 \% \oplus 2.2 \% \text { (unquenched) } \\
& \\
& \\
& \\
& \\
& .7 \% \text { (quenched) }
\end{array}
$$

$B \rightarrow D(*) \not v$ Future (2011)

$\rightarrow B \rightarrow D^{*} \uparrow$
Can untagged analysis reduce the uncertainties?
\rightarrow Still, 4-d B $\rightarrow \mathrm{D}^{*} \uparrow$ on BaBar full dataset highly desirable Can tagged analysis measure FF? Tough, need very high statistics
\rightarrow new tagged analysis from Babar (new tag, 2.5-3x more efficient) will attempt it
$\mathrm{B} \rightarrow$ D \sim
\rightarrow Untagged analysis on full dataset necessary from BaBar and Belle
\rightarrow new tagged analysis from BaBar expected
(personal) Claim: $\left|\mathrm{V}_{\text {cb }}\right|$ from $\mathrm{B} \rightarrow \mathrm{D} \subset$ can go down to $\sim 1.5-2 \%$

The X_{c} System in B $\rightarrow X_{c}{ }_{c}$ Decays

$$
B R\left(B \rightarrow X_{c} l v\right) \sim 10.5 \%
$$

- In addition to the "well" measured $\mathrm{D}^{(*)}$ states, there are D* the D** states, orbital excitations of the D-mesons
+ Heavy Quark Symmetry predicts 4 D** states, 2 narrow and 2 broad, all observed in hadronic decays \mathbf{D} The naïve assumption $X_{c}=D+D^{*}+D^{* *}$ is contradicted by the experiments that show a 10-15\% difference (or
 more!!!) between direct measurements of the inclusive $X_{c} \ell v$ rate and the sum of the $D / D^{*} / D^{* *} \ell v$ rates

Spectroscopy of excited D mesons

\rightarrow Use $D^{* *}$ as nickname for states $D^{(*)}(n \pi)$ with $n>0$ including:
\rightarrow Narrow resonances D_{1}, D_{2}^{*}
\rightarrow Broad resonances $\mathrm{D}_{0}{ }^{*}, \mathrm{D}_{1}{ }^{\prime}$

* Non-resonant?
\rightarrow Need help from hadronic $B \rightarrow D^{* *} \pi$ to characterize D** broad states
Abazov et al, PRL 95
Abe et al, PRD 69 (2005) 171803

Charm States
$D^{*} \pi$ Invariant Mass $\left[\mathrm{GeV} / \mathrm{c}^{2}\right] \quad \mathrm{D} \pi$ Invariant Mass $\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$

$B \rightarrow D^{(*)} \pi \in v$ Branching Fractions

\rightarrow Clean samples of $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \pi \ell v$ events in both BaBar and Belle analysis, similar techniques and excellent agreement in the measurement of branching fractions $\mathcal{B}\left(B^{-} \rightarrow D^{(*)+} \pi \ell^{-} \bar{\nu}_{\ell}\right)=(1.55 \pm 0.10) \%$

HFAG 2010

$$
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{(*) 0} \pi \ell^{-} \bar{\nu}_{\ell}\right)=(1.38 \pm 0.14) \%
$$

$B \rightarrow D^{* *} q_{v}$ (BaBar)

PRL 101,261802(2008)
\rightarrow Reconstruct $B \rightarrow D^{(*)} \pi^{\ddagger} l v$ in events taggea by hadronic B
Simultaneous fit to $\mathrm{M}\left(\mathrm{D}^{(*)} \pi\right)-\mathrm{M}\left(\mathrm{D}^{(*)}\right)$, including cross-feed
Background yield constrained from fit to m_{ES}, shape checked on wrong-sign data combinations
Large rate for broad states!!

$B \rightarrow D^{* *} \in$ (Belle)

ArXiv:0711.3252 [hep-ex], PR D77,091503(2008)

$605 \mathrm{fb}^{-1}$

* Hadronic tag analysis from Belle
- Similar technique to BaBar, independent fits for different final states
\rightarrow Confirm signals for narrow D_{1} and D_{2}, sees only broad $D_{0}{ }^{*}$, no $D_{1}{ }^{\prime}$

Comparison BaBar-Belle

Decay Mode	Yield	$\mathcal{B}\left(\bar{B} \rightarrow D^{* *} \ell^{-} \bar{\nu}_{\ell}\right) \times \mathrm{B}\left(D^{* *} \rightarrow D^{(*)} \pi\right) \%$ (BELLE)	BABAR Yield	Lrum drancumg riaction
$D \pi$ invariant mass fit				
$B^{-} \rightarrow D_{0}^{* 0} \ell^{-} \bar{\nu}_{\ell}$	102 ± 19	$0.24 \pm 0.04 \pm 0.06$	137 ± 26	$0.26 \pm 0.05 \pm 0.04$
$B^{-} \rightarrow D_{2}^{0} \ell^{-} \bar{\nu}_{\ell}$	94 ± 13	$0.22 \pm 0.03 \pm 0.04$	97 ± 16	$0.15 \pm 0.02 \pm 0.01$
$\bar{B}^{0} \rightarrow D_{0}^{++} \ell^{-} \bar{\nu}_{\ell}$	61 ± 22	$0.20 \pm 0.07 \pm 0.05$	142 ± 26	$0.44 \pm 0.08 \pm 0.07$
$\bar{B}^{0} \rightarrow D_{2}^{+} \ell^{-} \bar{\nu}_{\ell}$	68 ± 13	$0.22 \pm 0.04 \pm 0.04$	29 ± 13	$0.07 \pm 0.03 \pm 0.01$
$D^{*} \pi$ invariant mass fit				
$B^{-} \rightarrow D_{1}^{\prime 0} \ell^{-} \bar{\nu}_{\ell}$	-5 ± 11	<0.07 @ 90CL	142 ± 21	$0.27 \pm 0.04 \pm 0.05$
$B^{-} \rightarrow D_{1}^{0} \ell^{-} \bar{\nu}_{\ell}$	81 ± 13	$0.42 \pm 0.07 \pm 0.07$	165 ± 18	$0.29 \pm 0.03 \pm 0.03$
$B^{-} \rightarrow D_{2}^{0} \ell^{-} \bar{\nu}_{\ell}$	35 ± 11	$0.18 \pm 0.06 \pm 0.03$	40 ± 7	$0.07 \pm 0.01 \pm 0.006$
$\bar{B}^{0} \rightarrow D_{1}^{\prime+} \ell^{-} \bar{\nu}_{\ell}$	4 ± 8	$<0.5090 \mathrm{CL}$	86 ± 18	$0.31 \pm 0.07 \pm 0.05$
$\begin{aligned} & \bar{B}^{0} \rightarrow D_{1}^{+} \ell^{-} \bar{\nu}_{\ell} \\ & \bar{B}^{0} \rightarrow D_{0}^{+} \ell^{-} \bar{\nu}_{\ell} \end{aligned}$	20 ± 7	$\begin{gathered} 0.54 \pm 0.19 \pm 0.09 \\ <0.3 @ 90 \mathrm{CL} \end{gathered}$	$\begin{gathered} 88 \pm 14 \\ 12 \pm 5 \end{gathered}$	$\begin{aligned} & 0.27 \pm 0.05 \pm \\ & 0.03 \pm 0.01 \pm 0.006 \end{aligned}$

- Result for the $\mathrm{D}_{0}{ }^{*}$ broad state consistent between BaBar and BELLE
- BaBar observes the D_{1}, not present in the BELLE data
- Narrow $\mathrm{D}^{* *}$ results consistent with preliminary untagged BaBar results and DO measurement (PRL 95, 171803 (2005)).

PRL 103,051803(2009)

Consistency: the big Picture

Excellent agreement of the most precise measurements, in particular the tagged and untagged Babar analysis

Consistency: the big Picture

\rightarrow Situation more complicated for the broad states.....

Comments

\rightarrow BaBar and Belle measure $\mathcal{B}\left(B \rightarrow D^{(*)} \pi l v\right) \sim 1.5 \%$
\rightarrow About 0.6% of this rate is due to the narrow D_{1} and D_{2} states
\rightarrow What is the rest?

* BaBar measures about 0.9\% for the broad states Belle agrees for the $\mathrm{D}_{0}{ }^{*}$, while it sets a very stringent upper limit for the $\mathrm{D}_{1}{ }^{\prime}$
* We are left with 2 puzzles:

The broad rate is in contrast with theoretical predictions (3/2 vs 1/2 puzzle, see backup)
$\$$ What is the difference between the inclusive rate and the $\Sigma \operatorname{Excl}\left(\mathrm{D} / \mathrm{D}^{*} / \mathrm{D}^{(*)} \pi / v\right) ?$

On the Incl- Σ Excl puzzle

The most likely candidate to fill the inclusive rate is $B \rightarrow D^{(*)} n \pi l v$, with $n>1$:
\geqslant We have already evidence for $\mathrm{D}^{* *} \rightarrow$ D $\pi \pi$ decays, Belle PRL 94, 221805 (2005)

BaBar measured the relative branching fraction
$\mathcal{B}\left(\mathrm{B} \rightarrow \mathrm{D}^{(*}(\mathrm{n} \pi) \ell v\right) /$
$\mathcal{E}(B \rightarrow D X(v)=0.197 \pm$ $0.013 \pm 0.013 \pm 0.012$, PR D76, 051101 (2007)

On the Incl- Σ Excl puzzle

\Rightarrow How likely is that we will observe $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \pi \pi l v$ decays?
\rightarrow The hadronic tag is the most obvious choice

- Challenging however, high multiplicity on the SL side affects hadronic tag selection/purity
\rightarrow If we assume a rate of 0.2% for $B \rightarrow D_{1,2} \ell, D_{1,2} \rightarrow D^{(*)} \pi \pi$, we should see ~ tens of events in the full Belle dataset
\rightarrow BaBar has a new hadronic tag algorithm, expect about $>2 x$ improvement in signal yield w.r.t. previous BaBar tagged analysis

Observation of $B \rightarrow D_{s} K \mathbb{C}$

- Signal yields extracted via unbinned extended maximum likelihood fit to Missing mass

$$
M_{m}^{2}=\left(E_{\text {beam }}-E_{Y}\right)^{2}-\left|\vec{p}_{Y}\right|^{2}=m_{\nu}^{2} \quad Y=D_{s} K \ell \text { candidate }
$$

- leading systematic uncertainty: signal MC modelling ($\sim 3 \%-8 \%$ depending on channel) Signal MC statistics (~2\%)

$$
\mathcal{B}\left(B \rightarrow D_{s}^{+} K^{-} \ell^{-} \bar{\nu}_{\ell}\right)=\left(6.13_{-1.03}^{+1.04} \text { stat. } \pm 0.43_{\text {syst. }} \pm 0.51\left(\mathcal{B}\left(D_{s}\right)\right)\right) \times 10^{-4}
$$

- Result in agreement with ARGUS measurement: $\mathcal{B}\left(B \rightarrow D_{s}^{+} K^{-} \ell^{-} \bar{\nu}_{\ell}\right)<5 \times 10^{-3}$
- BR too small to solve the BR puzzle

Conclusions

\Rightarrow Despite many years of measurements, puzzles in $B \rightarrow D^{(*, *)} \ell v$ remain Branching fraction?
$\left|V_{\text {cb }}\right|$ and FF averages
Large rate for the broad components
Large difference between the BaBar and Belle results
Role of $\mathrm{D} \rightarrow \mathrm{D}^{(*)} \pi \pi$ decays
$\rightarrow \mathrm{B} \rightarrow \mathrm{D} \ell v$ had a slow start, but can be potentially extremely interesting We need unquenched lattice determinations of $G(w), w=1, w>1$
It is worth!!
$\left|\mathrm{V}_{\text {cb }}\right|$ measurement is a B-factory legacy!!!

$$
\begin{aligned}
& \left|V_{c b}\right|=(41.5 \pm 0.7) \times 10^{-3} \text { (inclusive) } \\
& \left|V_{c b}\right|=(38.7 \pm 1.1) \times 10^{-3} \text { (exclusive) }
\end{aligned}
$$

Backup Slides

On the $3 / 2$ vs $1 / 2$ puzzle

$\$$ Both Babar and Belle include the possibility for a non-resonant $\mathrm{D}^{(*)}$ component, finding a rate consistent with zero

* A study of the helicity distribution can be used to confirm/not if the fitted "broad" component is consistent with the expected quantum numbers Belle only reports the helicity study for the $D_{2}(D \pi)$ and $D_{0}{ }^{*}(D \pi)$ channels
\rightarrow Fit of the invariant mass in helicity bins; fit |hely| with theoretical shapes for tensor and scalar states
Confirm predictions for these two states

On the 3/2 vs 1/2 puzzle

- The helicity distributions can help in confirm the nature of the measured "broad" states, but current statistics is a problem
\rightarrow It was also suggested (I. Bigi) that the measured broad states are radial excitations (p-wave)
* Also in this case, an helicity study could help, but statistics may be a limiting factor also for the full dataset/final measurement from BaBar and Belle

HFAG averages: Comments

HFAG average for $\left|V_{c b}\right|$ from $B \rightarrow D^{*} \not \subset v$ very
challenging (measurements from almost 2 decades, very different assumptions: FF, BF etc.) historically affected by very low chi2 due to large spread of measurements
Subtle bug discovered, chi2 improved, but still low (especially adding latest, very precise, measurements)

B $\rightarrow D^{* *}$ \& (Narrow States,BaBar)

ArXiv:0808.0333 [hep-ex], PRL 103,051803(2009)

Fit $D^{*} \pi-D$ invariant mass distributions in 4 helicity bins, maximize $D_{1}-D_{2}$
separation, also measure $\mathcal{B}\left(D_{1} \rightarrow D \pi\right) / \mathcal{Z}\left(\mathrm{D}_{1} \rightarrow \mathrm{D}^{*} \pi\right)$ and D_{1} polarization

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow D_{1}^{0} \ell^{+} \nu_{\ell}\right) \times \mathcal{B}\left(D_{1}^{0} \rightarrow D^{*+} \pi^{-}\right) & =\left(2.97 \pm 0.17_{\text {stat }} \pm 0.17_{\text {syst }}\right) \times 10^{-3}, \\
\mathcal{B}\left(B^{+} \rightarrow D_{2}^{* *} \ell^{+} \nu_{\ell}\right) \times \mathcal{B}\left(D_{2}^{* 0} \rightarrow D^{(*)+} \pi^{-}\right) & =\left(2.29 \pm 0.23_{\text {stat }} \pm 0.21_{\text {syst }} \times 10^{-3},\right. \\
\mathcal{B}\left(B^{0} \rightarrow D_{1}^{-} \ell^{+} \nu_{\ell}\right) \times \mathcal{B}\left(D_{1}^{-} \rightarrow D^{* 0} \pi^{-}\right) & =\left(2.78 \pm 02_{\text {stat }} \pm 0.25_{\text {syst }}\right) \times 10^{-3}, \\
\mathcal{B}\left(B^{0} \rightarrow D_{2}^{*-} \ell^{+} \nu_{\ell}\right) \times \mathcal{B}\left(D_{2}^{*-} \rightarrow D^{(*) 0} \pi^{-}\right) & =\left(1.77 \pm 0.22_{\text {stat }} \pm 0.11_{\text {syst }}\right) \times 10^{-3} .
\end{aligned}
$$

Observation of $B \rightarrow D_{s} K \mathbb{C}$

- Exclusive reconstruction

$$
\left.\begin{array}{l}
D_{s} \rightarrow \phi\left(K^{+} K^{-}\right) \pi \\
D_{s} \rightarrow \bar{K}^{* 0}\left(K^{ \pm} \pi^{\mp}\right) K \\
D_{s} \rightarrow K_{s}^{0}\left(\pi^{+} \pi^{-}\right) K
\end{array}\right\} \begin{aligned}
& \text { Feed Forward NN to } \\
& \text { suppress combinatorial } \\
& \text { bkg. }
\end{aligned}
$$

- lepton ($p_{\text {lep }}>0.8 \mathrm{GeV} / \mathrm{c}$) and Kaon added to D_{s} candidate
- Bkg from $B \rightarrow D D_{s}$ reduced using angular correlation between D_{s} and D (signal events no correlation)

