

Results from the B factories

Roger Barlow Manchester University

Contents

•Theory – SM and beyond

- •Limits on $B \rightarrow ev$, $B \rightarrow \mu v$
- •Measurement of $B \rightarrow \tau v$
- Implications

The basics

$$Br(B \rightarrow l \nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 \left(1 - \frac{m_l^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

B' $W^+ - V_U$

Expected BR ~ 10^{-4} for B \rightarrow TV

Much smaller for $B \rightarrow \mu v$, $B \rightarrow ev$ due to helicity suppression

Analyses use up to 468M B \overline{B} pairs (BaBar), 657M pairs (Belle)

2HDM (W S Hou PRD 48 (1993) 2342)

$$Br(B \to l \nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 \left| 1 - \frac{m_l^2}{m_B^2} \right|^2 f_B^2 |V_{ub}|^2 \tau_B \times \left| 1 - \tan^2 \beta \frac{m_B^2}{m_H^2} \right|^2$$

SUSY (A G Akeroyd and S Recksiegel, J Phys G 29 (2003) 2311) $Br(B \to l \nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 \left(1 - \frac{m_l^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B \times \left(1 - \frac{\tan^2 \beta}{1 + \bar{\epsilon_0} \tan \beta} \frac{m_B^2}{m_H^2} \right)^2$

Roger Barlow: Leptonic B[±] decays

Slide 4/14

B tagging

Final state neutrino(s) undetectable: Decays not reconstructable on their own. Tagging technique: B mesons produced in pairs: reconstruct one, and the rest of the event must be a B

Hadronic B decay tags Identify $K^{\pm}, \pi^{\pm}, K^{0}, \pi^{0}$ Construct D, D* or J/ψ Reconstruct B mass Efficiency ~ 10⁻³

Semileptonic B decay tags Identify $K^{\pm}, \pi^{\pm}, K^{0}, \pi^{0}$ Construct D⁰ or D^{0*} High momentum lepton(e or μ) Efficiency ~ 10⁻²

Both tag methods used

Details of cuts depend on analysis channel

Also whether tagging follows signal or signal follows tag

Roger Barlow: Leptonic B[±] decays

 $B^{\pm} \rightarrow e^{\pm} \, \nu \text{ and } B^{\pm} \rightarrow \mu^{\pm} \, \nu$

Events / (0.0022) Events / (1 GeV/c 150 No events seen 100 Limit (90% Bayesian CL) 1.0×10^{-6} for muons – above SM 50value 5 x 10⁻⁷ 5.28 5.22 5.24 5.26 15 20 p_{FIT} (GeV/c) 5.2 5.3 0 10 20 5 1.9×10^{-6} for electrons – well above m_{ES} [GeV/c²] SM value 1 x 10⁻¹¹ Events/ (0.0018) Svents / (1 GeV 2050 Belle reports limits 15 1.7×10^{-6} for muons 0.98 x 10⁻⁶ for electrons

BELLE

Hadronic tag: Phys.Rev.D79:091101,2009. arXiv:0903.1220 Semileptonic tag: Phys.Rev.D81:051101,2010 arXiv :0809.4027

Roger Barlow: Leptonic B[±] decays

5.24

5.26

5.28

5.3

m_{FS} [GeV/c²]

Slide 6/14

15 2 p_{HT} (GeV)

5

10

Radiating a photon can evade the helicity suppression – but introduces an extra α_{EM} . SM prediction of order 10⁻⁶.

Find B tag Require only one extra charged track, identified as e or μ Search for high energy photon Reconstruct neutrino mass

See 4 $\mu\gamma\nu$ and 7 $e\gamma\nu$ events – expected backgrounds 2.7 and 3.4 Combined model-independent 90% CL limit 15.6 x 10⁻⁶

PhysRevD.80.111105 arXiv 0907.1681

Roger Barlow: Leptonic **B**[±] *decays*

Find tag (hadronic or semileptonic) Identify tau remnant(s) Look at the extra EM energy Signal is excess near zero

> Extra energy: Hadronic tag For 4 separate tau decay modes

Chief systematic uncertainty: **Background PDF**

BELLE

Consistent Excess in all 4 channels

Combined hadronic tag result (preliminary)

$$Br(B \rightarrow \tau \nu) = (1.80^{+0.57}_{-0.54} \pm 0.26) \times 10$$

arXiv1008.0104
Combined semileptonic tag result

$$Br(B \to \tau \nu) = (1.7 \pm 0.8 \pm 0.2) \times 10^{-2}$$
PRD8 1,051101(2010)

Roger Barlow: Leptonic B[±] decays

200 (b)

Consistency check

Extra EM energy for double-tagged events Hadronic-hadronic and hadronic-semileptonic Excellent data/MC agreement validates $\mathsf{E}_{_{extra}}$ as a discriminator variable N_{evt}/60 Me/ 350 BABAR A BAR preliminary preliminary 250 1200 200 1000 150 800 600 100 400 50200 0 40.60 60.8 [GeV Hadronic DT, E [GeV] Hybrid D

CKM 2010

Roger Barlow: Leptonic B[±] decays

Belle results

Plot shows excess energy for all taus and for decays to e, mu,pi channels with semileptonic tags

Combined hadronic tag result $Br(B \rightarrow \tau \nu) = (1.79^{+0.56+0.46}_{-0.49-0.51}) \times 10^{-4}$

PRL97,251802(2006)

Combined semileptonic tag result $Br(B \rightarrow \tau \nu) = (1.54^{+0.38}_{-0.37}, -0.31) \times 10^{-4}$

arXiv 1006.4201

Roger Barlow: Leptonic B[±] decays

Combination

BaBar hadronic tag: BaBar semileptonic tag: BaBar combined result:	$(1.80^{+0.57}_{-0.54} \pm 0.26) \times 10^{-4}$ $(1.7 \pm 0.87 \pm 0.2) \times 10^{-4}$ $(1.76 \pm 0.49) \times 10^{-4}$	Preliminary.	NEW
Belle hadronic tag Belle semileptonic tag	$(1.79 {}^{+0.56} {}^{+0.46} {}_{-0.49} {}_{-0.51}$) x 10 ⁻⁴ (1.54 $ {}^{+0.38} {}^{+0.29} {}_{-0.37}$) x 10 ⁻⁴	NEW	
Combined result: $(1.64 \pm 0.34) \times 10^{-4}$		HFAG	
Well established d Consistent with SM	ecay: /l prediction (1.20 ± 0.25) x 10 ⁻⁴		

 f_{B} = 190 ± 13 MeV (HPQCD) V_{ub} = (4.32 ± 0.16 ± 0.29) x 10⁻³ (HFAG)

Higgs Limits

$$Br(B \to l \nu) = BR_{SM} \times \left(1 - \tan^2 \beta \frac{m_B^2}{m_H^2}\right)^2$$

Simple 'Type II' 2HDM

Consistency means $M_{_{H}}$ is large or tan β is small (Unless there is a quite implausible cancellation)

Other models are more complicated – but this result rules out large tan β values

Plot from Trabelsi @ ICHEP

CKM results

UTfit: prediction (Tarantino's ICHEP talk) Br= $(0.805 \pm 0.071) \times 10^{-4}$

CKMfitter: prediction (T'Jampens ICHEP talk) Br= $(0.763^{+0.114}) \times 10^{-4}$

Fit to all measurements – $f_{_{\rm B}}$ also fitted

Different statistical approach but similar message: Tension between $V_{_{ub}}$ and sin 2β

Conclusions

Measurement of $B \rightarrow \tau v$ is a strong constraint on BSM models

and is a source of tension within the CKM fit

Measurements from BaBar and Belle will continue to improve somewhat – full dataset and improved techniques.

Super B factory will give 100 times the data, and make this a precision measurement.

