

Experimental status of $B \to D^{(*)} \tau \nu$

- Motivation
- Ø B-factories
- Multi-neutrino B decays experimental techniques
- results
- Summary and outlook

Semitauonic B decays

- ${\scriptstyle \bullet}$ form-factors that cannot be accessed in other semileptonic B decays
- poorly known experimentally difficult
- not observed exclusively before B-factories
 - Inclusive $\mathcal{B}(B \rightarrow c \tau^+ \nu_{\tau}) = (2.48 \pm 0.26)\%$ from LEP (PDG 2007)

• sensitive to extended Higgs sector; complementary to and competitive with $B \rightarrow \tau \nu$

• different theory uncertainties from $B \to \tau^+ \nu_{\tau}$:

- free from f_B and $|V_{ub}|$, depends on the $B o \overline{D}{}^{(*)} au^+
 u_ au$ form-factors
- $|V_{cb}|$ (known better than $|V_{ub}|$) cancels out in the ratio $R = \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to Dl\nu)}$
- 3-body decay \Rightarrow more observables (*e.g.* q^2 -distribution, τ polarization, D^* polarization) possible O(1) effects
- *Hbu* and *Hbc* vertices complementary to *Htb* searches at the LHC

• H - b - u measured in
$$B \rightarrow \tau^+ \nu_{\tau}$$

• H - b - c measured in
$$B o \overline{D}{}^{(*)} au^+
u_ au$$

H - b - t direct production at LHC

Signal decay with multiple (2 or 3) neutrinos can be observed using kinematic constraints available only at *B*-factories. To ensure that we have missing 4-momentum consistent with multi-neutrino hypothesis we take the advantage of exclusive $B\overline{B}$ production.

two ways of reconstructing B_{tag}

- reconstruct B_{tag} (in exclusive mode) and check whether remaining particles are consistent with B_{sig} ("exclusive" B_{tag} reconstruction)
- select B_{sig} candidate and check whether remaining particles are consistent with B decay ("inclusive" B_{tag} reconstruction)

$B ightarrow \overline{D}{}^{(*)} au^+ u_{ au}$ with inclusive B_{tag} reconstruction

• B_{sig} clean signature e.g. $D^{*-}e^+$

• reconstruct
$$B_{tag}$$
 inclusively: $M_{tag} = \sqrt{E_{beam}^2 - \left(\sum_{i \notin sig} \vec{p}_i\right)^2}$

 $B_{\rm sig}$ decay chains that combine a high reconstruction efficiency with a low background level are chosen

$B ightarrow \overline{D}{}^{(*)} au^+ u_ au$ background calibration

Fit scale factors for the background components: using experimental distributions in side-bands

- Fits were performed for several observables
 (X_{mis}, E_{vis}, ΔE_{tag}, M_{D⁰}, ...).
- Fitted scale factors for semileptonic decays are consistent with recent PDG values.

 $\begin{array}{c|c} B \rightarrow & \overline{D}^{**}I^{+}v_{1} \\ B \rightarrow & \overline{D}I^{+}v_{1} \\ B \rightarrow & \overline{D}^{*}I^{+}v_{1} \end{array}$

other B dec.

cc-bar cont, uds-cont.

Experimental status of $B \rightarrow D^{(*)} \tau \nu$

FIRST OBSERVATION¹

 ${\cal B}(B^0 o D^{*-} au^+
u_ au) = (2.02^{+0.40}_{-0.37}({
m stat}) \pm 0.37({
m syst}))\%$

signal yield in 535M $B\overline{B}$

 $N_S = 60^{+12}_{-11}$ 6.7 σ (5.2 σ with syst.)

from a combined maximum likelihood fit (with a single BF) to M_{tag} distributions for all sub-decay modes

At large $X_{\rm mis}$ most of background contributions behave like combinatorial bckg while the signal is visible as a well reconstructed $B_{\rm tag}$.

¹A. Matyja et al. (The Belle Collaboration) PRL 99, 191807 (2007)

Belle: $B^+ \to \overline{D}^{(*)0} \tau^+ \nu_{\tau}$

- simultaneous extraction of signals in $B^+ \to \overline{D}^{*0} \tau^+ \nu_{\tau}$ and $B^+ \to \overline{D}^0 \tau^+ \nu_{\tau}$ taking into account $\overline{D}^{*0} \leftrightarrow \overline{D}^0$ cross-feeds
- signal extraction from fit to 2-dim distributions in M_{tag} and P_{D^0} (momentum of D^0 in $\Upsilon(4S)$ rest frame)
- simultaneous fit to 13 decay chains with floating 2 signal BFs and 13 background normalizations

Andrzej Bożek the Belle Collaboration @ CKM2010 Experimental sta

$B ightarrow \overline{D}^{(*)} \tau^+ \nu_{\tau}$ with exclusive B_{tag} reconstruction

• reconstruct B_{tag} exclusively in hadronic mods (low efficiency)

•
$$B \rightarrow \overline{D}^{(*)} \pi / \rho / a_1 / D_{(s)}^{(*)}$$
 Belle

- $B o \overline{D}^{(*)} + Y^+(n imes \pi^{\pm}, \pi^o, K^{\pm}, K^0)$ BaBar (1114 final states)
- then B_{sig} is reconstructed e.g. $D^{*-}e^+$

 $B_{
m sig}$ decay chains are reconstructed in many hadronic modes (11 final states) thanks to a low background level after $B_{
m tag}$ cut.

Babar: $B \rightarrow \overline{D265}^{(*)}\tau^+\nu_{\tau}$

- 238M BB
- Exclusive hadronic tags
- Signal characterized by large MM²
- Simultanious extraction of $D\tau\nu/D^*\tau\nu$
- Extracted from the fit was the ratio $R = \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to Dl\nu)}$
- Also measure decay distributions for the first time

	R(%)	Ns	Signif.		
$D^0 \tau\nu$	$31.4 \pm 17.0 \pm 4.9$	35.6 ± 19.4	1.8(1.8)		
D+ τν	$48.9 \pm 16.5 \pm 6.9$	23.3±7.8	3.3(3.6)		
$D^{*0} \tau \nu$	$34.6 \pm 7.3 \pm 3.4$	92.2 ± 19.6	5.3(5.8)		
D*+ τν	$20.7 \pm 9.5 \pm 0.8$	$15.5.2 \pm 7.2$	2.7(2.7)		
D ⁰ τν + D ⁺ τν: 3.6 (4.9) σ					

3

³B. Aubert *et al.* (BaBar Collaboration), Phys. Rev. Lett. **100**, 021801 (2008); Phys. Rev. D. **79**, 092002 (2009)

Babar: $B \to \overline{D}^{(*)}\tau^+\nu_{\tau}$

- 238M BB
- Exclusive hadronic tags
- Signal characterized by large MM²
- Simultanious extraction of $D\tau\nu/D^*\tau\nu$
- Extracted from the fit was the ratio $R = \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to D/\nu)}$
- Also measure decay distributions for the first time

	R(%)	Ns	Signif.		
$D^0 \tau\nu$	$31.4 \pm 17.0 \pm 4.9$	35.6 ± 19.4	1.8(1.8)		
D+ τν	$48.9 \pm 16.5 \pm 6.9$	23.3±7.8	3.3(3.6)		
$D^{*0} \tau \nu$	$34.6 \pm 7.3 \pm 3.4$	92.2 ± 19.6	5.3(5.8)		
D*+ τν	$20.7 \pm 9.5 \pm 0.8$	$15.5.2 \pm 7.2$	2.7(2.7)		
D ⁰ τν + D ⁺ τν: 3.6 (4.9) σ					

⁴B. Aubert *et al.* (BaBar Collaboration), Phys. Rev. Lett. **100**, 021801 (2008); Phys. Rev. D. **79**, 092002 (2009)

Andrzej Bożek the Belle Collaboration @ CKM2010

Babar: $B \to \overline{D}^{(*)} \tau^+ \nu_{\tau}$

$$\mathcal{B}(B \to \overline{D}^* \tau^+ \nu) = (1.62 \pm 0.31 \pm 0.10 \pm 0.05)\% \quad (6.2\sigma)$$

First measurement of kinematic distributions: q^2 , $|P_l^*|$

- 657M BB
- Hadronic tags.

R(%)

 $D^0 \tau v$

 $D^+ \tau v$

D*0 τ v

D*+ τ v

- Extract signals in (MM², E_{FCI}) distribution.
- Simultaneous extraction of $D\tau v/D^*\tau v$.

⁵Belle Preliminary, I. Adachi, et al. (The Belle Collaboration)hep-ex/0910.4301

$B ightarrow \overline{D}^{(*)} \tau^+ u_{ au}$ summary

$$B^+ o \overline{D}^{*0} \tau^+ \nu_{\tau}$$

$$B^0
ightarrow D^{*-} au^+
u_ au$$

$$B^+ \to \overline{D}{}^0 \tau^+ \nu_\tau$$

$$B^0 \rightarrow D^- \tau^+ \nu_{\tau}$$
- Belle inclusive $B_{\text{tag}}^{\ \ \ }$

- Belle exclusive B_{tag}^7

$$\begin{split} & [2.12^{+0.28}_{-0.27}\pm0.29]\% \quad 8.1\sigma \\ & [3.04^{+0.69}_{-0.66}_{-0.47}]\% \quad 3.9\sigma \\ & [2.25\pm0.48\pm0.22]\% \quad 5.3\sigma \\ & [2.02^{+0.40}_{-0.37}\pm0.37]\% \quad 5.2\sigma \\ & [2.56^{+0.75}_{-0.66}_{-0.22}]\% \quad 4.7\sigma \\ & [1.11\pm0.51\pm0.04]\% \quad 2.7\sigma \\ & [0.77\pm0.22\pm0.12]\% \quad 3.5\sigma \\ & [1.51^{+0.41}_{-0.39}_{-0.49}]\% \quad 3.8\sigma \end{split}$$

 $[0.67 \pm 0.37 \pm 0.11]\%$ 1.8 σ

$$\begin{array}{ll} [1.01\substack{+0.46\\-0.41-0.11}]\% & 2.6\sigma \\ [1.04\pm0.35\pm0.15]\% & 3.3\sigma \end{array}$$

- BaBar exclusive B_{tag}⁸ ■ Standard Model⁹
- results are above SM predictions (similarly to $B \rightarrow \tau \nu$)
- inclusive reconstruction gives the smallest statistical errors

$B ightarrow \overline{D} \overline{ au}^+ u_{ au}$ constraints on theoretical models

experimental bounds on tan β/m_H in type-II 2HDM from averaged Belle and BaBar measurements¹⁰ of $R = \frac{\mathcal{B}(B \to D\tau \nu_{\tau})}{\mathcal{B}(B \to Dl \nu_l)} = 0.40 \pm 0.08$

¹⁰M. Tanaka, R. Watanabe, arXiv:1005.4306

What is comming next?

Belle

- reprocessed data sample with improved tracking efficiency
- none of the results shown use full data sample yet
- hadronic tag efficiency improved: effective luminosity improved by factor x2

Super B factories !

- *B*-factories are a good environment for studies of both tauonic and semitauonic *B* decays
- Recent measurements by Belle of $B^+ \rightarrow \overline{D}^{(*)0} \tau \nu_{\tau}$ with inclusive reconstruction $\mathcal{B}(B^+ \rightarrow \overline{D}^{*0} \tau^+ \nu_{\tau}) = (2.12^{+0.28}_{-0.27}(\text{stat}) \pm 0.29(\text{syst}))\%$ and $\mathcal{B}(B^+ \rightarrow \overline{D}^0 \tau^+ \nu_{\tau}) = (0.77 \pm 0.22(\text{stat}) \pm 0.12(\text{syst}))\%$
- measurements of semitauonic-B decays are now well established and provide constraints on charged Higgs sector that can compete with direct searches
- measured BFs are consistent within experimental uncertainties with expectations of the SM, but there is still room for new physics
- New results from Belle are comming (full luminosity, new tracking and improved tagging: ≈ ×2 in effective luminosity)
- The most interesting measurements will be polarizations.
- Interesting prospects for future Super B-factories

Naive averages were calculated:

- $\mathcal{B}(B^+ \to \overline{D}^{*0} \tau^+ \nu_{\tau}) = (2.36 \pm 0.27)\%$
- $\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau}) = (1.70 \pm 0.34)\%$
- $\mathcal{B}(B^+ o \overline{D}{}^0 au^+
 u_{ au}) = (0.89 \pm 0.20)\%$
- $\mathcal{B}(B^0 \to D^- \tau^+
 u_{ au}) = (1.03 \pm 0.30)\%$
- Belle inclusive and exclusive tag measurement has negligible overlap ($\approx 0.3\%$).
- Averages include all mean values also one with marginal significance ($< 3\sigma$). In case we took into account only significant results changes are:

•
$$\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau}) = (2.24 \pm 0.46)\%$$
 (Belle only)

•
$$\mathcal{B}(B^+ \to D^0 \tau^+ \nu_{\tau}) = (1.03 \pm 0.23)\%$$
 (Belle only)

•
$${\cal B}(B^0 o D^- au^+
u_ au) = (1.04 \pm 0.35 \pm 0.15)\%$$
 (Babar only)

BACKUP

B-factories

characteristics

$$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$$

clean source of exclusive B meson pairs

Integrated Luminosity(cal)

KEKB B-factory and Belle detector

characteristics

$$e^+e^- \to \Upsilon(4S) \to BB$$

clean source of exclusive ${\boldsymbol B}$ meson pairs

$$f_{\sf peak} = 2.11 imes 10^{34} \qquad \int \!\! \mathcal{L} > 1 ~ {\sf ab}^{-1} \qquad 711 ~ {\sf fb}^{-1} @ \Upsilon(45)$$

Andrzej Bożek the Belle Collaboration @ CKM2010 Experimental status of $B \rightarrow D^{(*)} \tau \nu$

The fitted branching fractions are consistent with the recent PDG values. Below we list the fit results for the main peaking background components together with the PDG numbers.

	fit[%]	PDG[%]
$egin{array}{lll} B^0 & ightarrow D_0^{*-} l^+ u imes BF(D_0^{*-} ightarrow D^0 \pi^0) \ B^0 & ightarrow D_1^- l^+ u imes BF(D_1^- ightarrow D^{*0} \pi^-) \end{array}$	0.25 – .3 0.2 – .24	$\begin{array}{c} 0.3\pm0.12\\ 0.28\pm0.05\end{array}$
$B^{0} \rightarrow D_{1}^{'-} l^{+} \nu \times BF(D_{1}^{'-} \rightarrow D^{*0} \pi -)$	0.27 – .35	0.31 ± 0.09
$B ightarrow D^* l u$	4.6 - 5.44	5.68 ± 0.19
B ightarrow D l u	1.7 - 2.2	2.24 ± 0.11