On the consistency between CP violation in the K - vs. B_{d}-systems within the SM

Diego Guadagnoli
Excellence Cluster Universe, Technische Universitaet Muenchen

Summary

V
The ϵ_{K} formula

\square
Going beyond lowest order in the OPE: the κ_{ϵ} correction
$\sqrt{ }$ The $\epsilon_{\mathrm{K}}-\sin 2 \beta$ correlation within the SM : full consistency?
(Some speculations about new-physics contributions

Based on:
Buras, DG (PRD 08 \& PRD 09)
Buras, DG, Isidori (PLB 10)

Short statement of the problem

V CPV discussed here: CPV in (meson-antimeson) mixing

K-system	$:$	$\boldsymbol{\epsilon}_{\mathbf{K}}$
\boldsymbol{B}_{d}-system	$:$	$\sin 2 \beta$
\boldsymbol{B}_{s}-system	$:$	$\sin 2 \beta_{\mathrm{s}}$

\square Most stringent test of CPV within the S M\end{array}\right)\)

Short statement of the problem

V CPV discussed here: CPV in (meson-antimeson) mixing

\boldsymbol{K}-system	$:$	$\boldsymbol{\epsilon}_{\mathbf{K}}$
\boldsymbol{B}_{d}-system	$:$	$\sin 2 \beta$
\boldsymbol{B}_{s}-system	$:$	$\sin 2 \beta_{\mathrm{s}}$

V Main point of the talk

Short statement of the problem

- CPV discussed here: CPV in (meson-antimeson) mixing

\boldsymbol{K}-system	$:$	$\boldsymbol{\epsilon}_{\mathbf{K}}$
\boldsymbol{B}_{d}-system	$:$	$\sin 2 \beta$
\boldsymbol{B}_{s}-system	$:$	$\sin 2 \beta_{\mathrm{s}}$

(7) Main point of the talk ϵ_{K} is of the form:

Buras, DG, PRD08:

Then:
(a) take $\sin 2 \beta=\mathrm{S}_{\psi K \mathrm{Ks}} \sim 0.68 \Rightarrow \quad \begin{aligned} & \left|\epsilon_{\mathrm{k}}\right| \simeq 1.8 \cdot 10^{-3} \\ & \\ & \\ & \left(\text { vs. }\left|\epsilon_{\mathrm{K}}\right|^{\exp }=2.2 \cdot 10^{-3}\right)\end{aligned}$
(b) take $\left|\epsilon_{\mathrm{K}}\right|=\left|\epsilon_{\mathrm{k}}\right|^{\exp } \quad \Rightarrow \quad \sin 2 \beta \simeq 0.8$

From the central values, agreement looks at no better than 20 \% level
D. Guadagnoli, Indirect CPV in K-vs. B_{d}-mesons

CPV in K-physics: intro to formalism

The d and s quarks can form, through strong interactions, the following bound states

$$
\begin{aligned}
& \left|K^{0}\right\rangle \sim\binom{d}{\bar{s}} \quad \begin{array}{c}
\text { and phase conventions } \\
\text { can be defined so that }
\end{array} \\
& \left|\bar{K}^{0}\right\rangle \sim\binom{\bar{d}}{s}
\end{aligned} \quad\left\{\begin{array}{l}
C P\left|K^{0}\right\rangle=-\left|\bar{K}^{0}\right\rangle \\
C P\left|\bar{K}^{0}\right\rangle=-\left|K^{0}\right\rangle
\end{array}\right.
$$

The d and s quarks can form, through strong interactions, the following bound states

$$
\begin{aligned}
& \left|K^{0}\right\rangle \sim\binom{d}{\bar{s}} \quad \begin{array}{c}
\text { and phase conventions } \\
\text { can be defined so that }
\end{array} \\
& \left|\bar{K}^{0}\right\rangle \sim\binom{\bar{d}}{s}
\end{aligned} \quad\left\{\begin{array}{l}
C P\left|K^{0}\right\rangle=-\left|\bar{K}^{0}\right\rangle \\
C P\left|\bar{K}^{0}\right\rangle=-\left|K^{0}\right\rangle
\end{array}\right.
$$

K^{0} and K^{0} mix into each other because of weak interactions.
However, if $C P$ were a good symmetry, one would end up with the physical states:

$$
\begin{array}{ll}
|K\rangle_{\text {even }}=\frac{\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle}{\sqrt{2}} & \binom{C P=+1 \text { admixture: }}{\text { decays into }|\pi \pi\rangle} \\
|K\rangle_{\text {odd }}=\frac{\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle}{\sqrt{2}} & \binom{C P=-1 \text { admixture: }}{\text { has to decay into }|\pi \pi \pi\rangle}
\end{array}
$$

Intro 2: what is ϵ_{K} (experimentally)

However, the actual physical admixtures are (slightly) different:

D. Guadagnoli, Indirect CPV in K-vs. $B_{d}-$ mesons

Intro 2: what is ϵ_{K} (experimentally)

However, the actual physical admixtures are (slightly) different:

The magnitude of this $C P$ violation is accessed experimentally by measuring the amplitude ratios:

$$
\eta_{+-}=\frac{\left\langle\pi^{+} \pi^{-} \mid K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-} \mid K_{S}\right\rangle} \quad \eta_{00}=\frac{\left\langle\pi^{0} \pi^{0} \mid K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0} \mid K_{S}\right\rangle}
$$

Note: K_{L} can decay to $\pi \pi$ either directly or indirectly, namely via mixing into K_{s}
D. Guadagnoli, Indirect CPV in K-vs. $B_{d}-$ mesons

Intro 2: what is ϵ_{K} (experimentally)

However, the actual physical admixtures are (slightly) different:

$$
\begin{aligned}
& \left|K_{S}\right\rangle \propto|K\rangle_{\text {even }}+\bar{\epsilon}|K\rangle_{\text {odd }} \\
& \left|K_{L}\right\rangle \propto|K\rangle_{\text {odd }}+\epsilon|K\rangle_{\text {even }}
\end{aligned} \quad\binom{\text { Reflecting the experimental fact that }}{\text { mixing (slightly) violates } C P}
$$

The magnitude of this $C P$ violation is accessed experimentally by measuring the amplitude ratios:

$$
\eta_{+-}=\frac{\left\langle\pi^{+} \pi^{-} \mid K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-} \mid K_{S}\right\rangle} \quad \eta_{00}=\frac{\left\langle\pi^{0} \pi^{0} \mid K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0} \mid K_{S}\right\rangle}
$$

Note: K_{L} can decay to $\pi \pi$ either directly or indirectly, namely via mixing into K_{s}

It turns out that the corresponding types of CP violation can be disentangled by the following quantities:

$$
\begin{array}{rr}
\epsilon_{K}=\frac{1}{3}\left(\eta_{00}+2 \eta_{+-}\right) & \epsilon^{\prime}=\frac{1}{3}\left(\eta_{+-}-\eta_{00}\right) \\
\hline \begin{array}{l}
\text { Indirect" CP violation } \\
\text { (through mixing) }
\end{array} & \begin{array}{l}
\text { "Direct" CP violation } \\
\text { (directly in the decay) }
\end{array}
\end{array}
$$

D. Guadagnoli, Indirect CPV in K-vs. $B_{d}-$ mesons

Intro 3: how to get the ϵ_{K} theory formula

Experiments deal with states of $K_{L, S}$, and with charged or neutral π 's.
Theory calculates with K^{0}, \bar{K}^{0} and with π states of definite isospin.
$\sqrt{\square}$ Expand the one set of states in terms of the other set as

$$
\begin{aligned}
& \left|K_{S(L)}\right\rangle=N_{\bar{\epsilon}}\left[(1+\bar{\epsilon})\left|K^{0}\right\rangle \mp(1-\bar{\epsilon})\left|\bar{K}^{0}\right\rangle\right] \\
& \left|\pi^{+} \pi^{-}\right\rangle=\sqrt{\frac{2}{3}}\left|(\pi \pi)_{I=0}\right\rangle+\sqrt{\frac{1}{3}}\left|(\pi \pi)_{I=2}\right\rangle \quad\left|\pi^{0} \pi^{0}\right\rangle=\sqrt{\frac{1}{3}}\left|(\pi \pi)_{I=0}\right\rangle-\sqrt{\frac{2}{3}}\left|(\pi \pi)_{I=2}\right\rangle
\end{aligned}
$$

$\sqrt{\square}$ and plug into $\epsilon_{K}=\frac{1}{3}\left(\eta_{00}+2 \eta_{+-}\right)$

Intro 3: how to get the ϵ_{K} theory formula

Experiments deal with states of $K_{L, S}$, and with charged or neutral π 's.
Theory calculates with K^{0}, \bar{K}^{0} and with π states of definite isospin.
$\sqrt{6}$ Expand the one set of states in terms of the other set as

$$
\begin{aligned}
& \left|K_{S(L)}\right\rangle=N_{\bar{\epsilon}}\left[(1+\bar{\epsilon})\left|K^{0}\right\rangle \mp(1-\bar{\epsilon})\left|\bar{K}^{0}\right\rangle\right] \\
& \left|\pi^{+} \pi^{-}\right\rangle=\sqrt{\frac{2}{3}}\left|(\pi \pi)_{I=0}\right\rangle+\sqrt{\frac{1}{3}}\left|(\pi \pi)_{I=2}\right\rangle \quad\left|\pi^{0} \pi^{0}\right\rangle=\sqrt{\frac{1}{3}}\left|(\pi \pi)_{I=0}\right\rangle-\sqrt{\frac{2}{3}}\left|(\pi \pi)_{I=2}\right\rangle
\end{aligned}
$$

(7) and plug into $\epsilon_{K}=\frac{1}{3}\left(\eta_{00}+2 \eta_{+-}\right)$

One gets: $\quad \epsilon_{K}=\bar{\epsilon}+i \xi$

(Important formula \#1)

Intro 3: how to get the ϵ_{K} theory formula

Experiments deal with states of $K_{L, S}$, and with charged or neutral π 's.
Theory calculates with K^{0}, \bar{K}^{0} and with π states of definite isospin.

V Expand the one set of states in terms of the other set as

$$
\begin{aligned}
& \left|K_{S(L)}\right\rangle=N_{\bar{\epsilon}}\left[(1+\bar{\epsilon})\left|K^{0}\right\rangle \mp(1-\bar{\epsilon})\left|\bar{K}^{0}\right\rangle\right] \\
& \left|\pi^{+} \pi^{-}\right\rangle=\sqrt{\frac{2}{3}}\left|(\pi \pi)_{I=0}\right\rangle+\sqrt{\frac{1}{3}}\left|(\pi \pi)_{I=2}\right\rangle \quad\left|\pi^{0} \pi^{0}\right\rangle=\sqrt{\frac{1}{3}}\left|(\pi \pi)_{I=0}\right\rangle-\sqrt{\frac{2}{3}}\left|(\pi \pi)_{I=2}\right\rangle
\end{aligned}
$$

$\boxed{\square}$ and plug into $\epsilon_{K}=\frac{1}{3}\left(\eta_{00}+2 \eta_{+-}\right)$

One gets:

$$
\epsilon_{\mathrm{K}}=\underset{\bar{\epsilon}}{\bar{\sigma}}+i \underline{\xi}
$$

(Important formula \#1)

$$
\text { Weak phase of } K^{0} \rightarrow \pi \pi(I=0)
$$

$$
\xi \equiv \operatorname{Im}\left(A_{0}\right) / \operatorname{Re}\left(A_{0}\right)
$$

Determined from the off-diagonal entries of the mixing Hamiltonian:
$H_{W}=\left(\begin{array}{cc}M-i \Gamma / 2 & M_{12}-i \Gamma_{12} / 2 \\ M_{12}^{*}-i \Gamma_{12}^{*} / 2 & M-i \Gamma / 2\end{array}\right)$

\square
Can be computed in pert. theory (with some caveats)
D. Guadagnoli, Indirect CPV in K-vs. B_{d}-mesons

Intro 3: how to get the ϵ_{K} theory formula

Solving the eigenvalue problem (namely solving $\bar{\epsilon}$ in terms of the H_{w} entries) one arrives at:

$$
\epsilon_{K}=e^{i \phi_{\epsilon}} \sin \phi_{\epsilon}\left(\frac{\operatorname{Im}\left(M_{12}^{K}\right)}{\Delta M_{K}}+\xi\right)
$$

D. Guadagnoli, Indirect CPV in K-vs. B_{d}-mesons

Intro 3: how to get the ϵ_{K} theory formula

Solving the eigenvalue problem (namely solving $\bar{\epsilon}$ in terms of the H_{w} entries) one arrives at:

$$
\epsilon_{K}=e^{i \phi_{\epsilon}} \sin \phi_{\epsilon}\left(\frac{\operatorname{Im}\left(M_{12}^{K}\right)}{\Delta M_{K}}+\xi\right)
$$

Recap: The quantities relevant to this formula are

$$
\left.\begin{array}{l}
\Delta M_{K} \equiv m_{K_{L}}-m_{K_{S}} \simeq 3.5 \times 10^{-15} \mathrm{GeV} \\
\Delta \Gamma_{K} \equiv \Gamma_{K_{L}}-\Gamma_{K_{S}} \simeq-7.4 \times 10^{-15} \mathrm{GeV}
\end{array}\right\} \begin{aligned}
& \text { Note: } \\
& \Delta \Gamma_{K} \approx-2 \Delta M_{K} \\
& \phi_{\epsilon} \equiv \arctan \left(-\frac{\Delta M_{K}}{\Delta \Gamma_{K} / 2}\right)=(43.5 \pm 0.7)^{\circ}
\end{aligned}
$$

$$
M_{12}^{K} \equiv\left\langle K^{0}\right| \mathcal{H}_{\Delta S=2}\left|\bar{K}^{0}\right\rangle
$$

Amplitude for K-mixing:

sensitive to non-SM contributions

$$
\xi \equiv \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}} \quad \begin{array}{ll}
\text { with } A_{0} \text { the amplitude for the decay } \\
\mathrm{K}^{0} \rightarrow \pi \pi(0 \text {-isospin })
\end{array}
$$

D. Guadagnoli, Indirect CPV in K-vs. $B_{d}-$ mesons

Usual approximations

 in the ϵ_{K} formula$$
\left[\epsilon_{K}=e^{i \phi_{\epsilon}} \sin \phi_{\epsilon}\left(\frac{\operatorname{Im}\left(M_{12}^{K}\right)}{\Delta M_{K}}+\xi\right)\right)
$$

Note

The formula typically adopted in phenomenology takes

- $\xi \rightarrow 0$
- $\phi_{\epsilon}=45^{\circ}$

Since both the deviations of ϕ_{ϵ} from 45° and ξ from zero are corrections, one can rewrite the general formula for ϵ_{κ} as
$\epsilon_{K}=\kappa_{\epsilon} \times \epsilon_{K}\left(\xi=0, \phi_{\epsilon}=45^{\circ}\right)$
with κ_{ϵ} close to 1 by definition

Usual approximations

 in the ϵ_{κ} formula$$
\left[\epsilon_{K}=e^{i \phi_{\epsilon}} \sin \phi_{\epsilon}\left(\frac{\operatorname{Im}\left(M_{12}^{K}\right)}{\Delta M_{K}}+\xi\right)\right)
$$

Note

The formula typically adopted in phenomenology takes

- $\xi \rightarrow 0$
- $\phi_{\epsilon}=45^{\circ}$

Since both the deviations of ϕ_{ϵ} from 45° and ξ from zero are corrections, one can rewrite the general formula for ϵ_{κ} as
$\epsilon_{K}=\kappa_{\epsilon} \times \epsilon_{K}\left(\xi=0, \phi_{\epsilon}=45^{\circ}\right)$
with κ_{ϵ} close to 1 by definition

How close is $\boldsymbol{\kappa}_{\epsilon}$ to unity?

In the Standard Model, we estimated [See: Buras, DG, PRD08]

$$
\kappa_{\epsilon}=0.92 \pm 0.02
$$

Note: the corrections from
$\xi \neq 0$ AND $\phi_{\epsilon} \neq 45^{\circ}$
have like sign.

This accident builds up a - 8 \% total correction!

How to estimate κ_{ϵ}

As we saw before,
κ_{ϵ} is defined by the relation
$\epsilon_{K}=\kappa_{\epsilon} \times \epsilon_{K}\left(\xi=0, \phi_{\epsilon}=45^{\circ}\right) \quad \Rightarrow \quad \kappa_{\epsilon}=\frac{\sin \phi_{\epsilon}}{1 / \sqrt{2}} \times\left(1+\Delta_{\epsilon}\right)$

- Parameterizes the effect of $\xi \neq 0$.
- It is dominated by QCDpenguin operator contributions to the process $\mathrm{K} \rightarrow \pi \pi$, that are very hard to compute directly.

How to estimate κ_{ϵ}

As we saw before, κ_{ϵ} is defined by the relation
$\epsilon_{K}=\kappa_{\epsilon} \times \epsilon_{K}\left(\xi=0, \phi_{\epsilon}=45^{\circ}\right) \quad \Rightarrow \quad \kappa_{\epsilon}=\frac{\sin \phi_{\epsilon}}{1 / \sqrt{2}} \times\left(1+\Delta_{\epsilon}\right)$

- Parameterizes the effect of $\xi \neq 0$.
- It is dominated by QCDpenguin operator contributions to the process $\mathrm{K} \rightarrow \pi \pi$, that are very hard to compute directly.

However, κ_{ϵ} can be estimated indirectly, through $\epsilon^{\prime} / \epsilon$, using the relation

$$
\frac{\epsilon^{\prime}}{\epsilon}=-\omega \Delta_{\epsilon}(1-\Omega)
$$

- $\omega=\operatorname{Re}\left(A_{2}\right) / \operatorname{Re}\left(A_{0}\right)=0.045$ is known very precisely (" $\Delta I=1 / 2$ rule")
- Ω represents the ratio between EW-penguin and QCD-penguin contributions to $\epsilon^{\prime} / \epsilon$
- Ω is much more under control theoretically than ξ

How to estimate κ_{ϵ}

As we saw before, κ_{ϵ} is defined by the relation
$\epsilon_{K}=\kappa_{\epsilon} \times \epsilon_{K}\left(\xi=0, \phi_{\epsilon}=45^{\circ}\right) \quad \Rightarrow \quad \kappa_{\epsilon}=\frac{\sin \phi_{\epsilon}}{1 / \sqrt{2}} \times\left(1+\Delta_{\epsilon}\right)$

- Parameterizes the effect of $\xi \neq 0$.
- It is dominated by QCDpenguin operator contributions to the process $\mathrm{K} \rightarrow \pi \pi$, that are very hard to compute directly.

However, κ_{ϵ} can be estimated indirectly, through $\epsilon^{\prime} / \epsilon$, using the relation

$$
\frac{\epsilon^{\prime}}{\epsilon}=-\omega \Delta_{\epsilon}(1-\Omega)
$$

$$
\begin{aligned}
\Delta_{\epsilon} & =-\frac{1}{\omega(1-\Omega)}\left[\frac{\epsilon^{\prime}}{\epsilon}\right]_{\exp } \\
& =-0.054(1 \pm 25 \%)
\end{aligned}
$$

- $\omega=\operatorname{Re}\left(A_{2}\right) / \operatorname{Re}\left(A_{0}\right)=0.045$ is known very precisely (" $\Delta I=1 / 2$ rule")
- Ω represents the ratio between EW-penguin and QCD-penguin contributions to $\epsilon^{\prime} / \epsilon$
- Ω is much more under control theoretically than ξ

Using

- $\epsilon^{\prime} / \epsilon=(1.66 \pm 0.26) \times 10^{-3}$
- $\Omega=0.33(1 \pm 20 \%) \quad$ [within the SM$]$
D. Guadagnoli, Indirect CPV in K-vs. B_{d}-mesons

A closer look at the OPE

\square We arrived at $\left|\epsilon_{K}\right|=\sin \phi_{\epsilon}\left[\frac{\operatorname{Im}\left(M_{12}\right)}{\Delta m_{K}}+\xi\right] \longrightarrow \operatorname{Im}\left(M_{12}\right)=\operatorname{Im}\left(M_{12}^{(6)}\right)+\ldots\binom{$ What about }{ this? }

A closer look at the OPE

W We arrived at $\left|\epsilon_{K}\right|=\sin \phi_{\epsilon}\left[\frac{\operatorname{Im}\left(M_{12}\right)}{\Delta m_{K}}+\xi\right] \longrightarrow \operatorname{Im}\left(M_{12}\right)=\operatorname{Im}\left(M_{12}^{(6)}\right)+\ldots\binom{$ What about }{ this? }

V Dominant contributions to M_{12}
$\square M_{12}^{(6)}$:

$$
\left\{\begin{array}{l}
Q_{6}=(\bar{d} s)_{V-A}(\bar{d} s)_{V-A} \\
(\Delta \mathrm{~S}=2 \text { operators })
\end{array}\right)
$$

A closer look at the OPE

We arrived at $\left|\epsilon_{K}\right|=\sin \phi_{\epsilon}$

■ $\left(\boldsymbol{M}_{12}\right)_{\text {long-dist. }}$: two insertions of $\Delta \mathrm{S}=1$ operators

Main point about this diag.: Its absorptive part is exactly the leading contribution to ξ. So, if we keep ξ, we have to include the dispersive part as well, i.e. $\left(M_{12}\right)_{\text {long-dist }}$

[^0]Within ChPT, the only $\Delta \mathrm{S}=1$ operator relevant for our calculation at $\mathrm{O}\left(p^{2}\right)$ is:
$L_{\Delta S=1}^{(2)}=F^{4} G_{8}\left(\partial_{\mu} U^{+} \partial^{\mu} U\right)_{23}+$ h.c.

In particular: $\quad A_{0}=A\left[K^{0} \rightarrow(\pi \pi)_{l=0}\right] \propto G_{8}$
implying
$\left(M_{12}\right)_{G_{8}^{2}} \propto\left(G_{8}^{*}\right)^{2} \Rightarrow \frac{\operatorname{Im}\left(M_{12}\right)_{G_{8}^{2}}}{\operatorname{Re}\left(M_{12}\right)_{G_{8}^{2}}}=-2 \xi$
$\left(\mathbf{8}_{L}, \mathbf{1}_{R}\right)$ operator under $\operatorname{SU}(3)_{L} \times \operatorname{SU}(3)_{R}$
responsible for the " $\Delta I=1 / 2$ rule"
Two consequences:
(a) its coupling is phen. enhanced
(b) its coupling can be determined from exp.

M_{12} within ChPT

Within ChPT, the only $\Delta \mathrm{S}=1$ operator relevant for our calculation at $\mathrm{O}\left(p^{2}\right)$ is:

$$
L_{\Delta S=1}^{(2)}=F^{4} G_{8}\left(\partial_{\mu} U^{+} \partial^{\mu} U\right)_{23}+\text { h.c. }
$$

In particular: $\quad A_{0}=A\left[K^{0} \rightarrow(\pi \pi)_{l=0}\right] \propto G_{8}$ implying
$\left(M_{12}\right)_{G_{8}^{2}} \propto\left(G_{8}^{*}\right)^{2} \Rightarrow \frac{\operatorname{Im}\left(M_{12}\right)_{G_{8}^{2}}}{\operatorname{Re}\left(M_{12}\right)_{G_{8}^{2}}}=-2 \xi$
$\left(\mathbf{8}_{L}, \mathbf{1}_{R}\right)$ operator under $\operatorname{SU}(3)_{L} \times \operatorname{SU}(3)_{R}$
\square responsible for the " $\Delta I=1 / 2$ rule"
Two consequences:
(a) its coupling is phen. enhanced
(b) its coupling can be determined from exp.

V Therefore $\operatorname{Im}\left(M_{12}\right)=\operatorname{Im}\left(M_{12}^{(6)}\right)+\begin{gathered}\operatorname{Im}\left(M_{12}\right)_{G_{8}^{2}} \\ \text { II } \\ -\xi\left(\Delta m_{K}\right)_{G_{8}^{2}}\end{gathered}+\left\{\right.$ non- $\left.G_{8}^{2}\right\}$
namely $\quad\left|\epsilon_{K}\right|=\sin \phi_{\epsilon}\left[\frac{\operatorname{Im}\left(M_{12}^{(6)}\right)}{\Delta m_{K}}+\xi\left(1-\frac{\left(\Delta m_{K}\right)_{G_{8}^{2}}}{\Delta m_{K}}\right)\right] \quad$ (Important formula \#2)

Long-distance contrib's to M_{12} act as a correction to the ξ piece.
The problem is restated into that of computing the $G_{8}{ }^{2}$ contributions to the mass splitting:

$$
\begin{gathered}
\left(\Delta m_{K}\right)_{G_{8}^{2}}: \xrightarrow{\bar{K}^{0}}+\frac{\pi^{0}, \eta\left(\eta^{\prime}\right)}{}+\frac{K^{0}}{}+\cdots \text { (Gell-Mann - Okubo) }
\end{gathered}
$$

D. Guadagnoli, Indirect CPV in K-vs. B_{d}-mesons

Long-distance contrib's to M_{12} act as a correction to the ξ piece.
The problem is restated into that of computing the $G_{8}{ }^{2}$ contributions to the mass splitting:

$$
\begin{aligned}
\left(\Delta m_{K}\right)_{G_{8}^{2}}: \quad \stackrel{\bar{K}^{0}}{=}+\frac{\pi^{0}, \eta\left(\eta^{\prime}\right)}{I^{0}}+\quad \bar{K}^{0} \\
0 \text { (Gell-Mann - Okubo) }
\end{aligned}
$$

We restricted to the $(\pi \pi)$-loop: $A^{(\pi \pi)}$

- Only $A^{(\pi \pi)}$ has an absorptive part; hence it's the only component whose weak phase can be measured, from $\mathrm{K}^{0} \rightarrow(\pi \pi)_{1=0}$
- Only contribution that survives in the $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}$ limit of ChPT
- Kaon loops go into the redefinition of the local terms
- There are doubts about the reliability of kaon-loops: their effective threshold lies at $2 \mathrm{~m}_{\mathrm{k}}>\mathrm{m}_{\rho}$ (!)
M_{12} within ChPT: results

We get

$$
\frac{\left(\Delta m_{K}\right)_{G_{8}^{2}}}{\Delta m_{K}}=0.4 \pm 0.2
$$

Cross-check:

$$
\rho \equiv 1-\frac{\left(\Delta m_{K}\right)_{G_{8}^{2}}}{\Delta m_{K}}=\frac{\left(\Delta m_{K}\right)_{\text {short-dist. }}+\left(\Delta m_{K}\right)_{\eta^{\prime}}}{\Delta m_{K}}
$$

M_{12} within ChPT: results

We get

$$
\frac{\left(\Delta m_{K}\right)_{G_{8}^{2}}}{\Delta m_{K}}=0.4 \pm 0.2
$$

Cross-check:

Our calculation shows good agreement with what one would expect from the rest of the contribs known as dominant
M_{12} within ChPT: results

We get

$$
\frac{\left(\Delta m_{K}\right)_{G_{8}^{2}}}{\Delta m_{K}}=0.4 \pm 0.2
$$

Cross-check:

$$
\begin{aligned}
\rho \equiv \underbrace{1-\frac{\left(\Delta m_{K}\right)_{G_{8}^{2}}}{\Delta m_{K}}}_{\underline{0.6 \pm 0.2}}=\underbrace{\left.\Delta m_{K}\right)_{\text {short-d st.t.t }}+\left(\Delta m_{K}\right)_{\eta^{\prime}}}_{\nabla} \\
\Delta m_{K}
\end{aligned}
$$

Our calculation shows good agreement with what one would expect from the rest of the contribs known as dominant

Therefore, our final phenomenological formula for ϵ_{K} reads:

$$
\epsilon_{K}=\sin \phi_{\epsilon} e^{i \phi_{\epsilon}}\left(\frac{\operatorname{Im}\left(M_{12}^{(6)}\right)}{\Delta m_{K}}+\rho \xi\right) \quad \text { with } \rho=0.6 \pm 0.3
$$

We conservatively increase by 50% the ρ error to account for the subleading contributions from non $-\mathrm{G}_{8}{ }^{2}$ pieces

Error budget in ϵ_{κ} : intuitive arguments for the main error components
$\epsilon_{\mathrm{K}} \propto \operatorname{lm}\left(\mathrm{M}_{12}\right) \longrightarrow \bar{K}_{0}$

Error budget in ϵ_{κ} : intuitive arguments for the main error components

Main error components (building up a $\mathrm{O}(15 \%)$ total error)
(a): $\epsilon_{K} \propto \hat{B}_{K}$

Error budget in ϵ_{κ} : intuitive arguments for the main error components

Main error components (building up a $\mathrm{O}(15 \%)$ total error)
(a): $\epsilon_{K} \propto \hat{B}_{K} \quad \boldsymbol{\delta} \hat{\boldsymbol{B}}_{\boldsymbol{K}} / \hat{\boldsymbol{B}}_{\boldsymbol{K}} \approx \mathbf{5 \%}$
(b): $\left(V_{t s} V_{t d}^{*}\right)^{2}$
recall that: $\quad \mathrm{CKM}=\left(\begin{array}{ccc}\cdot & \cdot & \cdot \\ \cdot & \cdot & V_{c b} \\ V_{t d} & V_{t s} & \cdot\end{array}\right) \square \begin{cases}V_{t s} \sim V_{c b} & \left.\Rightarrow\left(V_{t s} V_{t d}^{*}\right)^{2} \sim \lambda^{2} \mid V_{c b}^{4}\right)^{(!)} \\ V_{t d} \sim \lambda V_{c b} & \mathbf{4 \delta}\left|V_{c b}\right| /\left|V_{c b}\right| \approx \mathbf{1 1 \%}\end{cases}$
D. Guadagnoli, Indirect CPV in K- vs. B_{d}-mesons

Error budget in ϵ_{κ} : intuitive arguments for the main error components

Main error components (building up a $\mathrm{O}(15 \%)$ total error)
(a): $\epsilon_{K} \propto \hat{B}_{K}$

(b): $\left(V_{t s} V_{t d}^{*}\right)^{2}$

(c):

In the $(\bar{\rho}, \bar{\eta})$ plane, the ϵ_{K} constraint produces a hyperbola
$\Rightarrow \epsilon_{K} \propto \bar{\eta}(1-\bar{\rho})=R_{t}^{2} \sin \beta \cos \beta \propto R_{t}^{2} \sin 2 \beta$
Hence $\epsilon_{K} \propto R_{t}^{2}$
$2 \delta R_{t} / R_{t} \approx 8 \%$
(this component of the error will go down with a precise γ measurement)
D. Guadagnoli, Indirect CPV in K-vs. B_{d}-mesons

Status of the problem from global fits

V The general formula for ϵ_{K} discussed here has been recently included in global CKM fits by the CKMfitter and UTfit collaborations.

Status of the problem from global fits

V The general formula for ϵ_{K} discussed here has been recently included in global CKM fits by the CKMfitter and UTfit collaborations.

Status of the problem from global fits

UTfit

We note that the new contributions in ϵ_{k} generate some tension in particular between the constraints provided by the experimental measurements of ϵ_{K} and $\sin 2 \beta$. As a consequence, the indirect determination of $\sin 2 \beta$ turns out to be larger than the experimental value by -2.0σ."

- The situation is best summarised by the UTfit compatibility plots for the relevant quantities

D. Guadagnoli, Indirect CPV in K-vs. B_{d}-mesons

Speculations on new physics

$\sqrt{ }$ The potential problem pointed out before could be just a statistical fluctuation.
Or it could indeed be a problem for the Standard Model.
To find out the truth, one needs further investigations, which are therefore very important.

Speculations on new physics

$\boxed{\square}$ The potential problem pointed out before could be just a statistical fluctuation.
Or it could indeed be a problem for the Standard Model.
To find out the truth, one needs further investigations, which are therefore very important.

V New physics

At this stage, the possibility of new physics entering the problem is of course only speculative.
One can, however, imagine two extreme scenarios for the $\epsilon_{\mathrm{K}}-\sin 2 \beta$ correlation:

Scenario 1: $\sin 2 \beta$ is SM-like.

$\epsilon_{\mathrm{K}}{ }^{\text {sM }}$ is lower than the \exp value.
New physics adds constructively to the SM contribution.

Scenario 2: $\boldsymbol{\epsilon}_{\mathrm{K}}$ is SM-like.
$\sin 2 \beta$ is higher than the \exp value (taken e.g. from $\mathrm{S}_{\psi K \mathrm{~K}}$).
Hence $\mathrm{S}_{\psi \mathrm{Ks}}=\sin 2\left(\beta+\phi_{\mathrm{d}}\right)$, with ϕ_{d} a new, negative, phase.

> More on scenario 1:
> $\sin 2 \beta=S_{J / \psi \text { ks }}$
> In this case one gets $\quad\left|\epsilon_{K}{ }^{\text {SSM }}\right|=1.85(1 \pm 15 \%) \times 10^{-3}$
> to be compared with $\quad\left|\epsilon_{\mathrm{K}}{ }^{\text {exp }}\right|=(2.229 \pm 0.012) \times 10^{-3}$

More on scenario 1:

$\sin 2 \beta=\mathrm{S}_{\mathrm{J} / \psi \mathrm{Ks}}$

In this case one gets $\quad\left|\epsilon_{K}{ }^{\text {SSM }}\right|=1.85(1 \pm 15 \%) \times 10^{-3}$
to be compared with $\quad\left|\epsilon_{\mathrm{K}}{ }^{\text {exp }}\right|=(2.229 \pm 0.012) \times 10^{-3}$

Since the SM formula for ϵ_{κ} goes as

$$
\left|\epsilon_{K}\right|^{\mathrm{SM}}=\text { [const.fact.] } \times(\underbrace{[\underbrace{\mathrm{CKM}] \cdot S_{0}\left(m_{t}^{2} / m_{W}^{2}\right.})}_{\approx 75 \% \text { of the total }}+\ldots)
$$

The simplest solution is a positive shift in the ϵ_{κ} loop function

- This solution is of MFV type. In fact, the CKM structure is preserved and non-SM physics only enters the short-distance S-function
[Buras et al., 00]
- Barring non-SM operators mediating mixing,
the above shift would be universal, i.e. also affect B_{d} and B_{s} mass differences (and cancel in their ratio)

More on scenario 2:

$\sin 2 \beta_{\mathrm{J} / \psi \mathrm{Ks}}=\sin 2\left(\beta+\phi_{\mathrm{d}}\right)$
Lunghi, Soni, PLB08

In this case the phase β cannot be accessed directly from the $\mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$ mode
However, one possible way to determine β is by using $\epsilon_{\kappa}, \Delta \mathrm{m}_{\mathrm{d}}$ and $\Delta \mathrm{m}_{\mathrm{s}}$ only.

An indicative figure, obtained with the CKMfitter package, is

$$
\sin 2 \beta=0.88_{-0.12}^{+0.11}
$$

to be compared with

$$
\sin 2 \beta_{\mathrm{J} / \psi \mathrm{Ks}}=0.681 \pm 0.025
$$

At face value, this allows for $\phi_{\mathrm{d}} \approx-10^{\circ}$

More on scenario 2:

See also:

$\sin 2 \beta_{J / \psi \mathrm{Ks}}=\sin 2\left(\beta+\phi_{\mathrm{d}}\right)$

Lunghi, Soni, PLB08

In this case the phase β cannot be accessed directly from the $\mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}$ mode
However, one possible way to determine β is by using $\epsilon_{\kappa}, \Delta \mathrm{m}_{\mathrm{d}}$ and $\Delta \mathrm{m}_{\mathrm{s}}$ only.

An indicative figure, obtained with the CKMfitter package, is

$$
\sin 2 \beta=0.88_{-0.12}^{+0.11}
$$

to be compared with

$$
\sin 2 \beta_{\mathrm{J} / \psi \mathrm{Ks}}=0.681 \pm 0.025
$$

At face value, this allows for $\phi_{\mathrm{d}} \approx-10^{\circ}$

Buras, DG, PRD08

The B_{d} new-physics phase, negative, may be correlated (even in size) with the negative new phase in B_{s} hinted at by Fermilab

In fact, it could even be:

$$
\phi_{B}=\phi_{d} \approx \phi_{s} \approx-9^{\circ}
$$

$\backsim\left\{\begin{array}{l}\beta_{\psi K_{s}}<\beta \approx 30^{\circ} \\ S_{\psi \phi} \approx 0.4\end{array}\right.$

D. Guadagnoli, Indirect CPV in K- vs. B_{d}-mesons

Conclusions

च The correlation $\epsilon_{\kappa}-\sin 2 \beta$ is a fundamental consistency check of SM CP violation. With regards to $C P$ violation, it is the only one available at present.

Ø Our analysis shows that a (more) accurate SM formula for ϵ_{κ} implies a non-negligible downward shift in the central value.

చ Looking at the entailed prediction for sin2 2 , the above shift hints at a tension. While, with present errors, no statement above 2 sigma can be made, the issue warrants further investigation.

Conclusions

(The correlation $\epsilon_{K}-\sin 2 \beta$ is a fundamental consistency check of SM CP violation. With regards to $C P$ violation, it is the only one available at present.
\square Our analysis shows that a (more) accurate SM formula for ϵ_{K} implies a non-negligible downward shift in the central value.
\square Looking at the entailed prediction for $\sin 2 \beta$, the above shift hints at a tension. While, with present errors, no statement above 2 sigma can be made, the issue warrants further investigation.

V Reaching firm(er) conclusions about the tension requires improvement in the theoretical input. To get an idea, the leading top-top contribution ($\approx 75 \%$) to $\epsilon_{K}{ }^{\text {SM }}$ goes as:

$$
\begin{gathered}
\left|\epsilon_{K}\right|^{\mathrm{SM}} \propto \kappa_{\epsilon} \hat{B}_{K}\left|V_{c b}\right|^{4}\left|V_{u s}\right|^{2} R_{t}^{2} \sin 2 \beta \\
\square \frac{\delta\left|\epsilon_{K}\right|^{\mathrm{SM}}}{\left|\epsilon_{K}\right|^{\mathrm{SM}}} \approx \sqrt{\left(\frac{\delta \hat{B}_{K}}{\hat{B}_{K}}\right)}
\end{gathered}
$$

Conclusions

च The correlation $\epsilon_{\kappa}-\sin 2 \beta$ is a fundamental consistency check of SM CP violation. With regards to $C P$ violation, it is the only one available at present.

Ø Our analysis shows that a (more) accurate SM formula for ϵ_{K} implies a non-negligible downward shift in the central value.

■ Looking at the entailed prediction for sin2 2 , the above shift hints at a tension. While, with present errors, no statement above 2 sigma can be made, the issue warrants further investigation.

च Reaching firm(er) conclusions about the tension requires improvement in the theoretical input. To get an idea, the leading top-top contribution ($\approx 75 \%$) to $\epsilon_{\kappa}{ }^{\text {SM }}$ goes as:

$$
\begin{aligned}
\left|\epsilon_{K}\right|^{\mathrm{SM}} \propto \kappa_{\epsilon} \hat{B}_{K}\left|V_{c b}\right|^{4}\left|V_{u s}\right|^{2} R_{t}^{2} \sin 2 \beta \\
\xrightarrow{\square} \frac{\delta\left|\epsilon_{K}\right|^{\mathrm{SM}}}{\left|\epsilon_{K}\right|^{\mathrm{SM}}} \approx \sqrt{\left.\left.\left(\frac{\delta \hat{B}_{K}}{\hat{B}_{K}}\right)\right)^{2}+\left(4 \frac{\delta\left|V_{c b}\right|}{\left|V_{c b}\right|}\right)^{2}+\left(2 \frac{\delta R_{t}}{R_{t}}\right)\right)^{2}} \approx 15 \%
\end{aligned}
$$

Important is also the effort towards a NNLO calculation of the $\eta_{c t}$ (Brod+Gorbahn, 2010) and $\eta_{\text {cc }}$ coefficients. Note in fact that:

$$
\left.\begin{array}{c}
\left|\epsilon_{K}^{\mathrm{SM}}\right|=\{\mathrm{t}-\mathrm{t} \text { contrib. }\} \\
+\mathbf{+ 7 2 . 6 \%}
\end{array}+\underset{\{\mathrm{c}-\mathrm{t} \text { contrib. }\}}{ }\right\}+\{\mathrm{c}-\mathrm{c}-\mathrm{c} \text { contrib. }\} \%
$$

D. Guadagnoli, Indirect CPV in K-vs. B_{d}-mesons

[^0]: D. Guadagnoli, Indirect CPV in K-vs. B_{d}-mesons

