On the consistency between CP violation in the *K*- vs. *B_d*-systems within the SM

Diego Guadagnoli Excellence Cluster Universe, Technische Universitaet Muenchen

Short statement of the problem

CPV discussed here: CPV in (meson-antimeson) mixing

Intro 2: what is ϵ_{κ} (experimentally)

However, the actual physical admixtures are (slightly) different:

Intro 2: what is ϵ_{κ} (experimentally)

However, the actual physical admixtures are (slightly) different:

 $|K_S\rangle \propto |K\rangle_{\text{even}} + \overline{\epsilon} |K\rangle_{\text{odd}}$ $|K_L\rangle \propto |K\rangle_{\text{odd}} + \overline{\epsilon} |K\rangle_{\text{even}}$ small parameter

The magnitude of this *CP* violation is accessed experimentally by measuring the amplitude ratios:

$$\eta_{+-} = \frac{\langle \pi^+ \pi^- | K_L \rangle}{\langle \pi^+ \pi^- | K_S \rangle} \qquad \eta_{00} = \frac{\langle \pi^0 \pi^0 | K_L \rangle}{\langle \pi^0 \pi^0 | K_S \rangle}$$

Note: K_L can decay to $\pi\pi$ either directly or indirectly, namely via mixing into K_S

"Indirect" CP violation (through mixing)

 $\epsilon' = \frac{1}{2}(\eta_{+-} - \eta_{00})$

"Direct" CP violation (directly in the decay)

(J)

Experiments deal with states of
$$K_{l,s}$$
, and with charged or neutral π 's.

Theory calculates with K^{0} , \overline{K}^{0} and with π states of definite isospin.

Expand the one set of states in terms of the other set as

$$|K_{S(L)}\rangle = N_{\bar{\epsilon}} [(1+\bar{\epsilon})|K^{0}\rangle \mp (1-\bar{\epsilon})|\overline{K}^{0}\rangle]$$

$$|\pi^{+}\pi^{-}\rangle = \sqrt{\frac{2}{3}} |(\pi\pi)_{I=0}\rangle + \sqrt{\frac{1}{3}} |(\pi\pi)_{I=2}\rangle \qquad |\pi^{0}\pi^{0}\rangle = \sqrt{\frac{1}{3}} |(\pi\pi)_{I=0}\rangle - \sqrt{\frac{2}{3}} |(\pi\pi)_{I=2}\rangle$$

$$ightarrow and plug into \quad \epsilon_{K} = \frac{1}{3} (\eta_{00} + 2\eta_{+-})$$

Experiments deal with states of $K_{L,s}$, and with charged or neutral π 's.

Theory calculates with K^{0} , \overline{K}^{0} and with π states of definite isospin.

Expand the one set of states in terms of the other set as

$$|K_{S(L)}\rangle = N_{\overline{\epsilon}} [(1+\overline{\epsilon})|K^{0}\rangle \mp (1-\overline{\epsilon})|\overline{K}^{0}\rangle]$$

$$|\pi^{+}\pi^{-}\rangle = \sqrt{\frac{2}{3}} |(\pi\pi)_{I=0}\rangle + \sqrt{\frac{1}{3}} |(\pi\pi)_{I=2}\rangle \qquad |\pi^{0}\pi^{0}\rangle = \sqrt{\frac{1}{3}} |(\pi\pi)_{I=0}\rangle - \sqrt{\frac{2}{3}} |(\pi\pi)_{I=2}\rangle$$

$$\boxed{M} \text{ and plug into } \epsilon_{K} = \frac{1}{3} (\eta_{00} + 2\eta_{+-})$$

One gets:	$\epsilon_{\kappa} = \overline{\epsilon} + i\xi$

Important formula #1

Experiments deal with states of $K_{l,s}$, and with charged or neutral π 's.

Theory calculates with K^0 , \overline{K}^0 and with π states of definite isospin.

Expand the one set of states in terms of the other set as

$$|K_{S(L)}\rangle = N_{\overline{\epsilon}} [(1+\overline{\epsilon})|K^{0}\rangle \mp (1-\overline{\epsilon})|\overline{K}^{0}\rangle]$$

$$|\pi^{+}\pi^{-}\rangle = \sqrt{\frac{2}{3}} |(\pi\pi)_{I=0}\rangle + \sqrt{\frac{1}{3}} |(\pi\pi)_{I=2}\rangle \qquad |\pi^{0}\pi^{0}\rangle = \sqrt{\frac{1}{3}} |(\pi\pi)_{I=0}\rangle - \sqrt{\frac{2}{3}} |(\pi\pi)_{I=2}\rangle$$

$$\overrightarrow{M} \text{ and plug into } \epsilon_{K} = \frac{1}{3} (\eta_{00} + 2\eta_{+-})$$

Solving the eigenvalue problem (namely solving $\overline{\epsilon}$ in terms of the H_w entries) one arrives at:

$$\epsilon_K = e^{i\phi_\epsilon} \sin \phi_\epsilon \left(\frac{\operatorname{Im}(M_{12}^K)}{\Delta M_K} + \xi \right)$$

S

Solving the eigenvalue problem (namely solving $\overline{\epsilon}$ in terms of the H_w entries) one arrives at:

$$\epsilon_K = e^{i\phi_\epsilon} \sin \phi_\epsilon \left(\frac{\operatorname{Im}(M_{12}^K)}{\Delta M_K} + \xi \right)$$

Recap: The quantities relevant to this formula are

$$\Delta M_{K} \equiv m_{K_{L}} - m_{K_{S}} \simeq 3.5 \times 10^{-15} \text{GeV}$$

$$\Delta \Gamma_{K} \equiv \Gamma_{K_{L}} - \Gamma_{K_{S}} \simeq -7.4 \times 10^{-15} \text{GeV}$$

$$\Delta \Gamma_{K} \approx -2\Delta M_{K}$$

$$\phi_{\epsilon} \equiv \arctan\left(-\frac{\Delta M_{K}}{\Delta \Gamma_{K}/2}\right) = (43.5 \pm 0.7)^{\circ}$$

$$M_{12}^{K} \equiv \langle K^{0} | \mathcal{H}_{\Delta S=2} | \overline{K}^{0} \rangle$$

$$Amplitude \text{ for K-mixing:} \text{ sensitive to non-SM contributions}$$

$$\xi \equiv \frac{\text{Im}A_{0}}{\text{Re}A_{0}}$$

$$\text{with } A_{0} \text{ the amplitude for the decay} K^{\circ} \to \pi\pi \text{ (0-isospin)}$$

Usual approximations in the ϵ_{κ} formula

$$\epsilon_K = e^{i\phi_\epsilon} \sin \phi_\epsilon \left(\frac{\operatorname{Im}(M_{12}^K)}{\Delta M_K} + \xi \right)$$

Note

The formula typically adopted in phenomenology takes

- $\xi \rightarrow 0$ $\phi_{\epsilon} = 45^{\circ}$

Since both the deviations of ϕ_ϵ from 45° and ξ from zero are corrections, one can rewrite the general formula for ϵ_{κ} as

$$\epsilon_K = \kappa_\epsilon \times \epsilon_K (\xi = 0, \ \phi_\epsilon = 45^\circ)$$

with κ_{ϵ} close to 1 by definition

Usual approximations in the ϵ_{κ} formula

$$\epsilon_K = e^{i\phi_\epsilon} \sin \phi_\epsilon \left(\frac{\operatorname{Im}(M_{12}^K)}{\Delta M_K} + \xi \right)$$

Note

The formula typically adopted in phenomenology takes

- $\xi \to 0$ $\phi_e = 45^\circ$

Since both the deviations of ϕ_{ϵ} from 45° and $\xi\,$ from zero are corrections, one can rewrite the general formula for $\epsilon_{\kappa}\,{\rm as}\,$

$$\epsilon_K = \kappa_\epsilon \times \epsilon_K (\xi = 0, \ \phi_\epsilon = 45^\circ)$$

with κ_{ϵ} close to 1 by definition

How to estimate κ_{ϵ}

As we saw before, κ_{ϵ} is defined by the relation

 ϵ_K

$$= \kappa_{\epsilon} \times \epsilon_{K}(\xi = 0, \ \phi_{\epsilon} = 45^{\circ}) \qquad \Longrightarrow \qquad \kappa_{\epsilon} = \frac{\sin \phi_{\epsilon}}{1/\sqrt{2}} \times (1 + 1)^{\circ}$$

- Parameterizes the effect of $\xi \neq 0$.
- It is dominated by QCDpenguin operator contributions to the process K → ππ, that are very hard to compute directly.

How to estimate κ_{e}

As we saw before, κ_{ϵ} is defined by the relation

$$\epsilon_K = \kappa_\epsilon \times \epsilon_K (\xi = 0, \ \phi_\epsilon = 45^\circ)$$

- Parameterizes the effect of $\xi \neq 0$.
- It is dominated by QCDpenguin operator contributions to the process K → ππ, that are very hard to compute directly.

5

However, κ_{ϵ} can be estimated indirectly, through ϵ' / ϵ , using the relation

 $\kappa_{\epsilon} = \frac{\sin \phi_{\epsilon}}{1/\sqrt{2}} \times (1 +$

$$\frac{\epsilon'}{\epsilon} = -\omega\Delta_{\epsilon} \ (1-\Omega)$$

- ω = Re(A₂)/Re(A₀) = 0.045 is known very precisely ("∠I = ½ rule")
- Ω represents the ratio between EW-penguin and QCD-penguin contributions to ϵ' / ϵ
- Ω is much more under control theoretically than ξ

How to estimate κ_{e}

As we saw before, κ_{ϵ} is defined by the relation

 $\epsilon_K = \kappa_\epsilon \times \epsilon_K (\xi = 0, \ \phi_\epsilon = 45^\circ) \implies \kappa_\epsilon = \frac{\sin \phi_\epsilon}{1/\sqrt{2}} \times (1 + \xi)$

- Parameterizes the effect of $\xi \neq 0$.
- It is dominated by QCDpenguin operator contributions to the process K → ππ, that are very hard to compute directly.

J.

However, κ_{ϵ} can be estimated indirectly, through ϵ' / ϵ , using the relation

$$\frac{\epsilon'}{\epsilon} = -\omega \Delta_{\epsilon} (1 - \Omega)$$
$$\Delta_{\epsilon} = -\frac{1}{\omega(1 - \Omega)} \left[\frac{\epsilon'}{\epsilon}\right]_{exp}$$
$$= -0.054 (1 \pm 25\%)$$

• $\omega = Re(A_2)/Re(A_0) = 0.045$ is known very precisely (" $\Delta I = \frac{1}{2}$ rule")

• Ω represents the ratio between EW-penguin and QCD-penguin contributions to ϵ' / ϵ

• Ω is much more under control theoretically than ξ

\overline{M} Dominant contributions to M_{12}

M Dominant contributions to M_{12}

M_{12} within ChPT

Within ChPT, the only $\Delta S = 1$ operator relevant for our calculation at $O(p^2)$ is:

$$L^{(2)}_{\Delta S=1} = F^4 G_8 (\partial_\mu U^+ \partial^\mu U)_{23} + \text{h.c.}$$

In particular: $A_0 = A[K^0 \rightarrow (\pi \pi)_{I=0}] \propto G_8$

implying

$$(M_{12})_{G_8^2} \propto (G_8^*)^2 \implies \frac{\operatorname{Im}(M_{12})_{G_8^2}}{\operatorname{Re}(M_{12})_{G_8^2}} = -2\xi$$

($\boldsymbol{8}_{L}$, $\boldsymbol{1}_{R}$) operator under SU(3)_L x SU(3)_R responsible for the " $\Delta I = \frac{1}{2}$ rule" Two consequences: (*a*) its coupling is phen. enhanced (*b*) its coupling can be determined from exp.

M₁₂ within ChPT

Within ChPT, the only $\Delta S = 1$ operator relevant for our calculation at $O(p^2)$ is:

$$L_{\Delta S=1}^{(2)} = F^{4}G_{8}(\partial_{\mu}U^{+}\partial^{\mu}U)_{23} + \text{h.c.}$$
In particular: $A_{0} = A[K^{0} \rightarrow (\pi\pi)_{I=0}] \propto G_{8}$
implying
 $(M_{12})_{G_{1}^{2}} \propto (G_{8}^{*})^{2} \implies \frac{\text{Im}(M_{12})_{G_{1}^{2}}}{\text{Re}(M_{12})_{G_{1}^{2}}} = -2\xi$

$$(a) \text{ its coupling is phen. enhanced}$$
 $(b) \text{ its coupling can be determined from exp.}$

$$(M_{12})_{G_{1}^{2}} \propto (G_{8}^{*})^{2} \implies \frac{\text{Im}(M_{12})_{G_{1}^{2}}}{\text{Re}(M_{12})_{G_{1}^{2}}} = -2\xi$$

$$(a) \text{ its coupling can be determined from exp.}$$

$$(b) \text{ its coupling can be determined from exp.}$$

$$(c) \text{ Inderse in } M(M_{12}) = \text{Im}(M_{12}^{(6)}) + \text{Im}(M_{12})_{G_{1}^{2}} + \{\text{non-}G_{8}^{2}\}$$

$$(c) \text{ namely} \quad |\epsilon_{K}| = \sin \phi_{\epsilon} \left[\frac{\text{Im}(M_{12}^{(6)})}{\Delta m_{K}} + \xi \left(1 - \frac{(\Delta m_{K})_{G_{1}^{2}}}{\Delta m_{K}} \right) \right] \quad \text{Important formula #2}$$

$M_{12} \text{ within ChPT: continued}$ $K_{12} \text{ Long-distance contrib's to } M_{12} \text{ act as a correction to the } \xi \text{ piece.}$ The problem is restated into that of computing the G_g^2 contributions to the mass splitting: $(\Delta m_K)_{G_8^2} : \overline{K}^0 \xrightarrow{\pi^0, \eta(\eta')} K^0 + \overline{K}^0 \xrightarrow{\pi^0, \eta(\eta')} K^0 \xrightarrow{K^0} \pi \xrightarrow{K$

M_{12} within ChPT: continued

Long-distance contrib's to M_{12} act as a correction to the ξ piece. The problem is restated into that of computing the G_{g^2} contributions to the mass splitting:

We restricted to the $(\pi \pi)$ -loop: $A^{(\pi \pi)}$

- Only $A^{(\pi\pi)}$ has an absorptive part; hence it's the only component whose weak phase can be measured, from $K^0 \rightarrow (\pi \pi)_{I=0}$
- Only contribution that survives in the $SU(2)_{L} \times SU(2)_{R}$ limit of ChPT
- Kaon loops go into the redefinition of the local terms
- Donoghue, 0909.0021 There are doubts about the reliability of kaon-loops: their effective threshold lies at 2 m_{κ} > m_a (!)</sub>

*M*₁₂ within ChPT: results

We get

$$\frac{\left(\Delta m_K\right)_{G_8^2}}{\Delta m_K} = 0.4 \pm 0.2$$

Cross-check:

$$\rho \equiv 1 - \frac{(\Delta m_K)_{G_8^2}}{\Delta m_K} = \frac{(\Delta m_K)_{\text{short-dist.}} + (\Delta m_K)_{\eta'}}{\Delta m_K}$$

*M*₁₂ within ChPT: results

We get

$$\frac{(\Delta m_K)_{G_8^2}}{\Delta m_K} = 0.4 \pm 0.2$$

Cross-check:

Our calculation shows good agreement with what one would expect from the rest of the contribs known as dominant

$$\frac{(\Delta m_K)_{G_8^2}}{\Delta m_K} = 0.4 \pm 0.2$$

Cross-check:

 $\rho \equiv 1$

Our calculation shows good agreement with what one would expect from the rest of the contribs known as dominant

Therefore, our final phenomenological formula for ϵ_{κ} reads:

$$\epsilon_{K} = \sin \phi_{\epsilon} e^{i\phi_{\epsilon}} \left(\frac{\operatorname{Im}(M_{12}^{(6)})}{\Delta m_{K}} + \rho \xi \right) \qquad \text{with } \rho = 0.6 \pm 0.3 \qquad \text{We conservatively increase by 50% the } \rho \text{ error to account for the subleading contributions from non-} G_{8}^{2} \text{ pieces}$$

Main error components (building up a O(15%) total error)

(a):
$$\epsilon_K \propto \hat{B}_K$$
 $\delta \hat{B}_K / \hat{B}_K \approx 5\%$

Main error components (building up a O(15%) total error)

Main error components (building up a O(15%) total error)

(a):
$$\epsilon_{K} \propto \hat{B}_{K}$$

(b): $(V_{ts}V_{td}^{*})^{2}$
recall that: $CKM = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & V_{cb} \\ V_{td} & V_{ts} & \cdot \end{pmatrix} \longrightarrow \begin{cases} V_{ts} \sim V_{cb} \Rightarrow (V_{ts}V_{td}^{*})^{2} \sim \lambda^{2} |V_{cb}|^{4} (!) \\ V_{td} \sim \lambda V_{cb} \end{cases}$
 $4\delta |V_{cb}|/|V_{cb}| \approx 11\%$

In the $(\overline{\rho}, \overline{\eta})$ plane, the ϵ_{κ} constraint produces a hyperbola $\Rightarrow \epsilon_{\kappa} \propto \overline{\eta} (1 - \overline{\rho}) = R_t^2 \sin \beta \cos \beta \propto R_t^2 \sin 2\beta$ Hence $\epsilon_{\kappa} \propto R_t^2$ $2\delta R_t/R_t \approx 8\%$ (this component of the error will go down with a precise γ measurement)

The general formula for ϵ_{κ} discussed here has been recently included in global CKM fits by the CKMfitter and UTfit collaborations.

The general formula for ϵ_{κ} discussed here has been recently included in global CKM fits by the CKMfitter and UTfit collaborations.

Status of the problem from global fits

The **potential problem** pointed out before could be just a statistical fluctuation.

Or it could indeed be a problem for the Standard Model.

To find out the truth, one needs **further investigations**, which are therefore very important.

The potential problem pointed out before could be just a statistical fluctuation.
 Or it could indeed be a problem for the Standard Model.
 To find out the truth, one needs further investigations, which are therefore very important.

New physics

At this stage, the possibility of new physics entering the problem is of course only speculative.

One can, however, imagine two extreme scenarios for the ϵ_{κ} - sin2 β correlation:

Scenario 1: $sin2\beta$ is SM-like.

 ϵ_{K}^{SM} is <u>lower</u> than the exp value. New physics adds constructively to the SM contribution.

Scenario 2: ϵ_{κ} is SM-like.

sin2*β* is <u>higher</u> than the exp value (taken e.g. from $S_{\psi Ks}$). Hence $S_{\psi Ks} = sin2(\beta + \phi_d)$, with ϕ_d a new, *negative*, phase.

More on scenario 1: sin2β = S _{J/ψ Ks}	
In this case one gets	$\epsilon_{\rm K}^{\rm SM}$ = 1.85 (1 ± 15%) × 10 ⁻³
to be compared with	$\epsilon_{\rm K}^{\rm exp}$ = (2.229 ± 0.012) × 10 ⁻³

wore on scenario 1: sin2β = S _{J/ψ Ks}	
In this case one gets	$ \epsilon_{\rm K}^{\rm SM} $ = 1.85 (1 ± 15%) × 10 ⁻³
to be compared with	$ \epsilon_{\rm K}^{\rm exp} $ = (2.229 ± 0.012) × 10 ⁻³

Negative.

The B_d new-physics phase, negative, may be correlated (even in size) with the negative new phase in B_s hinted at by Fermilab

In fact, it could even be:

S

 $\phi_B = \phi_d \approx \phi_s \approx -9^{\circ}$ $\oint \begin{cases} \beta_{\psi K_s} < \beta \approx 30^{\circ} \\ S_{\psi \phi} \approx 0.4 \end{cases}$

The correlation ϵ_{κ} – sin2 β is a fundamental consistency check of SM CP violation. With regards to CP violation, it is the only one available at present.

Conclusions

- Our analysis shows that a (more) accurate SM formula for ϵ_{κ} implies a non-negligible downward shift in the central value.
- Looking at the entailed prediction for $\sin 2\beta$, the above shift hints at a tension. While, with present errors, no statement above 2 sigma can be made, the issue warrants further investigation.

Conclusions

Our analysis shows that a (more) accurate SM formula for ϵ_{κ} implies a non-negligible downward shift in the central value.

Looking at the entailed prediction for $\sin 2\beta$, the above shift hints at a tension. While, with present errors, no statement above 2 sigma can be made, the issue warrants further investigation.

Reaching firm(er) conclusions about the tension requires improvement in the theoretical input. To get an idea, the leading top-top contribution ($\approx 75\%$) to ϵ_{κ}^{SM} goes as:

I The correlation ϵ_{κ} – sin2 β is a fundamental consistency check of SM CP violation. With regards to CP violation, it is the only one available at present.

Conclusions

Our analysis shows that a (more) accurate SM formula for ϵ_{κ} implies a non-negligible downward shift in the central value.

Looking at the entailed prediction for $\sin 2\beta$, the above shift hints at a tension. While, with present errors, no statement above 2 sigma can be made, the issue warrants further investigation.

Reaching firm(er) conclusions about the tension requires improvement in the theoretical input. To get an idea, the leading top-top contribution ($\approx 75\%$) to ϵ_{κ}^{SM} goes as:

