Eríka De Lucía for KLOE and KLOE-2 Collaborations

Determination of V_{us} at the KLOE experiment: present results and future perspectives

KLOE at DA Φ NE ϕ -factory

KLOE has acquired 2.5 fb⁻¹ @ $Vs=M_{\phi}$ (2001-05) + 250 pb⁻¹ off-peak @ Vs=1 GeV 1400

KLOE at DA Φ NE ϕ -factory

•4 m diameter 3.3 m length •90% helium, 10% isobutane •12582/52140 sense/tot wires All-stereo geometry Drift Chamber

 $\sigma_{r\phi} = 150 \, \mu m \, \sigma_z = 2 \, mm$ $\sigma_v = 3 \text{ mm } \sigma_p / p = 0.4 \%$ $\lambda_{\rm KS}$ = 0.6 cm $\lambda_{\rm KL}$ = 340 cm $\lambda_{K\pm} = 95 \text{ cm}$

- Lead/scintillating fiber
- 98% coverage of solid angle
- 88 modules (barrel + end-caps)
- 4880 PMTs (two side read-out)

V_{us} and V_{us}/V_{ud} from Kaon decays

$$\Gamma(K_{I3(\gamma)}) = \frac{C_{K^{2}}G_{F^{2}}M_{K^{5}}}{192\pi^{3}} S_{EW} |V_{us}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} I_{K\ell}(\lambda_{+,0}) (1 + \delta^{K}_{SU(2)} + \delta^{K\ell}_{em})^{2}$$

$$= \Gamma(K_{I3(\gamma)})$$

- Precise determination of V_{us}
- Test of Lepton universality Ke3 vs Kμ3
- ***** Most precise test of CKM unitarity $|\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 = 1$ $|\mathbf{V}_{ub}|^2$ negligible
- ***** Lepton-Quark universality of weak int. $G_F^2 \equiv G_{CKM}^2 = (|V_{ud}|^2 + |V_{us}|^2)G_F^2$

 $\Gamma(\mathsf{K}_{\mu 2(\gamma)})/\Gamma(\pi_{\mu 2(\gamma)})$

- Precise determination of V_{us}/V_{ud}
- Test of Physics beyond the SM
 - right-handed contributions to charged weak currents
 - charged Higgs exchange (2 Higgs doublet scenarios)

$$\frac{\Gamma(K_{\mu2(\gamma)})}{\Gamma(\pi_{\mu2(\gamma)})} = \frac{|V_{us}|^2}{|V_{ud}|^2} \times \frac{f_K}{f_\pi} \times \frac{M_K(1-m_{\mu}^2/M_K^2)^2}{m_{\pi}(1-m_{\mu}^2/m_{\pi}^2)^2} \times (1+\alpha(C_K-C_\pi))$$
KLOE has measured all relevant inputs for charged § neutral kaons:
BR's, lifetimes (K_L,K, K_s), form factors (FFs)

Eríka De Lucía -- CKM2010 Workshop, 6-10 September 2010

To extract $V_{\mu s}$ from K_{L}, K_{s} and K^{\pm}

PLB 632 (2006)	PLB 632 (2006)
$BR(K_{Le3}) = 0.4008(15) 0.37\%$	BR(K ⁺ $\rightarrow \mu^+ \nu$) = 0.6366(17)
$BR(K_{L\mu3}) = 0.2699(14)$ 0.52%	0.27%
PLB 626 (2005)	JHEP 01 (2008)
$\tau_{\rm L} = 50.92(30) \text{ ns} 0.58\%$	τ^{\pm} = 12.347(30) 0.24%
PLB 636 (2006)	
$BR(K_{s} \rightarrow \pi e \nu) = 7.046(91) \times 10^{-4}$	JHEP 02 (2008)
1.3%	BR(K [±] $\rightarrow \pi^0 e^{\pm} v$) = 0.04965(53) 1%
PLB 636 (2006)	BR($K^{\pm} \rightarrow \pi^{0} \mu^{\pm} \nu$) = 0.03233(39) 1.2%
$\lambda'_{+} \times 10^{3}$ $\lambda''_{+} \times 10^{3}$	
25.5 ± 1.8 1.4 ± 0.8	
JHEP12(2007)	PLB 666 (2008)
λ_{+}' = (25.6 ± 1.5 _{stat} ± 0.9 _{svst})×10 ⁻³	BR(K ⁺ $\rightarrow \pi^{+} \pi^{0} (\gamma)$) = 0.2065(9) 0.43%
$\lambda_{+}'' = (1.5 \pm 0.7_{stat} \pm 0.4_{syst}) \times 10^{-3}$	
λ_{o} = (15.4 ± 1.8 _{stat} ± 1.3 _{syst})×10 ⁻³	

 $V_{\mu s} f_{+}(0)$ at KLOE

 V_{us} , V_{ud} and V_{us} / V_{ud}

Ks Lifetime measurement (1)

- Lifetime from fit to proper time t^* distribution of $m K_S
 ightarrow \pi^+\pi^-$ (18 million from '04 data)
- Event-by-event ϕ -meson decay point from PCA of K_L flight direction to beam line ($\sigma(Z_{IP})=0.2$ cm while beam spread ~3 cm)
- \bullet Improve time resolution with kinematic fit (free $x_{\mbox{\tiny KS}}$ and $L_{\mbox{\tiny KS}}$, K direction fixed)

- •Fiducial volume: 18x10 $[\phi_{K}, \cos\theta_{K}]$ bins -0.5<cos θ_{π} <+0.5
- Fit range: 15 bins from -1 to +6.5 in t^*/τ_s (MC)
- Fit function used in $[\phi_{K'}, \cos\theta_{K'}]$ bin

$$f(t) = A \int_{-\infty}^{\infty} \theta(x) \frac{1}{\tau} \exp(x/\tau) \varepsilon(x) g(t+\delta-x) dx$$

• Performed a total of 180 independent fits

Ks Lifetime measurement (11)

First measurement with pure K_s beam and event by event knowledge of K_s momentum

$$\tau_{\rm S} = (89.56 \pm 0.03_{\rm stat} \pm 0.04_{\rm syst}) \, \rm ps$$
 0.06%

Vus f+ (0): present World Averages

$\Gamma(K_{l3(\gamma)}) = \frac{C}{C}$	$\frac{C_K^2 G_F^2 M_F}{192\pi^3}$	$\frac{\kappa^{5}}{S_{EW}} V_{u} $	$ s ^2 f_+^{K} $	$(0)^{\pi^{-}}(0) ^{2}$	<i>Ι_{Κℓ}</i> (λ	(1	$1+\delta^{K}{}_{S}$
			% err	Approx BR	t. contr. τ	to % err δ	from: I _{KE}
	K _L e3	0.2163(6)	0.26	0.09	0.20	0.11	0.06
	<i>Κ</i> _L μ3	0.2166(6)	0.29	0.15	0.18	0.11	0.08
	K _s e3	0.2155(13)	0.61	0.60	0.03	0.11	0.06
	K⁺e3	0.2160(11)	0.52	0.31	0.09	0.40	0.06
	<i>К</i> ±µЗ	0.2158(14)	0.63	0.47	0.08	0.39	0.08

Experimental Inputs to be improved

From Flavianet Kaon WG arXiv:1005.2323v1

The KLOE-2 Project: Physics & Collider

The KLOE-2 project aims at improving the successful and fruitful results achieved by the KLOE Collaboration in Kaon and Hadron Physics and extending the physics program to :

- $\gamma\gamma$ -physics from $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^- + X$
- search for particles from "hidden sectors" that might explain dark matter

Physics with the KLOE-2 experiment at the upgraded DA Φ NE, EPJC 68,619 (2010)

The project will exploit the new interaction scheme implemented on the Frascati DAFNE phi-factory collider with the SIDDHARTA experiment in 2008/09 with:

- Larger beam crossing angle and crab-waist sextupoles
- Luminosity increase of a factor of ~3
- $\int Ldt \sim 1pb^{-1}/h~$ and Max L=4.5x $10^{32}~cm^{-2}s^{-1}$

With the new configuration \int Ldt ~5 fb $^{-1}$ /y can be delivered

High Energy Proposal: upgrade in energy of the collider (from 1.02 GeV to 2.5 GeV) Proposal for taking data with the KLOE-2 Detector at the DAΦNE collider upgraded in energy, LNF-Note 10/17(P)

1st phase/step-0 now ($\int Ldt \sim 5 \text{ fb}^{-1}$):

LET & HET Technical Design Report LNF - 10/14(P)

- ✓ LYSO+SiPMs & Scint+PMTs
- ✓ Lepton taggers for $\gamma\gamma$ -physics

1st phase/step-0 now ($\int Ldt \sim 5 \ fb^{-1}$):

LET & HET Technical Design Report LNF - 10/14(P) ✓ LYSO+SiPMs & Scint+PMTs

 \checkmark Lepton taggers for $\gamma\gamma$ -physics

2nd phase /step-1 late 2011 ($\int Ldt \sim 20 \ fb^{-1}$):

1st phase/step-0 now ($\int Ldt \sim 5 \text{ fb}^{-1}$):

LET & HET Technical Design Report LNF - 10/14(P) ✓ LYSO+SiPMs & Scint+PMTs

✓ Lepton taggers for $\gamma\gamma$ -physics

2nd phase /step-1 late 2011 (\int Ldt ~ 20 fb⁻¹

CCAL

- ✓ LYSO + APD
- ✓ Increase acceptance for γ 's from IP (21 →10)

INNER TRACKER Technical Design Report - arXiv:10

- ✓ 4 layers of cylindrical triple GEM
- ✓ Better vertex reconstruction near IP
- ✓ Larger acceptance for low pt tracks

QCALT

- ✓ W + scintillator tiles + SiPM/WLS
- ✓ quadrupoles coverage for K_L decays

- 1st phase/step-0 now ($\int Ldt \sim 5 \text{ fb}^{-1}$):
 - LET & HET Technical Design Report LNF 10/14(P) ✓ LYSO+SiPMs & Scint+PMTs
 - \checkmark Lepton taggers for $\gamma\gamma$ -physics

2nd phase / step-1 late 2011 ($\int Ldt \sim 20 \ fb^{-1}$):

CCAL

- ✓ LYSO + APD
- ✓ Increase acceptance for γ 's from IP (21 →10)

INNER TRACKER Technical Design Report - arXiv:1002.2572

- ✓ 4 layers of cylindrical triple GEM
- ✓ Better vertex reconstruction near IP
- ✓ Larger acceptance for low pt tracks

QCALT

- ✓ W + scintillator tiles + SiPM/WLS
- ✓ quadrupoles coverage for K_L decays

Improving $K_{L,S} \in K^{\pm}$ lifetime: $\tau_{L,S}, \tau_{\pm}$

 t_{\pm}

Systematic errors in KLOE are partially statistical in nature: efficiencies are measured with data control samples. Then also these contributions to the total uncertainty decrease with statistics

- i. 0.1% is expected with KLOE + 5 fb⁻¹ KLOE-2 /step-0
- ii. x2 inserting Inner Tracker, allowing detection of K[±] tracks closer to the IP, improves accuracy of the decay length technique

i. 0.38% is expected with whole KLOE data

- ii. 0.27% adding 5 fb⁻¹ from KLOE-2/step-0
- iii. < 0.2%. inserting QCALT improving photon reconstruction & control of the systematics

0.03% is expected adding 5 fb⁻¹ from KLOE-2/step-0.

Improving BRS & Form Factors

BR(Kse3)

- i. 0.6% expected with KLOE + 5 fb⁻¹ KLOE-2/step-0
- ii. 0.3% with 25fb⁻¹ and Inner Tracker: better tracking performance for decays close to IP in terms of acceptance and background rejection

BR(Ksµ3)

- KLOE first experimental evidence, shows the potentiality of reaching
 <2% on BR with 2.5fb⁻¹
- ii. 0.4% with KLOE-2 and Inner Tracker

Systematic errors in KLOE are partially statistical in nature: efficiencies are measured with data control samples. Then also these contributions to the total uncertainty decrease with statistics

Kaon Form Factors

K_L: x3 improvement with 5 fb⁻¹ KLOE-2/step-0 with respect to the published results on the vector FF in KLe3 decays and the vector and scalar FF in KLμ3 decays

K[±]: KLOE analysis just started, will profit from no ambiguities on lepton charge assignment and on π/μ identification (limiting factor on KLμ3 FFs)

$|V_{us}|$ f+(0): future perspectives with KLOE (2.5 fb⁻¹) & KLOE-2/step0 (5 fb⁻¹)

$\Gamma(K_{l3(\gamma)}) = \frac{C_{k}}{2}$	$\frac{{}_{K}^{2}G_{F}^{2}M_{K}^{5}}{192\pi^{3}}$	$S_{EW} V_{u} $	$ _{us} ^2 f_+^{K^0\pi} $	$(0) ^2 I_{K\ell}(\lambda_+$	$(1+\frac{\delta^{K}}{\delta})$	$\delta_{SU(2)} + \delta^{K\ell}_{em}$) ²

 Statistical uncertainties on BRs and lifetimes obtained scaling to 7.5 fb⁻¹ total integrated luminosity

 Systematic errors: conservative estimate based on KLOE published analyses without improvements from the detector upgrade

World-average uncertainties for BR($K_L e3$), δ and $I_{K\ell}$ from old **Flavianet paper arXiv:0801.1817v1**

Approx. contr. to % err from: % err BR δ τ IKE К,еЗ 0.2155(4) 0.21 0.13 0.09 0.09 0.11 *K*_{*ι*}μ3 0.2167(5) 0.25 0.10 0.13 0.11 0.15 0.2153(7) K_se3 0.33 0.30 0.03 0.11 0.09 0.2152(8) *K*[±]*e*3 0.37 0.25 0.05 0.25 0.09*К*[±]µЗ 0.2132(9) 0.15 0.40 0.27 0.05 0.25

Physics with the KLOE-2 experiment at the upgraded DA Φ NE --EPJC 68,619 (2010)

 $|\bigvee_{us}|f+(0): future perspectives with \\ KLOE (2.5 fb^{-1}) & KLOE-2/step0 (5 fb^{-1}) \\ \Gamma(K_{l3(\gamma)}) = \frac{C_{K}^{2}G_{F}^{2}M_{K}^{5}}{192\pi^{3}} S_{EW} |V_{us}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} I_{K\ell}(\lambda_{+,0}) (1+\delta^{K}_{SU(2)}+\delta^{K\ell}_{em})^{2}$

Approx. contr. to % err from:

Using world-average uncertainties for $BR(K_Le3)$, δ and $I_{\kappa e}$ from updated Flavianet paper *arXiv:1005.2323v1*

		% err	BR	τ	δ	кe
K _L e3	0.2155(4)	0.20	0.09	0.13	0.11	0.06
<i>Κ_L</i> μ3	0.2167(4)	0.21	0.10	0.13	0.11	0.08
K _s e3	0.2153(7)	0.32	0.30	0.03	0.11	0.06
K⁺e3	0.2152(10)	0.47	0.25	0.05	0.40	0.06
<i>К</i> ±µЗ	0.2132(10)	0.48	0.27	0.05	0.39	0.08

$|V_{us}|$ f+ (0): future perspectives with KLOE (2.5 fb⁻¹) & KLOE-2/step0 (5 fb⁻¹)

***** KLOE-2 can significantly improve the accuracy on the measurement of K_L , K^{\pm} lifetimes and K_Se3 branching ratio with respect to present world average with data from the first year of data taking, at KLOE-2/step-0.

The present 0.23% fractional uncertainty on |Vus| × f+(0) can be reduced to 0.14% using KLOE present data set together with the KLOE-2/step-0 statistics.
 Detector upgrades have not been considered in this evaluation

	$f_+(0)V_{us}$
KLOE today	0.28%
(World Average)	(0.23%)
KLOE + Step-0 + WA	0.14%

With $f_+(0)$ @ 0.5% the accuracy on the unitarity relation of the first row is

$$\sigma (1 - V_{ud}^2 - V_{us}^2) = 6 x 10^{-4} \begin{cases} V_{us} @ 0.4\% \text{ from fit} \\ V_{ud} @ 0.026\% \end{cases}$$

To improve the accuracy on the V_{us} determination and then its contribution to the total uncertainty on the unitarity relation, a more precise estimate of $f_+(0)$ is needed.

Conclusions

Investigation at a ϕ -factory can shed light on several debated issues in particle physics

The KLOE collaboration achieved several precision Kaon Physics results

The KLOE-2 collaboration is ready to start a new enthusiastic data-taking campaign, to pursue a rich physics program

DAFNE commissioning is in progress

The present 0.23% fractional uncertainty on $|Vus| \times f+(0)$ can be reduced to 0.14% using KLOE present data set together with the KLOE-2/step-0 statistics.