

Michele Veltri

University of Urbino and INFN Firenze

On behalf of the NA48/2 Collaboration

Michele Veltri

Outline

- Physics motivations
- The NA48/2 experiment and detector
- K[±]_{μ3} analysis
 - Event selection
 - $\pi^{\pm}\pi^{0}$ background
 - Fitting procedure
 - Radiative corrections
 - DATA–MC comparison
 - Preliminary results
 - Systematics Check
- K_{e3}^{\pm} Analysis
- K_{ℓ3} Form Factors @ NA62
- Summary

$K_{\ell 3}$ Form Factors: Physics Motivations

The $K_{\ell 3}$ decay is described by two form factors, $f_{\pm}(t)$

 $\mathfrak{M} = G_F / \sqrt{2} \, V_{us} \, \left[f_+(t) \left(P_K + P_\pi \right)^\mu \bar{u}_\ell \gamma_\mu (1 + \gamma_5) u_\nu + f_-(t) \, m_\ell \bar{u}_\ell (1 + \gamma_5) u_\nu \right]$

t is the square of the four-momentum transfer to the lepton system

 $f_- \Rightarrow m_\ell^2/m_K^2$ Can be measured only in $K_{\mu3}$ decays

 $f_0(t)$, which is a combination of the two, is used:

$$f_0(t) = f_+(t) + \frac{t}{(m_\kappa^2 - m_\pi^2)} f_-(t)$$

 $f_+(0) = f_0(0)$ by construction

 $f_+(0)$ is not directly measurable

 $\Rightarrow \text{ factor out } f_{+}^{K^{0}\pi^{-}}(0) \text{ and normalize the ff of all channels}$ $\bar{f}_{+}(t) = \frac{f_{+}(t)}{f_{+}(0)} \qquad \bar{f}_{0}(t) = \frac{f_{0}(t)}{f_{+}(0)} \qquad \bar{f}_{+}(0) = \bar{f}_{0}(0)$

NMQ

$K_{\ell 3}$ Form Factors Parametrizations

Class I: Make use of physical constraints - Only one parameter required

$$ar{f}_{+,0}(t) = rac{m_{V,S}^2}{m_{V,S}^2-t}$$
 POLE

Exchange of K^* resonances with spin-parity $1^-/0^+$ and mass m_V/m_S For f_+ dominance of $K^*(892)$, no obvious dominance for f_0

$$ar{f}_+(t) = \exp\left[rac{t}{m_\pi^2}(\Lambda_+ + \mathrm{H}(\mathrm{t}))
ight] \qquad \mathsf{DISPERSIVE}$$
 $ar{f}_0(t) = \exp\left[rac{t}{\Delta_{K\pi}}(\mathrm{lnC} - \mathrm{G}(\mathrm{t}))
ight]$

This parametrization is based on a dispersive approach with a relation subtracted twice ($t=0,~t=\Delta_{K\pi}$) [PLB 638(2006) 480, PRD 80(2009) 034034]

Accurate polynomial approximations for the dispersive integrals $\mathrm{G}(t)$ and $\mathrm{H}(t)$

$K_{\ell 3}$ Form Factors Parametrizations

Class II: No Physics input - Power series expansion

Well known and widely used are the linear and quadratic:

$$\bar{f}_{+,0}(t) = \left(1 + \lambda_{+,0} \ t/m_{\pi}^2\right) \qquad \text{LINEAR}$$

$$\bar{f}_{+,0}(t) = \left[1 + \lambda_{+,0}' \ t/m_{\pi}^2 + \frac{1}{2} \ \lambda_{+,0}'' \ (t/m_{\pi}^2)^2\right] \qquad \text{QUADRATIC}$$

- More parameters to be determined by fit \Rightarrow Correlations
- Not possible to determine $\lambda_0^{''}$ experimentally
 - $\Rightarrow \bar{\textit{f}}_{+} \text{ quadratic } / \ \bar{\textit{f}}_{0} \text{ linear}$

z-fit parametrization (PRD74(2006) 096006) belongs to this class

$K_{\ell 3}$ Form Factors and $|V_{us}|$ Determination

 $K_{\ell 3}$ decays \Rightarrow most accurate and theoretically clean way to access $|V_{us}|$ The master formula for $K_{\ell 3}$ decay rates:

 $\Gamma_{K\ell 3(\gamma)} = \frac{C_{K}^{2}G_{F}^{2}m_{K}^{5}}{192\pi^{3}} S_{EW} |V_{us}|^{2} |f_{+}(0)|^{2} I_{K}^{\ell}(\lambda_{+0}) (1 + \delta_{SU(2)}^{\ell} + \delta_{EM}^{\ell})^{2}$

$${\cal K}={\cal K}^0,\ {\cal K}^\pm; \qquad {\cal C}^2_{{\cal K}^0}=1 \qquad {\cal C}^2_{{\cal K}^\pm}=1/2$$

Experimental inputs	I heory Inputs
$ \begin{array}{l} \Gamma(K_{\ell 3(\gamma)}) & \text{Branching Ratios} \\ \text{Kaon lifetimes} \\ I_K^\ell \left[f_{+,0}(t) \right] & \text{Phase space integral} \\ \text{Depends on ff} \end{array} $	$ \begin{split} \mathbf{S}_{EW} & \text{Universal short distance} \\ & \text{EW correction } (1.0232\pm0.0003) \\ \mathbf{f}_{+}(0) & \text{Calculated ff at } \mathbf{t}=0 \\ & 2^{nd} \text{ order SU}(3) \\ \delta^{K}_{SU(2)} & \text{Form factor correction for} \\ & \text{isospin breaking } (K^{\pm} \text{ only}) \\ & f_{+}^{\kappa^{\pm}\pi^{0}}(0)/f_{+}^{\kappa^{0}\pi^{-}}(0) - 1 = 0.029 \pm 0.0004 \\ \delta^{K}_{EM} & \text{Long distance EM effects} \\ & \delta^{K_{\ell}}_{EM} \approx 0 \text{ for } K^{\pm} \end{split} $

$K_{\ell 3}$ Form Factors and SM Test

- The Callan–Treiman theorem gives the value of $f_0(t)$ at the unphysical point $t = \Delta_{K\pi} = (m_K^2 m_\pi^2)$
- The dispersive parametrization provides the link from the experimentally accessible *t* region to $\Delta_{K\pi}$:

$$C = \overline{f}_0(\Delta_{K\pi}) = \frac{f_{K^+}}{f_{\pi^+} f_+(0)} + \Delta_{CT}$$

- Δ_{CT} evaluated at NLO in ChPT [Gasser and Leutwyler (85)] $\Delta_{CT} = (-3.5\pm8)10^{-3}$
- For K^{\pm} the effect of isospin breaking is larger: $\Delta_{CT} \sim 1.5 \ 10^{-2}$

Physics beyond SM can lead to small modifications of the fundamental QCD quantities f_{K^+} , f_{π^+} , $f_+(0)$

- Compare the C values obtained by BR measurements/Lattice calculations with those obtained by $K_{\mu3}$ dispersive analysis
- If the standard values of decay constants are used lattice calculations of $f_+(0)$ can be cross-checked

$K_{\ell_3}^{\pm}$ Form Factors @ NA48/2 Experiment

- K[±] collected during 2004 data taking: NA48/2 experiment (Main purpose search for direct CP violation in K[±] → 3π decays)
- Simultaneous K⁺ and K⁻ beams
- K^+ flux $\simeq 3.2 imes 10^6$; $K^+/K^- \simeq 1.78$ (production rate @target)
- Dedicated run with minimum bias trigger and low intensity (imes 1/4 I_0)
- Reduced momentum spread: (60 \pm 1.8) GeV/c
- K^+ and K^- beams coincide within 1 mm all along 114 m decay volume

The NA48 Detector

Min Bias trigger:
$$Q1 \times E_{LKR} > 10$$

Magnetic Spectrometer

4 drift chambers $rac{\sigma_p}{p}(\%)=1\oplus 0.044~p~({
m GeV/c})$

Hodoscope

Two \perp planes of scintillator Fast trigger Precise track time measurement $\sigma_t \simeq 150 \text{ ps}$

Liquid Krypton EM Calorimeter

Quasi-homogeneous - High granularity 13248 cells of 2×2 cm² $\frac{\sigma_E}{\sqrt{E}}$ (%) = $\frac{3.2}{\sqrt{E}} \oplus \frac{9.0}{E} \oplus 0.42$ (GeV)

Muon Counter

3 planes of scintillator Each shielded by 80 cm of iron $25 \times 25 \text{ cm}^2$ cells $\sigma_t \simeq 350 \text{ ps}$

$K^{\pm}_{\mu3}$ Event Selection

- 1 "good" track and 1 π^0
 - Geometrical detector acceptance
 - Vertex dCA track and K nominal axis
 - Track P>10 GeV/c for MUC efficiency
 - Timing
 - $|m_{\gamma\gamma} m_{\pi0}^{PDG}| < 10 \text{ MeV}$
- E/p < 0.2
- 1 MUC Hit matched to the track
- $|t_{MUC} t_{HOD}| < 3$ ns
- $| MM(\mu)|^2 < 10 \text{ MeV}^2$ Missing Mass: $MM^2 = (P_K - P_\mu - P_{\pi^0})^2$
- P $\pi^0 > 15$ GeV (Trigger efficiency)
- Cut to remove $\pi^{\pm}\pi^{0}$ BKG (see following slide)

 $3.4 imes 10^6 K^\pm_{\mu 3}$ events selected

$\pi^{\pm}\pi^{0}$ Background

- $\pi^{\pm}\pi^{0}$ events with $\pi \to \mu$ can fake a $K_{\mu3}^{\pm}$ decay
- This BKG is well localized on the Dalitz plot !!
- Apply cut on $m_{\pi\pi^0}$ vs $\pi^0 pT$ plane
- The loss of $K_{\mu3}$ signal is about 24%

$\pi^{\pm}\pi^{0}\pi^{0}$ Background

- Need to correct also for $\pi^{\pm}\pi^{0}\pi^{0}$ BKG
- Small contamination but localized on the Dalitz plot
- Shift of \simeq 0.5 σ_{stat} if the correction is not applied

Fitting Procedure

Dalitz Plot analysis: to extract the form factors perform a fit to the DP density

$$\rho(E_{\mu}^{*}, E_{\pi}^{*}) = \frac{d^{2}N(E_{\mu}^{*}, E_{\pi}^{*})}{dE_{\mu}^{*} dE_{\pi}^{*}} \propto Af_{+}^{2} + Bf_{+} \left(f_{0} - f_{+}\right) \frac{m_{K}^{2} - m_{\pi}^{2}}{t} + C\left[\left(f_{0} - f_{+}\right) \frac{m_{K}^{2} - m_{\pi}^{2}}{t}\right]^{2}$$

 E_{μ}^{*}, E_{π}^{*} are the energies of μ and π in the kaon CMS A, B and C are kinematical terms $5 \times 5 \text{ MeV}^2$ cells - Cells crossed by the Dalitz border are not used in the fit

Need to correct for:

• Acceptance

$$\epsilon = rac{
ho(E_{\mu}^{*}, E_{\pi^{0}}^{*})^{MC \ Rec}}{
ho(E_{\mu}^{*}, E_{\pi^{0}}^{*})^{MC \ Gen}}$$

- Background subtraction
- Radiative corrections
 - Tree level parametrization
 - Need to cancel the distortion induced by radiative effects

Radiative Corrections

Including first order radiative corrections the ${\cal K}_{\ell 3}$ decay rate is:

$$\Gamma_{K_{\ell_3}} = \Gamma^0_{K_{\ell_3}} + \Gamma^1_{K_{\ell_3}} = \Gamma^0_{K_{\ell_3}} (1 + 2\delta^{K\ell}_{EM})$$

- Simulation with C. Gatti code: EPJ C45 (2006) 417
- For the normalization use: JHEP 11 (2008) 006

Mode	$\delta_{EM}^{K\ell}(\%)$
K_{e3}^0	$0.495 {\pm} 0.110$
K_{e3}^{\pm}	$0.050 {\pm} 0.125$
$K^{0}_{\mu 3}$	$0.700 {\pm} 0.110$
$K_{\mu 3}^{\pm}$	$0.008 {\pm} 0.125$

- Small effect on the acceptance
- Sign changes Integral can be 0 even in presence of large corrections
- Smaller distortion w.r.t. the $K^0_{\mu3}$ case
 - \rightarrow Only one charged particle in the f. s.

DATA-MC Comparison

NN8

$K^{\pm}_{\mu3}$ Form Factors - PRELIMINARY NA48/2 Results

- First error is stat, second is syst
- To the dispersive results theo uncertainty has been added
 - V. Bernard et al., PRD80 (2009) 034034

z-fit in progress...

$K_{\mu3}^{\pm}$ Form Factors - Quadratic Fits

• Experimental situation on quadratic fit for $K_{\mu3}$ decay

- $K^0_{\mu3}$ results from KLOE, KTeV and NA48, ISTRA measures $K^-_{\mu3}$
- First measurement which uses also $K^+_{\mu 3}$
- High precision Very competitive with other results
- Small quadratic term Larger λ_0 with respect to NA48 case
- Size and dispersion of ellipses indicate the difficulty of this measurement

Preliminary Survey of Systematics

	$\Delta \lambda'_+$	$\substack{\Delta\lambda_{+}^{\prime\prime}\\\times10^{-3}}$	$\Delta \lambda_0$	$\Delta m_V \Delta m_S$ MeV/c ²		$\frac{\Delta\Lambda_+}{\times10^{-3}}\frac{\Delta\ln \textit{C}}{}$	
K± Enorm	⊥0.7	±0.5	±0.6	⊥7	⊥2	±0.5	±2.6
A Lifergy	10.7	10.5	10.0	1	12	10.5	12.0
Vertexing	± 1.0	± 0.4	± 0.6	± 2	±4	± 0.1	± 1.1
Acceptance	± 0.3	± 0.1	± 0.2	±2	±7	± 0.1	± 1.8
$\pi ightarrow \mu$ scale	± 0.4	± 0.2	± 0.2	± 1	± 1	± 0.0	± 0.0
2 nd analysis	± 0.4	± 0.1	± 0.2	± 6	± 6	± 0.5	± 1.5
Total Systematic	± 1.4	±0.7	±0.9	±10	± 10	±0.7	±3.7
Statistical	± 2.7	± 1.0	± 1.3	±7	± 26	± 0.6	± 7.1
Theory						± 0.5	± 5.0
Total Error	±3.0	±1.2	± 1.6	±12	±28	±1.0	± 10.1

- K[±] Energy Calculate two energy solutions (as in K_L case) instead of using the nominal beam energy of 60 GeV
 ⇒ Better resolution on CMS variables
- KType2 (2 sol) KType1 (1 sol) KType0 (sol outside allowed range)
- $\pi \to \mu$ scale Accounts for not perfect modeling of π decay in the region from LKR onwards

K_{e3}^{\pm} Form Factors

- Event selection is similar to $K_{\mu3}^{\pm}$
- Require 1 "good" track and 1 π^0
- electron ID with $0.95 < \mathsf{E}/p < 1.05$
- Event pT cut to remove $\pi^\pm\pi^0~{\rm BKG}$
- "Easier" measurement
 - Only one form factor
 - \rightarrow Reduced correlations
 - BKG issues less critical
 - \rightarrow Need a π with E/p > 0.95
- Expected more precise results
- Analysis is in progress
- Results for the winter conferences

 $4.2 \times 10^6 \ K_{e3}^{\pm}$ events selected

M9

$K_{\ell 3}$ Form Factors at NA62

NA62, during the 2007 run, collected data for a dedicated measurement of $R_{K} = \Gamma(K_{e2})/\Gamma(K_{\mu 2})$ and tests for the future $K^{+} \rightarrow \pi^{+}\nu \ \overline{\nu}$ experiment

- 4 months data taking with minimum bias trigger
 - \rightarrow 1 track+ 10 GeV deposition in EM calorimeter
- Simultaneous K^+ and K^- beams of P=(74 \pm 1.6) GeV/c
- Better track momentum resolution $(\rightarrow p_T \text{ kick doubled})$
- Collected \sim 150000 K_{e2} events
- First results for 40% of stat presented at BEACH2010 and ICHEP2010
- Expected precision on the full data sample: $\sigma(R_K)/R_K \simeq \pm 0.4\%$

$K_{\ell 3}$ from NA62 2007 data

- Huge $K^+_{e3}/K^+_{\mu3}$ statistics of pprox 40/20 imes 10⁶
- Special K_L run (15 h) to measure electron ID efficiency K_{e3}^0 and $K_{\mu3}^0$ statistics $\approx 4 \times 10^6$

NA48 analyses of $K_{\ell_3}^0$ and $K_{\ell_3}^{\pm}$ can be repeated with different/larger data sets \aleph_{β}

Summary

- NA48/2 has provided a new contribution to $|V_{us}|$ quest
- Preliminary results on $K^{\pm}_{\mu3}$ form factors
- For the first time both K^+ and K^- decays have been studied
- High precision measurement very competitive with other results
- Soon also new results on K_{e3}^{\pm} will appear
- NA62 is ready to give its contribution with high statistics data samples of $K^\pm_{\ell 3}$ and $K^0_{\ell 3}$