Charmless Hadronic B Decays

Corry L. Lee

Harvard University
BaBar Collaboration

CKM 2010 - September 9, 2010 - Warwick, U.K.

Charmless Hadronic B Decays

- At B factories:
$-e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow B \bar{B}$
- Study $B \rightarrow M_{1} M_{2}$ or $M_{1} M_{2} M_{3}$ light mesons
- Pseudoscalar ($J^{P}=0^{-}$): $\pi, \eta, \eta^{\prime}, K$
- Scalar $\quad\left(J^{P}=0^{+}\right): f_{0}, K_{0}^{*}(1430), \ldots$
- Vector $\left.\quad J^{P}=1^{-}\right): \rho, \omega, \phi, \mathrm{K}^{*}(892)$
- Axial Vector $\left(J^{P}=1^{+}\right): a_{1}(1260), \ldots$
- Tensor $\quad\left(J^{P}=2^{+}\right): K_{2}^{*}(1430), \ldots$
- etc.

Charmless B Decays Overview

- ~ 100 charmless B decays have been measured with $>4 \sigma$ significance.
- Provides a strong test of theory, requiring calculations to accommodate $\mathfrak{B}, A_{C P}, f_{L}, \ldots$ measurements.
- Theoretical description complicated due to the interplay of short- \& longdistance QCD effects.
- Quarks $=$ Hadrons.
- The heavy mass of the b quark allows SD contributions to be factored out.
- See earlier talks (ie. G. Bell, S. Jager)
- Predictions from:
- QCD Factorization (QCDF)
- Perturbative QCD (pQCD)
- Soft-Collinear Effective Theory (SCET)
- Naïve Factorization (NF)
- Power corrections often have end-point divergences requiring modeldependent solutions \& leading to large uncertainties.
- Comparing to many experimental measurements helps refine theoretical methods and may exhibit hints of physics beyond the Standard Model.

Experimental Techniques in Charmless B Decays

wand © Neverana, all Rlights Reservea

- Data sets $\sim 500 \mathrm{fb}^{-1} \sim 500 \times 10^{6} \mathrm{~B} \bar{B}$ pairs
- Access branching fractions: $\mathfrak{B} \sim 10^{-5}-10^{-7}$
- Dominant backgrounds from $e^{+} e^{-} \rightarrow q \bar{q}$ where $q=u, d, s, c$

- Discriminate against with event shape (Fisher, Neural Net, etc.)
- Extract signals using Maximum Likelihood (ML) Fit using several variables:
$-\Delta \mathrm{E}=\mathrm{E}_{\text {meas }}-\mathrm{E}_{\text {beam }} \quad \sim 0$

$-m_{E S}=\sqrt{E_{\text {beam }}^{2}-p_{\text {meas }}^{2}}$
- Event shape
- Resonance masses \& helicities
- $M_{b c}=m_{E S}$ used by Belle

Signal

Background

Experimental Results from 2010

BABAR

- $B \rightarrow \eta^{\prime} \rho, \eta^{\prime} f_{0}$, and $\eta^{\prime} K^{*}$, where $K^{*}=K^{*}(892)$, $K_{2}^{*}(1430)$, and $K_{0}^{*}(1430)+(K \pi) S$-wave
$-B^{+} \rightarrow a_{1}^{+}(1260) K^{* 0}(892)$
- Inclusive $B^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$
- Inclusive $B^{+} \rightarrow K^{+} \pi^{0} \pi^{0}$
$-B^{0} \rightarrow K^{* 0} \overline{K^{* 0}}, K^{* 0} K^{* 0}, K^{+} \pi^{-} K^{\mp} \pi^{ \pm}$
$-B_{S}^{0} \rightarrow h h\left(h=K^{+}, K^{0}, \pi^{+}\right)$

B decays to $\eta^{\prime} \rho, \eta^{\prime} f_{0}$, and $\eta^{\prime} K^{*}$

Data used: $424 \mathrm{fb}^{-1}$

Motivation:

- Confirm predicted η / η^{\prime} mixing
- Poor agreement between previous BaBar \& Belle measurements (see next slide)
- Theoretical predictions from pQCD, QCDF, SCET, and SU(3) flavor symmetry
- Few predictions with K_{0}^{*} or K_{2}^{*}

Results:

- ML fit of 6 variables
- Simultaneously fit $3 K^{*}$ resonances and ρ^{0} / f_{0}
- Observe $>5 \sigma$ signals in 4 channels

——Total
....... Total bkg
-.-. Total signal $K^{*}(892)$

B decays to $\eta^{\prime} \rho, \eta^{\prime} f_{0}$, and $\eta^{\prime} K^{*}$

Phys. Rev. D82, 011502 (2010)

Theoretical Expectations:

- $\mathfrak{B}\left[\eta^{\prime} \rho^{0}\right] \sim 10^{-8}-10^{-7}$
- $\mathfrak{B}\left[\eta^{\prime} \rho^{+}\right] \sim 0.4 \times 10^{-6}$

$$
\sim(6-9) \times 10^{-6}(\mathrm{pQCD}, \mathrm{QCDF})
$$

- $\mathfrak{B}\left[\eta^{\prime} K^{*}\right] \sim \mathrm{few} \times 10^{-6}$

Dominance of $\eta^{\prime} K_{2}^{*}$ over $\eta^{\prime} K^{*}$
not anticipated by theory.
(Pattern seen in ωK^{*} but not ηK^{*})

$\rightarrow \quad \eta^{\prime} \rho^{0}$
$\because \quad \eta \prime \rho^{+}$
$\rightarrow \eta^{\prime} K^{*}$

$$
\Rightarrow \quad \eta^{\prime}(\mathrm{K} \pi)_{0}^{0}
$$

$$
\longleftarrow \eta^{\prime}(\mathrm{K} \pi)_{2}(1430)^{0}
$$

$\rightarrow \eta^{\prime} \mathrm{K}^{*}$
$\ldots \eta^{\prime}(\mathrm{K} \pi)_{0}^{+}$
$\eta^{\prime}(\mathrm{K} \pi)_{2}(1430)^{+}$
$\begin{array}{cccccccc}0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 \\ & \\ & & B F & {\left[10^{-6}\right]} \\ & \end{array}$
BaBar-Belle agreement remains poor
BaBer favors pQCD/QCDF over SCET
BaBar-Belle agreement shaky, but need more data
*Phys. Rev. D75, 092002 (2007); 535M $B \bar{B}$

$$
B^{0} \rightarrow K^{* 0} \overline{K^{* 0}}, K^{* 0} K^{* 0}, K^{+} \pi^{-} K^{\mp} \pi^{ \pm}
$$

Motivation:

- decay dominated by $b \rightarrow d$ penguin
- Expect $\mathrm{BF}\left(B^{0} \rightarrow K^{* 0} \overline{K^{* 0}}\right) \sim 10^{-7}-10^{-6}$
- If observe SM-suppressed $K^{* 0} K^{* 0} \rightarrow \mathrm{NP}$
- Expect $\mathrm{BF}\left(B^{0} \rightarrow K^{* 0} K^{* 0}\right) \sim 10^{-15}$
- Want to measure $K^{* 0} \overline{K^{* 0}}$ polarization to help understand the $B \rightarrow V V$ polarization puzzle

Results:

- $K^{* 0}$ is either $K^{*}(892)^{0}$ or $K_{0}^{*}(1430)^{0}$
- No signal observed
- Set 90% CL UL $<(0.2-72) \times 10^{-6}$

Mode	BaBar* $\operatorname{BF}\left(\mathbf{1 0}^{-6}\right)$	Belle BF(10-6)
$K^{* 0} \overline{K^{* 0}}$	1.28 ± 0.34	<0.8
$K^{* 0} K^{* 0}$	<0.41	<0.2

* Phys. Rev. Lett. 100, 081801 (2008)

Search for $B^{+} \rightarrow a_{1}^{+}(1260) K^{* 0}(892)$

arXiv:1007.2732v1 [hep-ex]
Data used: $424 \mathrm{fb}^{-1}$

Motivation:

- Axial vector $\left(J^{P}=1^{+}\right)$meson $a_{1}(1260)$
- measuring $B \rightarrow A V$ or $A P$ will help better understand contributing amplitudes \& helicity structure of charmless modes
- Predict $\mathfrak{B}\left[B^{+} \rightarrow a_{1}^{+}(1260) K^{* 0}\right]$
- QCDF: $\left(11_{-4}^{+6}{ }_{-9}^{+32}\right) \times 10^{-6}$
- NF: $\sim 0.5 \times 10^{-6}$

Results:

- ML fit with 7 variables
- No significant signal observed (0.5σ)
- Set 90\% CL UL

$$
\mathfrak{B}\left[B^{+} \rightarrow a_{1}^{+} K^{* 0}\right]<3.6 \times 10^{-6}
$$

- Assumes $\mathfrak{B}\left[a_{1}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right]=50 \%$
- Favors NF; still consistent with QCDF

BaBar Preliminary

- Signal + Bkg
---- Bkg only

Observation of $B^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$

Data used: $424 \mathrm{fb}^{-1}$
arXiv:1003.0640 [hep-ex]
Phys. Rev. D 82, 031101 (2010)

Motivation:

- $b \rightarrow d$ penguin (NP?) \& $b \rightarrow u$ tree
- Isospin partner to $f_{X}(1500)$?
- Peak in $K^{+} K^{-}$spectrum of $B^{+} \rightarrow K^{+} K^{-} \pi^{+}$
- Not observed in $B^{+} \rightarrow K_{S}^{0} K_{S}^{0} \pi^{+}$

Results:

- ML fit of $\mathrm{m}_{\mathrm{ES}}, \Delta \mathrm{E}$, Fisher
- 5.2σ observation

$$
\mathfrak{B}\left[B^{0} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}\right]=(3.2 \pm 0.5 \pm 0.3) \times 10^{-6}
$$

- ${ }_{\text {s }}$ Plot of DP to qualitatively look for resonances

- Signal + Bkg
---- Bkg only
- - - Signal only
C.L. Lee - CKM 2010

$B_{S}^{0} \rightarrow h h\left(h=K^{+}, K^{0}, \pi^{+}\right)$

$B E L L E$
Data used: $1.25 M B_{S}^{(*)} \bar{B}_{S}^{(*)}$ pairs at $Y(5 S), 23.6 \mathrm{fb}^{-1}$

Motivation:

- Help understand the $K \pi$ Puzzle in B_{d} decays
- NP comparing $A_{C P}$ in B_{s} and B_{d} decays?

Results:

- ML fit with $\mathrm{m}_{\mathrm{ES}} \& \Delta \mathrm{E}$
- 5.8σ measurement of $B_{S}^{0} \rightarrow K^{+} K^{-}$
- Compatible with CDF measurements
- See Tuesday talk by M. Dorigo

Mode	Belle BF $\left(10^{-6}\right)$	CDF* BF $\left(10^{-6}\right)$
$K^{+} K^{-}$	38 ± 12	24 ± 5
$K^{+} \pi^{-}$	<26	5.0 ± 1.1
$\pi^{+} \pi^{-}$	<12	<1.2
$K^{0} \overline{K^{0}}$	<66	---

arXiv:1006.5115 [hep-ex]

Theory/Future Experimental Effort: arXiv:1002.4518 [hep-ph], G. Zhu

- In QCDF, "tree" amplitude can be well estimated, but result gives too low a BF for $B_{S}^{0} \rightarrow K^{+} \pi^{-}$.
- Could solve with larger $B_{S} \rightarrow K$ form factor, or if charming penguins are not small.
- To differentiate, investigate ratio:

$$
\frac{\mathfrak{B}\left[B_{S} \rightarrow \rho^{+} K^{-}\right]}{\mathfrak{B}\left[B_{S} \rightarrow \pi^{+} K^{-}\right]}=2.5 \pm 0.2(\text { in QCDF })
$$

Search for Inclusive $B^{+} \rightarrow K^{+} \pi^{0} \pi^{0}$

$$
\text { Data used: } 429 \mathrm{fb}^{-1}
$$

Motivation:

- Understanding $K^{*} \pi$ may shed light on the $K \pi$ puzzle
- $B^{+} \rightarrow K^{*+} \pi^{0}$ poorly measured; 3 body state previously not investigated
- DP studies of $K \pi \pi$ show presence of $f_{X}(1300)$ in $\pi^{+} \pi^{-}$. Finding it in $\pi^{0} \pi^{0}$ would suggest spin-even.
- May help interpret TD CP results in $K_{S}^{0} \pi^{0} \pi^{0}\left(b \rightarrow S\right.$ penguin measures $\left.\beta / \phi_{1}\right)$

Results:

- 2D ML fit with $m_{E S}$ \& Event Shape (NN)
- Cut on $\Delta \mathrm{E}$ (correlated with DP resolution)
- Observe with significance $>10 \sigma$
$\mathfrak{B}\left[B^{+} \rightarrow K^{+} \pi^{0} \pi^{0}\right]=(15.5 \pm 1.1 \pm 1.6) \times 10^{-6}$

BABAR Summary \& Outlook

 $B E L L E$- BaBar \& Belle continue to make interesting measurements of charmless hadronic B decays.
- $B, A_{C P}$, and f_{L} measurements challenge \& test theoretical methods.
- Super B factories will...
- access SM-suppressed processes,
- allow for more precise measurements of $\mathfrak{B}, A_{C P}$, and f_{L} to further challenge theoretical calculations,
- enable measurements impossible with current data sets (ie. TD analyses \& full angular analyses) that give further insight into decay dynamics.
- Current measurements already map out an impressive landscape of charmless B decays...

Charmless Mesonic B Branching Fractions

Backup Slides

Puzzles in Charmless B Decays

- Theory \& experiment are generally in good agreement.
- Some puzzles remain.
- many were discussed in dedicated sessions at CKM 2010.
- $K \pi$ CP puzzle:
- Naively expect $A_{C P}$ to be equal for $B^{+} \rightarrow K^{+} \pi^{0}$ and $B^{0} \rightarrow$ $K^{+} \pi^{-}$. They differ by $\sim 5 \sigma$.
- Large rates for $B \rightarrow \eta^{\prime} K$ but not $B \rightarrow \eta K$
- Qualitatively understood, but predictions still not great.
- Predicted B for $B \rightarrow \pi^{0} \pi^{0}, \rho^{0} \pi^{0}$ are too small.
- Polarization puzzle:
- Longitudinal polarization fraction $\left(f_{L}\right)$ of penguin-dominated $B \rightarrow V V$ decays is smaller than naively anticipated.

$B_{S}^{0} \rightarrow h h\left(h=K^{+}, K^{0}, \pi^{+}\right)$

arXiv:1006.5115 [hep-ex]
Data used: $1.25 M B_{S}^{(*)} \bar{B}_{S}^{(*)}$ pairs at $\gamma(5 S), 23.6 \mathrm{fb}^{-1}$

$B^{0} \rightarrow K^{* 0} \overline{K^{* 0}}, K^{* 0} K^{* 0}, K^{+} \pi^{-} K^{\mp} \pi^{ \pm}$
arXiv:1001.4595 [hep-ex]

Mode	$\mathrm{UL} \times 10^{6}$
$B^{0} \rightarrow K^{* 0} \bar{K}^{* 0}$	<0.8
$B^{0} \rightarrow K^{* 0} K^{-} \pi^{+}$	<13.9
$B^{0} \rightarrow K_{0}^{*}(1430) \bar{K}_{0}^{*}(1430)$	<8.4
$B^{0} \rightarrow K_{0}^{*}(1430) \bar{K}^{* 0}$	<3.3
$B^{0} \rightarrow K_{0}^{*}(1430) K^{-} \pi^{+}$	<31.8
Nonresonant $B^{0} \rightarrow K^{+} \pi^{-} K^{-} \pi^{+}$	<71.7
$B^{0} \rightarrow K^{* 0} K^{* 0}$	<0.2
$B^{0} \rightarrow K^{* 0} K^{+} \pi^{-}$	<7.6
$B^{0} \rightarrow K_{0}^{*}(1430) K_{0}^{*}(1430)$	<4.7
$B^{0} \rightarrow K_{0}^{*}(1430) K^{* 0}$	<1.7
Nonresonant $B^{0} \rightarrow K^{+} \pi^{-} K^{+} \pi^{-}$	<6.0

B decays to $\eta^{\prime} \rho, \eta^{\prime} f_{0}$, and $\eta^{\prime} K^{*}$

$\rightarrow \quad \eta^{\prime} \rho^{0}$

$$
\longrightarrow \eta^{\prime}(\mathrm{K} \pi)_{2}(1430)^{0}
$$

Mode	σ	$\operatorname{BF}(\mathbf{1 0 - 6})$	UL $\left(10^{-6}\right)$	Belle $(\mathbf{1 0 - 6})$
$\eta^{\prime} \rho^{0}$	2.0	1.5 ± 0.9	<2.8	<1.3
$\eta^{\prime} f_{0}$	0.5	0.2 ± 0.4	<0.9	---
$\eta^{\prime} \rho^{+}$	5.8	9.7 ± 2.2	---	<5.8
$\eta^{\prime} K^{*}(890)^{0}$	4.0	3.1 ± 0.9	<4.4	<2.6
$\eta^{\prime} K^{*}(890)^{+}$	3.8	4.8 ± 1.7	<7.2	<2.9
$\eta^{\prime}(K \pi)_{0}^{* 0}$	5.6	7.4 ± 1.6	---	---
$\eta^{\prime}(K \pi)_{0}^{*+}$	2.9	6.0 ± 2.3	<9.3	---
$\eta^{\prime} K_{2}^{*}(1430)^{0}$	5.3	13.7 ± 3.2	---	---
$\eta^{\prime} K_{2}^{*}(1430)^{+}$	7.2	28.0 ± 5.2	---	---

$\ldots \eta^{\prime}(K \pi)_{0}^{+}$

$$
\rightarrow \eta^{\prime}(\mathrm{K} \pi)_{0}^{0}
$$

$\ldots \quad \eta^{\prime} K^{*+}$

B decays to $\eta^{\prime} \rho, \eta^{\prime} f_{0}$, and $\eta^{\prime} K^{*}$

Mode	σ	BF(10^{-6})	UL(10-6)	
$\eta^{\prime} f_{0}$	0.5	0.2 ± 0.4	< 0.9	
人 $\eta^{\prime}(K \pi)_{0}^{* 0}$	5.6	7.4 ± 1.6	---	
$\eta^{\prime}(K \pi)_{0}^{*+}$	2.9	6.0 ± 2.3	<9.3	- $=1$ st observation
$\eta^{\prime} K_{2}^{*}(1430)^{0}$	5.3	13.7 ± 3.2	---	Dominance of $\eta^{\prime} K_{2}^{*}$ over $\eta^{\prime} K^{*}$ not anticipated
- $\eta^{\prime} K_{2}^{*}(1430)^{+}$	7.2	28.0 ± 5.2	---	by theory. (Pattern seen in ωK^{*} but not ηK^{*})

