## Charmless Hadronic B Decays

#### Corry L. Lee

Harvard University BaBar Collaboration





CKM 2010 – September 9, 2010 – Warwick, U.K.

## Charmless Hadronic B Decays

• At *B* factories:

 $-e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ 

- Study  $B \rightarrow M_1 M_2$  or  $M_1 M_2 M_3$  light mesons
  - Pseudoscalar ( $J^P = 0^-$ ):  $\pi, \eta, \eta', K$
  - Scalar  $(J^P = 0^+): f_0, K_0^*(1430), ...$
  - Vector  $(J^P = 1^-): \rho, \omega, \phi, K^*(892)$
  - Axial Vector  $(J^P = 1^+)$ :  $a_1(1260)$ , ...
  - Tensor  $(J^P = 2^+): K_2^*(1430), ...$

– etc.

## Charmless B Decays Overview

- ~100 charmless *B* decays have been measured with >  $4\sigma$  significance.
- Provides a strong test of theory, requiring calculations to accommodate  $\mathfrak{B}$ ,  $A_{CP}$ ,  $f_L$ , . . . measurements.
- Theoretical description complicated due to the interplay of short- & longdistance QCD effects.
  - Quarks  $\neq$  Hadrons.
- The heavy mass of the *b* quark allows SD contributions to be factored out.
  - See earlier talks (ie. G. Bell, S. Jager)
- Predictions from:
  - QCD Factorization (QCDF)
  - Perturbative QCD (pQCD)
  - Soft-Collinear Effective Theory (SCET)
  - Naïve Factorization (NF)
- Power corrections often have end-point divergences requiring modeldependent solutions & leading to large uncertainties.
- Comparing to many experimental measurements helps refine theoretical methods and may exhibit hints of physics beyond the Standard Model.



### **Experimental Techniques** in Charmless B Decays



- Data sets  $\sim 500 f b^{-1} \sim 500 \times 10^6 B\overline{B}$  pairs
- Access branching fractions:  $\mathfrak{B} \sim 10^{-5} 10^{-7}$
- Dominant backgrounds from  $e^+e^- \rightarrow q\bar{q}$ where q = u, d, s, c
  - Discriminate against with event shape (Fisher, Neural Net, etc.)
- Extract signals using Maximum Likelihood (ML) Fit using several variables:

 $-\Delta E = E_{meas} - E_{beam}$  $\sim m_B$ 

- $m_{ES} = \sqrt{E_{beam}^2 p_{meas}^2}$
- Event shape
- **Resonance masses & helicities**
- $M_{bc} = m_{ES}$  used by Belle





Spherical *BB* 



C.L. Lee - CKM 2010

signal

## **Experimental Results from 2010**



- $-B \rightarrow \eta' \rho, \eta' f_0, \text{ and } \eta' K^*, \text{ where } K^* = K^*(892), K_2^*(1430), \text{ and } K_0^*(1430) + (Kπ) S-wave$
- $-B^+ \rightarrow a_1^+(1260)K^{*0}(892)$
- Inclusive  $B^0 \rightarrow K_S^0 K^{\pm} \pi^{\mp}$
- Inclusive  $B^+ \rightarrow K^+ \pi^0 \pi^0$



$$- B^{0} \to K^{*0} \overline{K^{*0}}, K^{*0} K^{*0}, K^{+} \pi^{-} K^{\mp} \pi^{\pm}$$
$$- B^{0}_{S} \to hh \ (h = K^{+}, K^{0}, \pi^{+})$$



- Confirm predicted  $\eta/\eta'$  mixing
- Poor agreement between previous BaBar & Belle measurements (see next slide)
- Theoretical predictions from pQCD, QCDF, SCET, and SU(3) flavor symmetry
- Few predictions with  $K_0^*$  or  $K_2^*$

#### <u>Results:</u>

- ML fit of 6 variables
- Simultaneously fit 3  $K^*$  resonances and  $ho^0/f_0$
- Observe >  $5\sigma$  signals in 4 channels C.L. Lee CKM 2010





\*Phys. Rev. D75, 092002 (2007); 535M BB



 $B^{0} \to K^{*0} \overline{K^{*0}}, K^{*0} K^{*0}, K^{+} \pi^{-} K^{+} \pi^{\pm}$ 

Data used:  $657 f b^{-1}$ 

#### Motivation:

- decay dominated by  $b \rightarrow d$  penguin
  - Expect BF $(B^0 \to K^{*0} \overline{K^{*0}}) \sim 10^{-7} 10^{-6}$
- If observe SM-suppressed  $K^{*0}K^{*0} \rightarrow NP$ - Expect BF $(B^0 \rightarrow K^{*0}K^{*0}) \sim 10^{-15}$
- Want to measure  $K^{*0}\overline{K^{*0}}$  polarization to help understand the  $B \rightarrow VV$ polarization puzzle

arXiv:1001.4595 [hep-ex] Phys. Rev. D81, 071101 (2010)

#### Results:

- $K^{*0}$  is either  $K^{*}(892)^{0}$  or  $K_{0}^{*}(1430)^{0}$
- No signal observed
- Set 90% CL UL <  $(0.2 72) \times 10^{-6}$

| Mode                      | BaBar* BF(10 <sup>-6</sup> ) | Belle BF(10 <sup>-6</sup> ) |
|---------------------------|------------------------------|-----------------------------|
| $K^{*0}\overline{K^{*0}}$ | $1.28\pm0.34$                | < 0.8                       |
| $K^{*0}K^{*0}$            | < 0.41                       | < 0.2                       |

<sup>\*</sup> Phys. Rev. Lett. 100, 081801 (2008)





Search for  $B^+ \to a_1^+(1260)K^{*0}(892)$ 

Data used:  $424 f b^{-1}$ 

#### Motivation:

- Axial vector ( $J^P = 1^+$ ) meson  $a_1(1260)$
- measuring B → AV or AP will help better understand contributing amplitudes & helicity structure of charmless modes
- Predict  $\mathfrak{B}[B^+ \rightarrow a_1^+(1260)K^{*0}]$ 
  - QCDF:  $(11^{+6}_{-4}) \times 10^{-6}$
  - NF:  $\sim 0.5 \times 10^{-6}$

#### <u>Results:</u>

- ML fit with 7 variables
- No significant signal observed  $(0.5\sigma)$
- Set 90% CL UL

 $\Re[B^+ \to \ a_1^+ K^{*0}] \ < 3.6 \times 10^{-6}$ 

- Assumes  $\Re[a_1^+ \to \pi^+ \pi^- \pi^+] = 50\%$
- Favors NF; still consistent with QCDF



arXiv:1007.2732v1 [hep-ex]

C.L. Lee - CKM 2010



# Observation of $B^0 \to K_S^0 K^{\pm} \pi^{\mp}$

GeV<sup>2</sup>/c<sup>4</sup>

 $m^2_{K^0_S\pi^\mp}$ 

Data used:  $424 fb^{-1}$ 

arXiv:1003.0640 [hep-ex] Phys. Rev. D 82, 031101 (2010)

10

No compelling evidence for  $f_X(1500)$  isospin partner

20

 $(\text{GeV}^2/\text{c}^4)$ 

Motivation:

- $b \rightarrow d$  penguin (NP?) &  $b \rightarrow u$  tree
- Isospin partner to  $f_X(1500)$  ?
  - Peak in  $K^+K^-$  spectrum of  $B^+ \to K^+K^-\pi^+$
  - Not observed in  $B^+ \to K^0_S K^0_S \pi^+$

#### <u>Results:</u>

- ML fit of  $m_{ES}$ ,  $\Delta E$ , Fisher
- $5.2\sigma$  observation  $\Im[B^0 \to K_S^0 K^{\pm} \pi^{\mp}] = (3.2 \pm 0.5 \pm 0.3) \times 10^{-6}$

sPlot of DP to qualitatively look for resonances



$$B_{S}^{0} \rightarrow hh (h = K^{+}, K^{0}, \pi^{+})_{arXiv:1006.5115 [hep-ex]}$$

Data used: 1.25*M*  $B_S^{(*)} \overline{B}_S^{(*)}$  pairs at *Y(5S)*, 23.6 fb<sup>-1</sup>

#### Motivation:

- Help understand the  $K\pi$  Puzzle in  $B_d$  decays
- NP comparing  $A_{CP}$  in  $B_s$  and  $B_d$  decays?

#### <u>Results:</u>

- ML fit with  $m_{ES} \& \Delta E$
- 5.8 $\sigma$  measurement of  $B_S^0 \to K^+ K^-$
- Compatible with CDF measurements
  - See Tuesday talk by M. Dorigo

| Mode                   | Belle BF (10 <sup>-6</sup> ) | CDF* BF (10 <sup>-6</sup> ) |
|------------------------|------------------------------|-----------------------------|
| $K^+K^-$               | $38 \pm 12$                  | 24 <u>+</u> 5               |
| $K^+\pi^-$             | < 26                         | $5.0 \pm 1.1$               |
| $\pi^+\pi^-$           | < 12                         | < 1.2                       |
| $K^0 \ \overline{K^0}$ | < 66                         |                             |

\* arXiv:hep-ex/0612018 and Phys. Rev. Lett. 103, 031801 (2009)



#### <u>Theory/Future Experimental Effort:</u> arXiv:1002.4518 [hep-ph], G. Zhu

- In QCDF, "tree" amplitude can be well estimated, but result gives too low a BF for  $B_S^0 \rightarrow K^+\pi^-$ .
- Could solve with larger  $B_S \rightarrow K$ form factor, or if charming penguins are not small.
- To differentiate, investigate ratio:  $\frac{\Im[B_S \to \rho^+ K^-]}{\Im[B_S \to \pi^+ K^-]} = 2.5 \pm 0.2 \text{ (in QCDF)}$



### Search for Inclusive $B^+ \to K^+ \pi^0 \pi^0$

#### Data used: 429 $fb^{-1}$

arXiv:1005.3717 [hep-ex]

Motivation:

- Understanding  $K^*\pi$  may shed light on the  $K\pi$  puzzle
- $B^+ \rightarrow K^{*+}\pi^0$  poorly measured; 3 body state previously not investigated
- DP studies of  $K\pi\pi$  show presence of  $f_X(1300)$  in  $\pi^+\pi^-$ . Finding it in  $\pi^0\pi^0$  would suggest spin-even.
- May help interpret TD CP results in  $K_S^0 \pi^0 \pi^0$  ( $b \rightarrow s$  penguin measures  $\beta/\phi_1$ )

#### <u>Results:</u>

- 2D ML fit with m<sub>ES</sub> & Event Shape (NN)
  - Cut on  $\Delta E$  (correlated with DP resolution)
- Observe with significance >  $10\sigma$  $\Im[B^+ \rightarrow K^+ \pi^0 \pi^0] = (15.5 \pm 1.1 \pm 1.6) \times 10^{-6}$





# **BAR** Summary & Outlook



- BaBar & Belle continue to make interesting measurements of charmless hadronic *B* decays.
- $\mathfrak{B}$ ,  $A_{CP}$ , and  $f_L$  measurements challenge & test theoretical methods.
- Super *B* factories will...
  - access SM-suppressed processes,
  - allow for more precise measurements of  $\mathfrak{B}$ ,  $A_{CP}$ , and  $f_L$  to further challenge theoretical calculations,
  - enable measurements impossible with current data sets (ie. TD analyses & full angular analyses) that give further insight into decay dynamics.
- Current measurements already map out an impressive landscape of charmless *B* decays...





#### **Charmless Mesonic B Branching Fractions**



### **Backup Slides**

## Puzzles in Charmless B Decays

- Theory & experiment are generally in good agreement.
- Some puzzles remain.
  - many were discussed in dedicated sessions at CKM 2010.
- $K\pi$  CP puzzle:
  - Naively expect  $A_{CP}$  to be equal for  $B^+ \to K^+\pi^0$  and  $B^0 \to K^+\pi^-$ . They differ by  $\sim 5\sigma$ .
- Large rates for  $B \rightarrow \eta' K$  but not  $B \rightarrow \eta K$ 
  - Qualitatively understood, but predictions still not great.
- Predicted B for  $B \to \pi^0 \pi^0$ ,  $\rho^0 \pi^0$  are too small.
- Polarization puzzle:
  - Longitudinal polarization fraction  $(f_L)$  of penguin-dominated  $B \rightarrow VV$  decays is smaller than naively anticipated.



 $B^0 \to K^{*0} \overline{K^{*0}}, K^{*0} K^{*0}, K^+ \pi^- K^{\mp} \pi^{\pm}$ 

arXiv:1001.4595 [hep-ex]

| Mode                                        | UL $\times 10^6$ |
|---------------------------------------------|------------------|
| $B^0 \to K^{*0} \overline{K}^{*0}$          | < 0.8            |
| $B^0 \to K^{*0} K^- \pi^+$                  | < 13.9           |
| $B^0 \to K_0^*(1430)\overline{K}_0^*(1430)$ | < 8.4            |
| $B^0 \to K_0^*(1430)\overline{K}^{*0}$      | < 3.3            |
| $B^0 \to K_0^*(1430) K^- \pi^+$             | < 31.8           |
| Nonresonant $B^0 \to K^+\pi^-K^-\pi^+$      | < 71.7           |
| $B^0 \to K^{*0} K^{*0}$                     | < 0.2            |
| $B^0 \to K^{*0} K^+ \pi^-$                  | < 7.6            |
| $B^0 \to K_0^*(1430)K_0^*(1430)$            | < 4.7            |
| $B^0 \to K_0^*(1430) K^{*0}$                | < 1.7            |
| Nonresonant $B^0 \to K^+ \pi^- K^+ \pi^-$   | < 6.0            |



 $E_{56}^{5}$ 

BELLE

### B decays to $\eta' \rho$ , $\eta' f_0$ , and $\eta' K^*$



| σ   | BF(10 <sup>-6</sup> )                                                                                                                      | UL(10 <sup>-6</sup> )                                                                                                                                               | Belle(10 <sup>-6</sup> )                                                                                                                                                                                                                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0 | 1.5 ± 0.9                                                                                                                                  | < 2.8                                                                                                                                                               | < 1.3                                                                                                                                                                                                                                            |
| 0.5 | $0.2 \pm 0.4$                                                                                                                              | < 0.9                                                                                                                                                               |                                                                                                                                                                                                                                                  |
| 5.8 | 9.7 ± 2.2                                                                                                                                  |                                                                                                                                                                     | < 5.8                                                                                                                                                                                                                                            |
| 4.0 | $3.1 \pm 0.9$                                                                                                                              | < 4.4                                                                                                                                                               | < 2.6                                                                                                                                                                                                                                            |
| 3.8 | $4.8 \pm 1.7$                                                                                                                              | < 7.2                                                                                                                                                               | < 2.9                                                                                                                                                                                                                                            |
| 5.6 | 7.4 ± 1.6                                                                                                                                  |                                                                                                                                                                     |                                                                                                                                                                                                                                                  |
| 2.9 | $6.0 \pm 2.3$                                                                                                                              | < 9.3                                                                                                                                                               |                                                                                                                                                                                                                                                  |
| 5.3 | 13.7 ± 3.2                                                                                                                                 |                                                                                                                                                                     |                                                                                                                                                                                                                                                  |
| 7.2 | $28.0\pm5.2$                                                                                                                               |                                                                                                                                                                     |                                                                                                                                                                                                                                                  |
|     | <ul> <li>σ</li> <li>2.0</li> <li>0.5</li> <li>5.8</li> <li>4.0</li> <li>3.8</li> <li>5.6</li> <li>2.9</li> <li>5.3</li> <li>7.2</li> </ul> | $\sigma$ BF(10-6)2.01.5 $\pm$ 0.90.50.2 $\pm$ 0.45.89.7 $\pm$ 2.24.03.1 $\pm$ 0.93.84.8 $\pm$ 1.75.67.4 $\pm$ 1.62.96.0 $\pm$ 2.35.313.7 $\pm$ 3.27.228.0 $\pm$ 5.2 | $\sigma$ BF(10-6)UL(10-6)2.0 $1.5 \pm 0.9$ $< 2.8$ 0.5 $0.2 \pm 0.4$ $< 0.9$ 5.8 $9.7 \pm 2.2$ $$ 4.0 $3.1 \pm 0.9$ $< 4.4$ 3.8 $4.8 \pm 1.7$ $< 7.2$ 5.6 $7.4 \pm 1.6$ $$ 2.9 $6.0 \pm 2.3$ $< 9.3$ 5.3 $13.7 \pm 3.2$ $$ 7.2 $28.0 \pm 5.2$ $$ |

### B decays to $\eta' \rho$ , $\eta' f_0$ , and $\eta' K^*$

| Mode                   | σ   | BF(10 <sup>-6</sup> ) | UL(10 <sup>-6</sup> ) |                                                             |
|------------------------|-----|-----------------------|-----------------------|-------------------------------------------------------------|
| $\eta' f_0$            | 0.5 | $0.2 \pm 0.4$         | < 0.9                 |                                                             |
| $\eta'(K\pi)^{*0}_0$   | 5.6 | 7.4 ± 1.6             |                       |                                                             |
| $\eta'(K\pi)^{*+}_0$   | 2.9 | $6.0 \pm 2.3$         | < 9.3                 | = 1 <sup>st</sup> observation                               |
| $\eta' K_2^* (1430)^0$ | 5.3 | 13.7 ± 3.2            | 7                     | Dominance of $\eta' K_2^*$ over $\eta' K^*$ not anticipated |
| $\eta' K_2^*(1430)^+$  | 7.2 | 28.0 ± 5.2            |                       | by theory. (Pattern seen in $\omega K^*$ but not r          |

