THEORY OF HADRONIC B DECAYS:

TREE AMPLITUDES

[GUIDO BELL]

universitat
bern

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

OUTLINE

THEORY

BRIEF REVIEW OF QCDF / SCET / PQCD
PERTURBATIVE CALCULATION IN QCDF

PHENOMENOLOGY

$$
B \rightarrow \pi \pi / \pi \rho / \rho \rho
$$

KEY HADRONIC PARAMETER λ_{B}
TREE-DOMINATED B_{s} DECAYS

Hadronic two-body decays

SM parametrization of decay amplitudes

$$
\mathcal{A}\left(\bar{B} \rightarrow M_{1} M_{2}\right)=e^{-i \gamma} T_{M_{1} M_{2}}+P_{M_{1} M_{2}}
$$

- $A_{C P}$ from interference of T and P with $\delta_{T} \neq \delta_{P}$
very few examples where only T or P is relevant $\left(B_{d} \rightarrow J / \Psi K_{S}\right)$
- often crucial to estimate penguin ($B_{d} \rightarrow \pi \pi$) or tree ($B_{d} \rightarrow \eta^{\prime} K_{S}$) "pollution"

Hadronic two-body decays

SM parametrization of decay amplitudes

$$
\mathcal{A}\left(\bar{B} \rightarrow M_{1} M_{2}\right)=e^{-i \gamma} T_{M_{1} M_{2}}+P_{M_{1} M_{2}}
$$

- $A_{C P}$ from interference of T and P with $\delta_{T} \neq \delta_{P}$
very few examples where only T or P is relevant $\left(B_{d} \rightarrow J / \Psi K_{S}\right)$
- often crucial to estimate penguin ($B_{d} \rightarrow \pi \pi$) or tree $\left(B_{d} \rightarrow \eta^{\prime} K_{S}\right.$) "pollution"

Decompose into topological amplitudes: $\quad T \sim\left|V_{u b} V_{u D}\right| \rightarrow \alpha_{1}, \alpha_{2}, \alpha_{4}^{u}, \beta_{i}^{u}, \ldots$

$$
P \sim\left|V_{c b} V_{c D}\right| \rightarrow \alpha_{4}^{c}, \beta_{i}^{c}, \ldots
$$

colour-allowed tree α_{1}

colour-suppressed tree α_{2}

weak annihilation β_{i}^{p}

I will focus here on α_{1} and $\alpha_{2} \quad$ (penguins + annihilation \rightarrow talk by S . Jäger)
\Rightarrow test understanding of QCD dynamics with tree-dominated observables

Theory approaches

Hadronic matrix elements factorize in heavy quark limit $m_{b} \gg \Lambda_{Q C D}$

- QCD factorization

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq & F^{B M_{1}}(0) \int d u T_{i}^{\prime}(u) \phi_{M_{2}}(u) \\
& +\int d \omega d u d v T_{i}^{\prime \prime}(\omega, u, v) \phi_{B}(\omega) \phi_{M_{1}}(v) \phi_{M_{2}}(u)
\end{aligned}
$$

"soft-overlap" in $F^{B M_{1}}$, strong phases perturbative, corrections of $\mathcal{O}\left(\frac{\Lambda}{m_{b}}\right)$

Theory approaches

Hadronic matrix elements factorize in heavy quark limit $m_{b} \gg \Lambda_{Q C D}$

- QCD factorization

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq & F^{B M_{1}}(0) \int d u T_{i}^{\prime}(u) \phi_{M_{2}}(u) \\
& +\int d \omega d u d v T_{i}^{\prime \prime}(\omega, u, v) \phi_{B}(\omega) \phi_{M_{1}}(v) \phi_{M_{2}}(u)
\end{aligned}
$$

"soft-overlap" in $F^{B M_{1}}$, strong phases perturbative, corrections of $\mathcal{O}\left(\frac{\Lambda}{m_{b}}\right)$

- Soft-collinear effective theory

SCET = QCDF: simply EFT vs diagrammatical formulation
BPRS $\neq \mathrm{BBNS}:$ phenomenological implementation for $B \rightarrow M_{1} M_{2}$ quite different
issues: $F^{B M_{1}}$ traded for $\xi^{B M_{1}}, \alpha_{s}\left(\sqrt{\lambda m_{b}}\right)$ non-perturbative, \ldots (minor) long-distance charm loops, zero-bin subtractions (major)

Theory approaches

Hadronic matrix elements factorize in heavy quark limit $m_{b} \gg \Lambda_{Q C D}$

- QCD factorization

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq & F^{B M_{1}}(0) \int d u T_{i}^{\prime}(u) \phi_{M_{2}}(u) \\
& \quad+\int d \omega d u d v T_{i}^{\prime \prime}(\omega, u, v) \phi_{B}(\omega) \phi_{M_{1}}(v) \phi_{M_{2}}(u)
\end{aligned}
$$

"soft-overlap" in $F^{B M_{1}}$, strong phases perturbative, corrections of $\mathcal{O}\left(\frac{\Lambda}{m_{b}}\right)$

- Soft-collinear effective theory

SCET = QCDF: simply EFT vs diagrammatical formulation
BPRS $\neq \mathrm{BBNS}:$ phenomenological implementation for $B \rightarrow M_{1} M_{2}$ quite different
issues: $F^{B M_{1}}$ traded for $\xi^{B M_{1}}, \alpha_{s}\left(\sqrt{\lambda m_{b}}\right)$ non-perturbative, \ldots (minor) long-distance charm loops, zero-bin subtractions (major)

- perturbative QCD

$$
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq \int d \omega d u d v d k_{i_{\perp}} T_{i}\left(\omega, u, v, k_{i_{\perp}}\right) \phi_{B}\left(\omega, k_{1_{\perp}}\right) \phi_{M_{1}}\left(v, k_{2 \perp}\right) \phi_{M_{2}}\left(u, k_{3 \perp}\right)
$$

recently substantially modified: soft factor from Glauber gluons?
[Li, Mishima 09]

QCDF / SCET / pQCD

	BBNS (QCDF)	BPRS (SCET)	pQCD
$\alpha_{S}\left(\sqrt{\Lambda m_{b}}\right.$)	perturbative	non-perturbative	perturbative
charm loops	perturbative (small phase)	non-perturbative (large phase from fit to data)	perturbative (small phase)
weak annihilation (power correction)	non-perturbative (crude model, arbitrary phase)	perturbative (with zero bins, small phase)	perturbative (large phase)
strong phases	generically small $\left(\sim \alpha_{S}, 1 / m_{b}\right)$	can be sizeable (charm loops)	can be sizeable (annihilation, Glaubers)
perturbative calculation	partially NNLO	partially NLO	

- theory predictions for direct CP asymmetries can differ a lot!
- measurements (even bounds) of pure annihilation decays highly appreciated:
$B_{d} \rightarrow K^{-} K^{+}, B_{s} \rightarrow \pi \pi / \pi \rho / \rho \rho$

Perturbative calculation in QCDF

Ongoing effort to compute NNLO corrections in QCDF

$$
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq F^{B M_{1}} T_{i}^{\prime} \otimes \phi_{M_{2}}+T_{i}^{\prime \prime} \otimes \phi_{B} \otimes \phi_{M_{1}} \otimes \phi_{M_{2}}
$$

strong phases $\sim \mathcal{O}\left(\alpha_{s}\right) \quad \Rightarrow \quad$ NNLO is first correction for direct CP asymmetries!

Status	2-loop vertex corrections (T_{i}^{\prime})	1-loop spectator scattering ($T_{i}^{\prime \prime}$)
Trees	[GB 07, 09] [Beneke, Huber, Li 09]	[Beneke, Jäger 05] [Kivel 06] [Pilipp 07]
Penguins	[in progress]	[Beneke, Jäger 06] [Jain, Rothstein, Stewart 07]

- factorization found to hold (as expected) at highly non-trivial order
- direct CP asymmetries not yet available at NNLO
- first NNLO results for CP-averaged branching ratios of tree-dominated decays

Tree amplitudes

Perturbative structure in QCDF to NNLO

$$
\begin{aligned}
\alpha_{1}(\pi \pi)= & {[1.008] v_{0}+[0.022+0.009 i] v_{1}+[0.024+0.026 i] v_{2} } \\
& -[0.014]_{s_{1}}-[0.016+0.012 i]_{s_{2}}-[0.008]_{1 / m_{b}} \\
= & 1.015_{-0.029}^{+0.020}+\left(0.023_{-0.015}^{+0.015}\right) i \\
\alpha_{2}(\pi \pi)= & {[0.224]_{v_{0}}-[0.174+0.075 i]_{v_{1}}-[0.029+0.046 i]_{v_{2}} } \\
& +[0.084]_{s_{1}}+[0.037+0.022 i]_{s_{2}}+[0.052]_{1 / m_{b}} \\
= & 0.194_{-0.095}^{+0.130}-\left(0.099_{-0.056}^{+0.057}\right) i
\end{aligned}
$$

- PT well-behaved, individual NNLO corrections quite significant but cancellations
- α_{1} : stable under radiative corrections, precise prediction
- α_{2} : real part dominated by spectator scattering $\sim \lambda_{B}^{-1}=\int \frac{d \omega}{\omega} \phi_{B}(\omega)$
\Rightarrow substantial hadronic uncertainties, but $\arg \left(\alpha_{2} / \alpha_{1}\right)$ small
- pQCD: similar up to 2009, now large α_{2} with large $\arg \left(\alpha_{2} / \alpha_{1}\right)$ from $B \rightarrow \pi \pi$ data SCET: very large α_{2} from $B \rightarrow \pi \pi$ data, but negligible $\arg \left(\alpha_{2} / \alpha_{1}\right)$

Confronting data: $B \rightarrow \pi \pi / \pi \rho / \rho \rho$

CP-averaged branching ratios in units of 10^{-6}

Mode	QCDF	B	Experiment
$\pi^{-} \pi^{0}$	$6.22_{-2.01}^{+2.37}$	5.46	$5.59_{-0.40}^{+0.41}$
$\rho_{L}^{-} \rho_{L}^{0}$	$21.0_{-7.3}^{+8.5}$	21.3	$22.5_{-1.9}^{+1.9}$
$\pi^{-} \rho^{0}$	$9.34_{-3.23}^{+4.00}$	10.4	$8.3_{-1.3}^{+1.2}$
$\pi^{0} \rho^{-}$	$15.1_{-5.0}^{+5.7}$	11.9	$10.9_{-1.5}^{+1.4}$
$\pi^{+} \pi^{-}$	$8.96_{-3.32}^{+3.78}$	5.21	$5.16_{-0.22}^{+0.22}$
$\pi^{0} \pi^{0}$	$0.35_{-0.21}^{+0.37}$	0.63	$1.55_{-0.19}^{+0.19}$
$\pi^{+} \rho^{-}$	$22.8_{-8.0}^{+9.1}$	13.2	$15.7_{-1.8}^{+1.8}$
$\pi^{-} \rho^{+}$	$11.5_{-4.3}^{+5.1}$	8.41	$7.3_{-1.2}^{+1.2}$
$\pi^{ \pm} \rho^{\mp}$	$34.3_{-10.0}^{+11.5}$	21.6	$23.0_{-2.3}^{+2.3}$
$\pi^{0} \rho^{0}$	$0.52_{-0.42}^{+0.76}$	1.64	$2.0_{-0.5}^{+0.5}$
$\rho_{L}^{+} \rho_{L}^{-}$	$30.3_{-11.2}^{+12.9}$	22.3	$23.6_{-3.2}^{+3.2}$
$\rho_{L}^{0} \rho_{L}^{0}$	$0.44_{-0.37}^{+0.66}$	1.33	$0.69_{-0.30}^{+0.30}$

- theo. uncertainties highly correlated ($\left.F^{B M_{1}},\left|V_{u b}\right|\right)$
- colour-suppressed modes $\pi^{0} \pi^{0} / \pi^{0} \rho^{0} / \rho^{0} \rho^{0}$ rather uncertain (λ_{B} and $1 / m_{b}$)
- overall preference for enhanced colour-suppressed amplitude
- $\rho^{0} \rho^{0}$ and $\pi^{0} \rho^{0}$ (with smaller penguins) fit better than $\pi^{0} \pi^{0}$

B: mimics enhanced colour-suppressed amplitude (with $\lambda_{B} \rightarrow \lambda_{B} / 2$ and smaller form factors)

Testing the QCD dynamics

For colour-allowed modes can eliminate dependence on $F^{B M_{1}}$ and $\left|V_{u b}\right|$ via

$$
\mathcal{R}_{M_{3}}\left(M_{1} M_{2}\right)=\frac{\Gamma\left(B \rightarrow M_{1} M_{2}\right)}{d \Gamma\left(B \rightarrow M_{3} \ell \nu\right) /\left.d q^{2}\right|_{q^{2}=0}}
$$

\Rightarrow requires measurement of semileptonic decay spectrum and extrapolation to $q^{2}=0$

$$
B \rightarrow \pi \ell \nu
$$

[Babar 06]
$\Rightarrow \quad\left|V_{u b}\right| F_{+}^{B \pi}(0)=(9.1 \pm 0.7) \cdot 10^{-4}$
$B \rightarrow \rho \ell \nu$

[Babar 05; Belle 07; CLEO 07; figure from Flynn et al 08]
currently insufficient to extract $\left|V_{u b}\right| A_{0}^{B \rho}(0)$

Testing the QCD dynamics

For colour-allowed modes can eliminate dependence on $F^{B M_{1}}$ and $\left|V_{u b}\right|$ via

$$
\mathcal{R}_{M_{3}}\left(M_{1} M_{2}\right)=\frac{\Gamma\left(B \rightarrow M_{1} M_{2}\right)}{d \Gamma\left(B \rightarrow M_{3} \ell \nu\right) /\left.d q^{2}\right|_{q^{2}=0}}
$$

Mode	QCDF	B	Experiment
$\mathcal{R}_{\pi}\left(\pi^{-} \pi^{0}\right)$	$0.70_{-0.08}^{+0.12}$	0.95	$0.81_{-0.14}^{+0.14}$
$\mathcal{R}_{\rho}\left(\rho_{L}^{-} \rho_{L}^{0}\right)$	$1.91_{-0.23}^{+0.32}$	2.38	n.a.
$\mathcal{R}_{\rho}\left(\pi^{-} \rho^{0}\right)$	$0.85_{-0.14}^{+0.22}$	1.16	n.a.
$\mathcal{R}_{\pi}\left(\pi^{0} \rho^{-}\right)$	$1.71_{-0.24}^{+0.27}$	2.07	$1.57_{-0.32}^{+0.32}$
$\mathcal{R}_{\pi}\left(\pi^{+} \pi^{-}\right)$	$1.09_{-0.20}^{+0.22}$	0.97	$0.80_{-0.13}^{+0.13}$
$\mathcal{R}_{\pi}\left(\pi^{+} \rho^{-}\right)$	$2.77_{-0.31}^{+0.32}$	2.46	$2.43_{-0.47}^{+0.47}$
$\mathcal{R}_{\rho}\left(\pi^{-} \rho^{+}\right)$	$1.12_{-0.14}^{+0.20}$	1.01	n.a.
$\mathcal{R}_{\rho}\left(\rho_{L}^{+} \rho_{L}^{-}\right)$	$2.95_{-0.35}^{+0.37}$	2.68	n.a.
$R\left(\rho_{L}^{-} \rho_{L}^{0} / \rho_{L}^{+} \rho_{L}^{-}\right)$	$0.65_{-0.11}^{+0.16}$	0.89	$0.89_{-0.14}^{+0.14}$
$R\left(\pi^{-} \pi^{0} / \pi^{+} \pi^{-}\right)$	$0.65_{-0.14}^{+0.19}$	0.98	$1.01_{-0.09}^{+0.09}$

- theoretical uncertainties largely reduced
- satisfactory description of clean observables
- colour-allowed amplitudes seem to be under control

B: mimics enhanced colour-suppressed amplitude (with $\lambda_{B} \rightarrow \lambda_{B} / 2$ and smaller form factors)

What can we learn about α_{2} ?

Pattern of colour-suppressed modes not conclusive

Mode	QCDF	B	Experiment
$\pi^{0} \pi^{0}$	$0.35_{-0.21}^{+0.37}$	0.63	$1.55_{-0.19}^{+0.19}$
$\pi^{0} \rho^{0}$	$0.52_{-0.42}^{+0.76}$	1.64	$2.0_{-0.5}^{+0.5}$
$\rho_{L}^{0} \rho_{L}^{0}$	$0.44_{-0.37}^{+0.66}$	1.33	$0.69_{-0.30}^{+0.30}$

- penguins in $\pi^{0} \pi^{0}$ non-negligible
- dominated by different uncertainties
\Rightarrow cannot construct any clean ratio

Consider instead pure tree decays $\pi^{-} \pi^{0} / \rho^{-} \rho^{0}$

Mode	QCDF	B	Experiment
$\mathcal{R}_{\pi}\left(\pi^{-} \pi^{0}\right)$	$0.70_{-0.08}^{+0.12}$	0.95	$0.81_{-0.14}^{+0.14}$
$\mathcal{R}_{\rho}\left(\rho_{L}^{-} \rho_{L}^{0}\right)$	$1.91_{-0.23}^{+0.32}$	2.38	n.a.
$R\left(\rho_{L}^{-} \rho_{L}^{0} / \rho_{L}^{+} \rho_{L}^{-}\right)$	$0.65_{-0.11}^{+0.16}$	0.89	$0.89_{-0.14}^{+0.14}$

- no QCD penguins, no weak annihilation
- very clean access to $\left|\alpha_{1}+\alpha_{2}\right|$
\Rightarrow I consider this as the strongest support for an enhancement of α_{2} (smaller λ_{B} ?)
- consistent with overall pattern in $\pi \pi / \pi \rho / \rho \rho$ data
- measurement of $B \rightarrow \rho \ell \nu$ spectrum would be helpful

Key hadronic parameter: λ_{B}

Spectator-scattering $\sim \lambda_{B}^{-1}$ can potentially enhance the QCDF prediction of α_{2}

What do we know about $\lambda_{B}^{-1}(\mu)=\int \frac{d \omega}{\omega} \phi_{B}(\omega ; \mu)$?
$-\lambda_{B}(1 \mathrm{GeV})= \begin{cases}(460 \pm 110) \mathrm{MeV} & \text { QCD sum rules } \\ (480 \pm 120) \mathrm{MeV} & \text { OPE + shape model }\end{cases}$

- OPE with dim 5 operators $\Rightarrow \sim 370 \mathrm{MeV}$ (sensitive to $\lambda_{E}^{2}, \lambda_{H}^{2}$!) [Kawamura, Tanaka 08]
$-\pi \pi / \pi \rho / \rho \rho$ numbers based on (400 ± 150) MeV , but data seem to prefer $\sim 200 \mathrm{MeV}$?

Key hadronic parameter: λ_{B}

Spectator-scattering $\sim \lambda_{B}^{-1}$ can potentially enhance the QCDF prediction of α_{2}

What do we know about $\lambda_{B}^{-1}(\mu)=\int \frac{d \omega}{\omega} \phi_{B}(\omega ; \mu)$?
$-\lambda_{B}(1 \mathrm{GeV})= \begin{cases}(460 \pm 110) \mathrm{MeV} & \text { QCD sum rules } \\ (480 \pm 120) \mathrm{MeV} & \text { OPE + shape model }\end{cases}$

- OPE with dim 5 operators $\Rightarrow \sim 370 \mathrm{MeV}$ (sensitive to $\lambda_{E}^{2}, \lambda_{H}^{2}$!) [Kawamura, Tanaka 08]
$-\pi \pi / \pi \rho / \rho \rho$ numbers based on (400 ± 150) MeV , but data seem to prefer $\sim 200 \mathrm{MeV}$?

Experiments can help to constrain λ_{B} from $B \rightarrow \gamma \ell \nu$!

- requires energetic photon, expected branching ratio $\sim 10^{-6}$
- Babar 09: $\operatorname{Br}(B \rightarrow \gamma \ell \nu)<15.6 \cdot 10^{-6} \quad \Rightarrow \quad \lambda_{B}(\mu)>300 \mathrm{MeV}$?
- issues: cut on photon energy? requires NLO analysis (known!) to assign scale dependence

Tree-dominated B_{s} decays

CP-averaged branching ratios in units of 10^{-6}

Mode	QCDF	B	Experiment
$\pi^{-} K^{+}$	$8.73_{-4.60}^{+5.77}$	4.88	$5.0_{-1.1}^{+1.1}$
$\pi^{0} K^{0}$	$0.50_{-0.35}^{+0.71}$	1.12	n.a.
$\pi^{-} K^{*+}$	$15.4_{-7.0}^{+8.6}$	11.0	n.a.
$\pi^{0} K^{* 0}$	$0.39_{-0.26}^{+0.58}$	0.90	n.a.
$\rho^{-} K^{+}$	$22.4_{-11.6}^{+14.7}$	12.5	n.a.
$\rho^{0} K^{0}$	$0.73_{-0.58}^{+1.28}$	2.24	n.a.
$\rho_{L}^{-} K_{L}^{*+}$	$40.7_{-18.3}^{+22.4}$	29.1	n.a.
$\rho_{L}^{0} K_{L}^{* 0}$	$0.70_{-0.54}^{+1.07}$	1.87	n.a.
$\rho^{-} K^{+} / \pi^{-} K^{+}$	$2.57_{-0.26}^{+0.31}$	2.57	n.a.
$\rho_{L}^{-} K_{L}^{*+} / \pi^{-} K^{*+}$	$2.64_{-0.33}^{+0.31}$	2.65	n.a.

- hadronic parameters less well known ($\lambda_{B_{s}}, F_{+}^{B_{s} K}, A_{0}^{B_{s} K^{*}}$)
- much simpler pattern of annihilation contributions
- $\pi^{-} K^{+}$again seems to point at smaller form factors
- clean ratios of colour-allowed modes $\sim f_{\rho}^{2} / f_{\pi}^{2}$; may be used to test charming penguins
[Zhu 10]
B: mimics enhanced colour-suppressed amplitude (with $\lambda_{B_{S}} \rightarrow \lambda_{B_{S}} / 2$ and smaller form factors)

Conclusion

Tree amplitudes have recently been determined to NNLO in QCDF

- colour-allowed tree α_{1} : precise prediction, supported by data
- colour-suppr. tree α_{2} : suffers from hadronic uncertainties
data seem to prefer larger values (smaller λ_{B} ?)

Further refinements possible with experimental input

- λ_{B} from $B \rightarrow \gamma \ell \nu$ with energetic photon
- $B \rightarrow \rho \ell \nu$ spectrum to determine $\left|V_{u b}\right| A_{0}^{B \rho}(0)$
- tree-dominated B_{s} decays
- pure annihilation decays $B_{d} \rightarrow K^{-} K^{+}, B_{s} \rightarrow \pi \pi / \pi \rho / \rho \rho$

Backup slides

Long-distance charm loops

Old charming penguin story - two different questions:

- power-suppressed but numerically important
\Rightarrow not supported by light-cone sum rule estimate
[Colangelo et al. 89; Ciuchini et al. 97+]
[Khodjamirian, Mannel, Melic 03]
- leading power spoiling factorization does the threshold region with a non-relativistic $c \bar{c}$ pair require a special treatment?

Recent work addresses second question
(a) $e^{+} e^{-} \rightarrow$ hadrons

$\int d q^{2} \ldots \operatorname{lm} \Pi\left(q^{2}\right)$
(b) $B \rightarrow X_{s} \ell^{+} \ell^{-}$

$\int d q^{2} \ldots\left|\Pi\left(q^{2}\right)\right|^{2}$
(c) charming penguins

$\int d q^{2} \ldots \Pi\left(q^{2}\right)$
\Rightarrow global quark-hadron duality holds in (a) and (c), but breaks down in (b)
\Rightarrow no special treatment required in (c), long-distance charm loops are power-suppressed

Glauber gluons in PQCD

It has been realized recently that k_{T}-factorization breaks down in $p p \rightarrow h_{1} h_{2} X$ at high p_{T}

- problem related to a peculiar mode: Glauber gluons
- effect is a non-universal long-distance contribution \Rightarrow ruins k_{T}-factorization
- problem not present in collinear factorization

Important for pQCD approach to non-leptonic B decays

- confirmed that problem exists \Rightarrow modification of pQCD approach
- claimed that it leads to a universal soft factor $e^{i S} \Rightarrow k_{T}$-factorization still holds
- $e^{i S}$ from fit to $\operatorname{Br}\left(\pi^{0} \pi^{0}\right) \Rightarrow$ large complex $C \quad \Rightarrow$ "solves" $\pi \pi / \pi K$ puzzles

Issues: \quad operator definition of soft factor?

- if universal why associated to π but not to ρ ? \Rightarrow would worsen $\operatorname{Br}\left(\rho^{0} \rho^{0}\right)$
- at present I consider this rather as a fit than as a dynamical explanation

