THEORY OF HADRONIC B DECAYS: TREE AMPLITUDES

[GUIDO BELL]

UNIVERSITY OF BERN

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

CKM WORKSHOP

WARWICK

SEPTEMBER 2010

OUTLINE

THEORY

BRIEF REVIEW OF QCDF / SCET / PQCD PERTURBATIVE CALCULATION IN QCDF

PHENOMENOLOGY

 $B
ightarrow \pi \pi / \pi \rho / \rho
ho$ KEY HADRONIC PARAMETER λ_B TREE-DOMINATED B_s DECAYS

Hadronic two-body decays

SM parametrization of decay amplitudes

$$\mathcal{A}(\bar{B} \to M_1 M_2) \; = \; e^{-i\gamma} \; T_{M_1 M_2} \; + \; P_{M_1 M_2}$$

- ▶ A_{CP} from interference of *T* and *P* with $\delta_T \neq \delta_P$
- ▶ very few examples where only *T* or *P* is relevant $(B_d \rightarrow J/\Psi K_S)$
- ▶ often crucial to estimate penguin $(B_d \rightarrow \pi\pi)$ or tree $(B_d \rightarrow \eta' K_S)$ "pollution"

Hadronic two-body decays

SM parametrization of decay amplitudes

$$\mathcal{A}(\bar{B} \to M_1 M_2) = e^{-i\gamma} T_{M_1 M_2} + P_{M_1 M_2}$$

- A_{CP} from interference of T and P with $\delta_T \neq \delta_P$
- ▶ very few examples where only *T* or *P* is relevant $(B_d \rightarrow J/\Psi K_S)$
- ▶ often crucial to estimate penguin $(B_d \rightarrow \pi \pi)$ or tree $(B_d \rightarrow \eta' K_S)$ "pollution"

I will focus here on α_1 and α_2 (penguins + annihilation \rightarrow talk by S. Jäger)

 \Rightarrow test understanding of QCD dynamics with tree-dominated observables

Theory approaches

Hadronic matrix elements factorize in heavy quark limit $m_b \gg \Lambda_{\it QCD}$

QCD factorization

[Beneke, Buchalla, Neubert, Sachrajda 99]

$$\langle M_1 M_2 | Q_i | B \rangle \simeq F^{BM_1}(0) \int du T_i^{I}(u) \phi_{M_2}(u)$$

$$+ \int d\omega \, du \, dv T_i^{II}(\omega, u, v) \phi_B(\omega) \phi_{M_1}(v) \phi_{M_2}(u)$$

"soft-overlap" in F^{BM_1} , strong phases perturbative, corrections of $\mathcal{O}(\frac{\Lambda}{m_b})$

Theory approaches

Hadronic matrix elements factorize in heavy quark limit $m_b \gg \Lambda_{QCD}$

QCD factorization

[Beneke, Buchalla, Neubert, Sachrajda 99]

$$\langle M_1 M_2 | Q_i | B \rangle \simeq F^{BM_1}(0) \int du T_i^I(u) \phi_{M_2}(u)$$

$$+ \int d\omega \, du \, dv T_i^{II}(\omega, u, v) \phi_B(\omega) \phi_{M_1}(v) \phi_{M_2}(u)$$

"soft-overlap" in F^{BM_1} , strong phases perturbative, corrections of $\mathcal{O}(\frac{\Lambda}{m_b})$

► Soft-collinear effective theory [Bauer, Pirjol, Rothstein, Stewart 04] SCET = QCDF: simply EFT vs diagrammatical formulation BPRS ≠ BBNS: phenomenological implementation for $B \rightarrow M_1 M_2$ quite different issues: F^{BM_1} traded for ξ^{BM_1} , $\alpha_s(\sqrt{\Lambda m_b})$ non-perturbative, ... (minor) long-distance charm loops, zero-bin subtractions (major)

Theory approaches

Hadronic matrix elements factorize in heavy quark limit $m_b \gg \Lambda_{QCD}$

QCD factorization

[Beneke, Buchalla, Neubert, Sachrajda 99]

$$\langle M_1 M_2 | Q_i | B \rangle \simeq F^{BM_1}(0) \int du T_i^{I}(u) \phi_{M_2}(u)$$

$$+ \int d\omega \, du \, dv T_i^{II}(\omega, u, v) \phi_B(\omega) \phi_{M_1}(v) \phi_{M_2}(u)$$

"soft-overlap" in F^{BM_1} , strong phases perturbative, corrections of $\mathcal{O}(\frac{\Lambda}{m_p})$

► Soft-collinear effective theory [Bauer, Pirjol, Rothstein, Stewart 04] SCET = QCDF: simply EFT vs diagrammatical formulation BPRS ≠ BBNS: phenomenological implementation for $B \rightarrow M_1 M_2$ quite different issues: F^{BM_1} traded for ξ^{BM_1} , $\alpha_s(\sqrt{\Lambda m_b})$ non-perturbative, ... (minor) long-distance charm loops, zero-bin subtractions (major)

$$\langle M_1 M_2 | Q_i | B \rangle \simeq \int d\omega \, du \, dv \, dk_{i\perp} \, T_i(\omega, u, v, k_{i\perp}) \, \phi_B(\omega, k_{1\perp}) \, \phi_{M_1}(v, k_{2\perp}) \, \phi_{M_2}(u, k_{3\perp})$$

recently substantially modified: soft factor from Glauber gluons? [Li, Mishima 09]

QCDF / SCET / pQCD

	BBNS (QCDF)	BPRS (SCET)	pQCD
$\alpha_{s}(\sqrt{\Lambda m_{b}})$	perturbative	non-perturbative	perturbative
charm loops	perturbative (small phase)	non-perturbative (large phase from fit to data)	perturbative (small phase)
weak annihilation (power correction)	non-perturbative (crude model, arbitrary phase)	perturbative (with zero bins, small phase)	perturbative (large phase)
strong phases	generically small $(\sim \alpha_{s}, 1/m_{b})$	can be sizeable (charm loops)	can be sizeable (annihilation, Glaubers)
perturbative calculation	partially NNLO	NLO	partially NLO
hadronic input	from lattice + QCD sum rules	from QCD sum rules + data, model $\xi_J^{BM}(z)$	from QCD sum rules + data, model $\phi_B(x, b)$

- theory predictions for direct CP asymmetries can differ a lot!
- measurements (even bounds) of pure annihilation decays highly appreciated:

$$B_d \to K^- K^+, B_s \to \pi \pi/\pi \rho/
ho
ho$$

Perturbative calculation in QCDF

Ongoing effort to compute NNLO corrections in QCDF

$$\langle M_1 M_2 | Q_i | B \rangle \simeq F^{BM_1} T_i^{\prime} \otimes \phi_{M_2} + T_i^{\prime \prime} \otimes \phi_B \otimes \phi_{M_1} \otimes \phi_{M_2}$$

strong phases $\sim O(\alpha_s) \Rightarrow \text{NNLO}$ is first correction for direct CP asymmetries!

- factorization found to hold (as expected) at highly non-trivial order
- direct CP asymmetries not yet available at NNLO
- first NNLO results for CP-averaged branching ratios of tree-dominated decays

[GB, Pilipp 09; Beneke, Huber, Li 09]

Tree amplitudes

Perturbative structure in QCDF to NNLO

$$\begin{aligned} \alpha_1(\pi\pi) &= [1.008]_{V_0} + [0.022 + 0.009 \, i]_{V_1} + [0.024 + 0.026 \, i]_{V_2} \\ &- [0.014]_{S_1} - [0.016 + 0.012 \, i]_{S_2} - [0.008]_{1/m_b} \\ &= 1.015^{+0.020}_{-0.029} + (0.023^{+0.015}_{-0.015}) \, i \\ \alpha_2(\pi\pi) &= [0.224]_{V_0} - [0.174 + 0.075 \, i]_{V_1} - [0.029 + 0.046 \, i]_{V_2} \\ &+ [0.084]_{S_1} + [0.037 + 0.022 \, i]_{S_2} + [0.052]_{1/m_b} \\ &= 0.194^{+0.039}_{-0.056} - (0.099^{+0.057}_{-0.056}) \, i \end{aligned}$$

- PT well-behaved, individual NNLO corrections quite significant but cancellations
- α₁: stable under radiative corrections, precise prediction
- α_2 : real part dominated by spectator scattering $\sim \lambda_B^{-1} = \int \frac{d\omega}{\omega} \phi_B(\omega)$

 \Rightarrow substantial hadronic uncertainties, but arg(α_2/α_1) small

▶ pQCD: similar up to 2009, now large α_2 with large $\arg(\alpha_2/\alpha_1)$ from $B \to \pi\pi$ data SCET: very large α_2 from $B \to \pi\pi$ data, but negligible $\arg(\alpha_2/\alpha_1)$

Confronting data: $B \rightarrow \pi \pi / \pi \rho / \rho \rho$

Mode	QCDF	В	Experiment
$\pi^{-}\pi^{0}$	$6.22^{+2.37}_{-2.01}$	5.46	$5.59^{+0.41}_{-0.40}$
$\rho_L^- \rho_L^0$	$21.0^{+8.5}_{-7.3}$	21.3	$22.5^{+1.9}_{-1.9}$
$\pi^- \rho^0$	$9.34^{+4.00}_{-3.23}$	10.4	8.3 ^{+1.2} -1.3
$\pi^0 \rho^-$	$15.1^{+5.7}_{-5.0}$	11.9	$10.9^{+1.4}_{-1.5}$
$\pi^+\pi^-$	8.96 ^{+3.78} -3.32	5.21	$5.16\substack{+0.22 \\ -0.22}$
$\pi^{0}\pi^{0}$	0.35 ^{+0.37} -0.21	0.63	$1.55^{+0.19}_{-0.19}$
$\pi^+ \rho^-$	22.8 ^{+9.1} -8.0	13.2	$15.7^{+1.8}_{-1.8}$
$\pi^- \rho^+$	$11.5^{+5.1}_{-4.3}$	8.41	$7.3^{+1.2}_{-1.2}$
$\pi^{\pm}\rho^{\mp}$	34.3 ^{+11.5} -10.0	21.6	$23.0^{+2.3}_{-2.3}$
$\pi^0 \rho^0$	$0.52\substack{+0.76 \\ -0.42}$	1.64	$2.0\substack{+0.5\\-0.5}$
$\rho_L^+ \rho_L^-$	$30.3^{+12.9}_{-11.2}$	22.3	$23.6^{+3.2}_{-3.2}$
$ ho_L^0 ho_L^0$	$0.44^{+0.66}_{-0.37}$	1.33	$0.69^{+0.30}_{-0.30}$

CP-averaged branching ratios in units of 10^{-6}

- theo. uncertainties highly correlated (F^{BM1}, |V_{ub}|)
- ► colour-suppressed modes $\pi^0 \pi^0 / \pi^0 \rho^0 / \rho^0 \rho^0$ rather uncertain (λ_B and 1/ m_b)
- overall preference for enhanced colour-suppressed amplitude
- $\rho^0 \rho^0$ and $\pi^0 \rho^0$ (with smaller penguins) fit better than $\pi^0 \pi^0$

B: mimics enhanced colour-suppressed amplitude (with $\lambda_B \rightarrow \lambda_B/2$ and smaller form factors)

[for a similar analysis cf. Beneke, Huber, Li 09]

Testing the QCD dynamics

For colour-allowed modes can eliminate dependence on F^{BM_1} and $|V_{ub}|$ via

$$\mathcal{R}_{M_3}(M_1M_2) = \frac{\Gamma(B \to M_1M_2)}{d\Gamma(B \to M_3 \ell \nu)/dq^2|_{q^2=0}}$$

 \Rightarrow requires measurement of semileptonic decay spectrum and extrapolation to $q^2 = 0$

 $B \rightarrow \pi \ell \nu$

$$\Rightarrow |V_{ub}|F_{+}^{B\pi}(0) = (9.1 \pm 0.7) \cdot 10^{-4}$$
[Ball 06]

$$B \rightarrow \rho \ell \nu$$

[Babar 05; Belle 07; CLEO 07; figure from Flynn et al 08]

currently insufficient to extract $|V_{ub}|A_0^{B\rho}(0)$

Testing the QCD dynamics

For colour-allowed modes can eliminate dependence on F^{BM_1} and $|V_{ub}|$ via

 $\mathcal{R}_{M_3}(M_1M_2) = \frac{\Gamma(B \to M_1M_2)}{d\Gamma(B \to M_3 \ell \nu)/dq^2|_{q^2=0}}$

	Experiment	В	QCDF	Mode
	$0.81^{+0.14}_{-0.14}$	0.95	$0.70^{+0.12}_{-0.08}$	$\mathcal{R}_{\pi}(\pi^{-}\pi^{0})$
theoretical uncertainty	n.a.	2.38	$1.91\substack{+0.32 \\ -0.23}$	$\mathcal{R}_{\rho}(\rho_L^- \rho_L^0)$
largely reduced	n.a.	1.16	$0.85^{+0.22}_{-0.14}$	$\mathcal{R}_{\rho}(\pi^{-}\rho^{0})$
largery readeda	$1.57\substack{+0.32\\-0.32}$	2.07	$1.71^{+0.27}_{-0.24}$	$\mathcal{R}_{\pi}(\pi^{0}\rho^{-})$
satisfactory descr	$0.80^{+0.13}_{-0.13}$	0.97	$1.09^{+0.22}_{-0.20}$	$\mathcal{R}_{\pi}(\pi^{+}\pi^{-})$
of clean observab	$2.43^{+0.47}_{-0.47}$	2.46	$2.77^{+0.32}_{-0.31}$	$\mathcal{R}_{\pi}(\pi^+ \rho^-)$
	n.a.	1.01	$1.12^{+0.20}_{-0.14}$	${\cal R}_ ho(\pi^- ho^+)$
colour-allowed and	n.a.	2.68	$2.95\substack{+0.37 \\ -0.35}$	$\mathcal{R}_{\rho}(\rho_L^+\rho_L^-)$
seem to be under	$0.89^{+0.14}_{-0.14}$	0.89	$0.65^{+0.16}_{-0.11}$	$R(\rho_L^- \rho_L^0 / \rho_L^+ \rho_L^-)$
	$1.01^{+0.09}_{-0.09}$	0.98	$0.65^{+0.19}_{-0.14}$	$R(\pi^{-}\pi^{0}/\pi^{+}\pi^{-})$

[GB, Pilipp 09]

- ainties
- iption les
- nplitudes control

B: mimics enhanced colour-suppressed amplitude

(with $\lambda_B \rightarrow \lambda_B/2$ and smaller form factors)

[for a similar analysis cf. Beneke, Huber, Li 09]

What can we learn about α_2 ?

Mode	QCDF	В	Experiment
$\pi^{0}\pi^{0}$	0.35 ^{+0.37} -0.21	0.63	$1.55^{+0.19}_{-0.19}$
$\pi^0 \rho^0$	$0.52^{+0.76}_{-0.42}$	1.64	$2.0^{+0.5}_{-0.5}$
$\rho_L^0 \rho_L^0$	$0.44^{+0.66}_{-0.37}$	1.33	$0.69\substack{+0.30 \\ -0.30}$

Pattern of colour-suppressed modes not conclusive

- ▶ penguins in $\pi^0\pi^0$ non-negligible
- dominated by different uncertainties
 annot construct any clean ratio

Consider instead pure tree decays $\pi^-\pi^0/\rho^-\rho^0$

Mode	QCDF	В	Experiment
$\mathcal{R}_{\pi}(\pi^{-}\pi^{0})$	$0.70^{+0.12}_{-0.08}$	0.95	$0.81^{+0.14}_{-0.14}$
$\mathcal{R}_{\rho}(\rho_L^-\rho_L^0)$	$1.91\substack{+0.32 \\ -0.23}$	2.38	n.a.
$R(\rho_L^-\rho_L^0/\rho_L^+\rho_L^-)$	$0.65^{+0.16}_{-0.11}$	0.89	$0.89^{+0.14}_{-0.14}$

 no QCD penguins, no weak annihilation

• very clean access to $|\alpha_1 + \alpha_2|$

- \Rightarrow I consider this as the strongest support for an enhancement of α_2 (smaller λ_B ?)
- consistent with overall pattern in $\pi\pi/\pi\rho/\rho\rho$ data
- measurement of $B \rightarrow \rho \ell \nu$ spectrum would be helpful

Key hadronic parameter: λ_B

Spectator-scattering $\sim \lambda_B^{-1}$ can potentially enhance the QCDF prediction of α_2

What do we know about $\lambda_B^{-1}(\mu) = \int \frac{d\omega}{\omega} \phi_B(\omega;\mu)$?

 $\lambda_B(1 \text{GeV}) = \begin{cases} (460 \pm 110) \text{ MeV} & \text{QCD sum rules} \\ (480 \pm 120) \text{ MeV} & \text{OPE + shape model} \end{cases}$ [Braun, Ivanov, Korchemsky 03]
[Lee, Neubert 05]

▶ OPE with dim 5 operators $\Rightarrow \sim 370 \text{ MeV}$ (sensitive to λ_E^2, λ_H^2 !) [Kawamura, Tanaka 08]

• $\pi\pi/\pi\rho/\rho\rho$ numbers based on (400 ± 150) MeV, but data seem to prefer ~ 200 MeV ?

Key hadronic parameter: λ_B

Spectator-scattering $\sim \lambda_B^{-1}$ can potentially enhance the QCDF prediction of α_2

What do we know about $\lambda_B^{-1}(\mu) = \int \frac{d\omega}{\omega} \phi_B(\omega;\mu)$?

 $\lambda_B(1 \text{GeV}) = \begin{cases} (460 \pm 110) \text{ MeV} & \text{QCD sum rules} \\ (480 \pm 120) \text{ MeV} & \text{OPE + shape model} \end{cases}$ [Braun, Ivanov, Korchemsky 03]
[Lee, Neubert 05]

► OPE with dim 5 operators $\Rightarrow \sim 370 \text{ MeV}$ (sensitive to λ_E^2, λ_H^2 !) [Kawamura, Tanaka 08]

• $\pi\pi/\pi\rho/\rho\rho$ numbers based on (400 ± 150) MeV, but data seem to prefer ~ 200 MeV ?

Experiments can help to constrain λ_B from $B \rightarrow \gamma \ell \nu$!

- requires energetic photon, expected branching ratio ~ 10⁻⁶
- ▶ Babar 09: Br($B \rightarrow \gamma \ell \nu$) < 15.6 · 10⁻⁶ $\Rightarrow \lambda_B(\mu)$ > 300 MeV ?
- issues: cut on photon energy?

requires NLO analysis (known!) to assign scale dependence

Tree-dominated B_s decays

Mode	QCDF	В	Experiment
$\pi^- K^+$	8.73 ^{+5.77} -4.60	4.88	$5.0^{+1.1}_{-1.1}$
$\pi^0 K^0$	$0.50\substack{+0.71 \\ -0.35}$	1.12	n.a.
$\pi^- K^{*+}$	$15.4^{+8.6}_{-7.0}$	11.0	n.a.
$\pi^0 K^{*0}$	$0.39\substack{+0.58\\-0.26}$	0.90	n.a.
$ ho^- K^+$	$22.4^{+14.7}_{-11.6}$	12.5	n.a.
$ ho^0 K^0$	$0.73^{+1.28}_{-0.58}$	2.24	n.a.
$ ho_L^- K_L^{*+}$	$40.7^{+22.4}_{-18.3}$	29.1	n.a.
$ ho_L^0 K_L^{*0}$	$0.70^{+1.07}_{-0.54}$	1.87	n.a.
$ ho^- K^+ / \pi^- K^+$	$2.57^{+0.31}_{-0.26}$	2.57	n.a.
$ ho_L^- K_L^{*+} / \pi^- K^{*+}$	$2.64^{+0.31}_{-0.33}$	2.65	n.a.

CP-averaged branching ratios in units of 10^{-6}

B: mimics enhanced colour-suppressed amplitude (with $\lambda_{B_S} \rightarrow \lambda_{B_S}/2$ and smaller form factors) • hadronic parameters less well known $(\lambda_{B_s}, F_+^{B_s K}, A_0^{B_s K^*})$

- much simpler pattern of annihilation contributions
- π⁻K⁺ again seems to point at smaller form factors
- clean ratios of colour-allowed modes $\sim f_{\rho}^2/f_{\pi}^2$; may be used to test charming penguins

Conclusion

Tree amplitudes have recently been determined to NNLO in QCDF

- > colour-allowed tree α_1 : precise prediction, supported by data
- colour-suppr. tree α_2 : suffers from hadronic uncertainties

data seem to prefer larger values (smaller λ_B ?)

Further refinements possible with experimental input

- ▶ λ_B from $B \rightarrow \gamma \ell \nu$ with energetic photon
- $B \rightarrow \rho \ell \nu$ spectrum to determine $|V_{ub}| A_0^{B\rho}(0)$
- ▶ tree-dominated *B_s* decays
- ▶ pure annihilation decays $B_d \rightarrow K^- K^+, B_s \rightarrow \pi \pi / \pi \rho / \rho \rho$

Backup slides

Long-distance charm loops

Old charming penguin story - two different questions:

- power-suppressed but numerically important
 - \Rightarrow not supported by light-cone sum rule estimate
- leading power spoiling factorization [BPRS vs BBNS 04,05]

does the threshold region with a non-relativistic $c\bar{c}$ pair require a special treatment?

Recent work addresses second question

[BBNS 09]

[Colangelo et al. 89: Ciuchini et al. 97+]

[Khodjamirian, Mannel, Melic 03]

- \Rightarrow global quark-hadron duality holds in (a) and (c), but breaks down in (b)
- \Rightarrow no special treatment required in (c), long-distance charm loops are power-suppressed

Glauber gluons in pQCD

It has been realized recently that k_T -factorization breaks down in $pp \rightarrow h_1 h_2 X$ at high p_T

- > problem related to a peculiar mode: Glauber gluons
- effect is a non-universal long-distance contribution \Rightarrow ruins k_T -factorization
- problem not present in collinear factorization

Important for pQCD approach to non-leptonic B decays

- ▶ confirmed that problem exists \Rightarrow modification of pQCD approach [Li, Mishima 09]
- ▶ claimed that it leads to a universal soft factor $e^{iS} \Rightarrow k_T$ -factorization still holds
- ► e^{iS} from fit to Br $(\pi^0\pi^0)$ \Rightarrow large complex C \Rightarrow "solves" $\pi\pi/\pi K$ puzzles

Issues: > operator definition of soft factor?

- ▶ if universal why associated to π but not to ρ ? \Rightarrow would worsen Br($\rho^0 \rho^0$)
- > at present I consider this rather as a fit than as a dynamical explanation

[Collins, Qiu 07]