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Physical amplitudes
• Any SM 2-light-hadron amplitude can be written 
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“tree”

“penguin”

Qi: operators in weak hamiltonian
Ci: QCD corrections from short distances (< hc/mb) & new physics
⟨Qi⟩=⟨M1 M2 | Qi | B⟩: QCD at distances > hc/mb, strong phases

tree W exchange penguins (QCD, 
magnetic, EW)

QCD corrections I: weak Hamiltonian

Strong hierarchyMW ! MB , pB, pπ, . . . implies

W + + . . . =
∑

i Ci

(

+ + · · ·

)

〈f |i〉SM = C1〈f |Q1|i〉QCD + C2〈f |Q2|i〉QCD + · · ·

C(MW , . . . ; αs; ln(µ2/M2
W )): heavy particles, gluons far off shell.

Computed with arbitrary (partonic) external states, expanding in

p/MW (OPE).

〈f |Qi(µ)|B̄〉 contain all dynamics below factorization scale µ

Assume that factorization continues to hold for hadronic states:

A(B̄ → f) = Ci(µ)
︸ ︷︷ ︸

Wilson coefficient

〈f |Qi(µ)|B̄〉
︸ ︷︷ ︸

hadronic matrix element

Factorization in exclusive B-decays at higher orders – p.6
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•angle measurements in tree-dominated
modes (ππ, πρ, ρρ):
S+- = sin(2α) in no-penguin limit

knowledge of P/T “pollution” determines
α (γ), without need for isospin constructions,
SU(3), etc.

•  b➔s decays penguin-dominated in SM

                          ~ λ4                                                             

                                      ~ λ2 

QCD corrections I: weak Hamiltonian

Strong hierarchyMW ! MB , pB, pπ, . . . implies

W + + . . . =
∑

i Ci

(

+ + · · ·

)

〈f |i〉SM = C1〈f |Q1|i〉QCD + C2〈f |Q2|i〉QCD + · · ·

C(MW , . . . ; αs; ln(µ2/M2
W )): heavy particles, gluons far off shell.

Computed with arbitrary (partonic) external states, expanding in

p/MW (OPE).

〈f |Qi(µ)|B̄〉 contain all dynamics below factorization scale µ

Assume that factorization continues to hold for hadronic states:

A(B̄ → f) = Ci(µ)
︸ ︷︷ ︸

Wilson coefficient

〈f |Qi(µ)|B̄〉
︸ ︷︷ ︸

hadronic matrix element

Factorization in exclusive B-decays at higher orders – p.6
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Topological amplitudes
• matrix elements are contained in correlation functions (LSZ)

which can be represented as “Wick contractions”

• RG invariant combinations of these define “topological” 
amplitudes - nonperturbatively!

• represent the contribution to
the matrix element of Qi as

(still no perturbation expansion)
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Figure 1: Emission, annihilation and emission-annihilation topologies of Wick contractions in the

matrix elements of operators Qi.
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Figure 2: Penguin, penguin-emission, penguin-annihilation and double-penguin-annihilation topolo-

gies of Wick contractions in the matrix elements of operators Qi.
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[Buras&Silvestrini hep-ph/9812392]

(or U = t) is eliminated, giving θP = β (θP = 0), and θT = γ. For decays involving
charmonium, the tree is associated with U = c (θT = 0), and one of U = u, t is eliminated
(both are expected to be negligible). The prototypical angle measurement derives from
the time-dependent CP asymmetry

ACP(f ; t) ≡
Γ(B(t) → f)− Γ(B(t) → f)

Γ(B(t) → f) + Γ(B(t) → f)
≡ −Cf cos∆mt+ Sf sin∆mt, (391)

where f is a CP eigenstate of eigenvalue ηCP(f), ∆m is the absolute value of the mass
difference between the two mass eigenstates in the B0–B0 system, and

Cf =
1− |ξ|2

1 + |ξ|2 , Sf =
2Imξ

1 + |ξ|2 , ξ = e−i2βA(B̄ → f)

A(B → f)
. (392)

(We assume CPT conservation, and neglect lifetime differences and CP violation in
mixing throughout.) If Pf can be neglected, |ξ| = 1, Cf = 0, and Sf gives a clean mea-
surement of sin 2(β + θT ). This is true to very good approximation for decays into final
states containing charmonium such as B → J/ψKS (θT = 0, −ηCP(f)Sf = sin 2β). It
holds less accurately for b → d transitions like B → (π+π−, ρ+π−, ρ+ρ−), where the
CKM hierarchy is [Pf/Tf ]CKM = O(1), but some suppression of penguin amplitudes fol-
lows from theoretical arguments reviewed below. In these modes, one has approximately
−ηCP(f)Sf ≈ sin 2(β + γ) = − sin 2α. Conversely, penguin-dominated b → s modes
B → (πK,φK, η(′)K, . . . ), where [Tf/Pf ]CKM = O(λ2), probe sin2β.
In view of these considerations, it is clear that the interpretation of the time-dependent

CP asymmetries (and more generally, the many charmless B and B decay rates) in terms
of CKM parameters and possible new-physics contributions requires some information on
at least the amplitude ratios P/T , hence on the hadronic matrix elements 〈f |Qi|B〉. In
principle, the latter are determined by the QCD and electromagnetic coupling and quark
masses via (for the case of a two-particle final state) four-point correlation functions
involving three operators destroying the B-meson and creating the final-state mesons, as
well as one insertion of the operator Qi. Formally, they are expressible in terms of a path
integral

〈M1M2|Qi|B〉 ∼
∫
dA

∫
dψ̄ dψ jµB(x)j

ν
M1

(y)jρM2
(z)Qi(w)e

i(SQCD+QED). (393)

The currents jB, jM1 , jM2 must have the correct quantum numbers to create/destroy
the initial- and final-state particles, for instance jµB = b̄γµγ5d for a B0 decay, but are
otherwise arbitrary. In practice, this path integral cannot be evaluated; however, the
inner (fermionic) path integral can be represented as a sum of Wick contractions which
provide a nonperturbative definition of “topological” amplitudes (Fig. 75). We stress
that no expansion of any kind has been made; the lines represent the full inverse Dirac
operators, rather than perturbative (“free”) propagators, averaged over arbitrary gluon
backgrounds by the outer (gluonic) path integral. A complete list has been given in [1037].
Topological amplitudes can also be defined equivalently (and were originally) as matrix
elements of the SU(3) decomposition of the weak Hamiltonian [1038,1039].
Each physical amplitude decomposes into several topological ones. For a tree, in the

notation of [1040],

249

operators Qi

b

QiB̄

M1

M2

Fig. 76. Factorization of the tree amplitudes. Left: Matrix element of a weak Hamiltonian current-current
operator Q1,2 in the effective 5-flavor QCD×QED theory. The red, wavy lines close to the vertex have
virtualities of order m2

b ; the system of green ‘cut-spring’ lines connecting to the spectator, of order Λmb.
The purple ‘spring’ lines entering the mesons indicate the soft gluon background in which the hard
subprocess takes place. Middle: Factorization into a product of a wave function and a form factor (to be
convoluted with a hard kernel HI or HII). Right: The B-type bilocal form factor (convoluted with HII)
factorizes further into wave functions. (According to the pQCD framework, this is also true for the soft
(A-type) form factor.)

AM1M2α
II
1,2 ∝ [HII ∗ φM2 ] ∗ [φB ∗ J ∗ φM1 ] (397)

of a convolution of hard and hard-collinear scattering kernels HII and J with meson wave
functions. An alternative is not to perform the hard-collinear factorization and define a
non-local form factor ζJ = φB ∗ J ∗ φM , information on which has to be extracted from
experiment. This works in practice to zeroth order in αs(mb) [51]. At higher orders,
the kernel HII acquires a dependence on how the momentum is shared between the M1

valence quarks, i.e. the convolution HII ∗ζJ becomes nontrivial. No higher-order analyses
have been performed. 27

For the type-I operators, in the collinear expansion one encounters divergent convo-
lutions in factorizing the hard-collinear scale already at the leading power, indicating
a soft overlap breaking (perturbative) factorization of soft and collinear physics. In this
case, however, not performing this factorization is more feasible, as it leaves a single form
factor (which can be taken to be an ordinary QCD form factor or the SCET soft form
factor) multiplying a convolution of a hard-scattering kernel with one light-meson wave
function,

AM1M2α
I
1,2 ∝ fBM1(0)HI ∗ φM2 . (398)

[By convention, the form factor is factored out into AM1M2 .] An alternative treatment
is kT factorization (“pQCD”) [48], where a transverse-momentum-dependent B-meson
wave function is introduced, which regularizes the endpoint divergence. In this case, a
convergent convolution arises (at lowest order), and within the uncertainties on the wave
function it is generally possible to accommodate the observed data. 28

Finally, certain power corrections were identified as potentially large in [40]. One class,
which is only relevant for final states containing pseudoscalars, consists of “chirally en-

27Strictly speaking, the convolution of the ζJ factor with HII might diverge at the endpoint. Correspond-
ingly, to such a convolution in general a non-perturbative soft rescattering phase should be associated.
An endpoint divergence indeed appears in the attempt to perturbatively factorize ζJ at first subleading
power, see below.
28 Independently of the convergence issue, a perturbative calculation in the kT (or any other) factorization
scheme must demonstrate that the result is dominated by modes which are perturbative.

252

etc

full propagator!
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Penguin anatomy I
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Figure 1: Emission, annihilation and emission-annihilation topologies of Wick contractions in the

matrix elements of operators Qi.
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gies of Wick contractions in the matrix elements of operators Qi.
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Theory approaches I
• 1/Nc expansion

e.g.

- “naive factorization” for Nc -> infinity
- strong phase of penguin is O(1/N2)
- main drawback: can’t compute

• QCD light-cone sum rules
evaluate correlation function off shell;
OPE & lightcone expansion
- express hadronic matrix elements
  in terms of simpler objects (form factors etc.) and
  a perturbatively evaluated dispersion integral.
- works also for form factors themselves (and other objects)
- main drawback: uncertainty due to “continuum threshold”
  is difficult to quantify
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Figure 2: Diagrams corresponding to the emission topology in the OPE of the correlation
function (35): (a) factorizable; (b) with nonfactorizable hard gluon (six diagrams);(c) non-
factorizable soft gluon (two diagrams). The solid, double, dashed, wavy lines and the square
denote the light quarks, b quark, gluon, external currents and the weak vertex, respectively.
The shaded ovals denote the pion DA’s. The crosses indicate how gluon lines are attached
in the other possible diagrams.

(a) (b)

Figure 3: Examples of diagrams corresponding to the penguin topology: with (a) hard gluon
and (b) soft gluons.
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[from Khodjamirian et al,
hep-ph/0509049]

[Buras et al 86, Bauer et al 87]
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Theory approaches II 

• heavy-quark expansion in ΛQCD/mB (talk G Bell)

- “naive factorization” for mB -> infinity
- strong phases are O(αs) or O(ΛQCD/mb)
- annihilation power suppressed altogether
- hierarchies of penguin amplitudes between final states
  containing pseudoscalars and vectors
- main drawback: O(ΛQCD/mB) power corrections don’t 
  factorize, in general, and hard to estimate

• flavour SU(3) - relate b➔s and b➔d; eliminate amplitudes 
from data. Good if redundant observables (γ in SM), less 
powerful for NP search; SU(3) breaking not controlled

= TI
b

QiB̄

M1

M2

Fig. 76. Factorization of the tree amplitudes. Left: Matrix element of a weak Hamiltonian current-current
operator Q1,2 in the effective 5-flavor QCD×QED theory. The red, wavy lines close to the vertex have
virtualities of order m2

b ; the system of green ‘cut-spring’ lines connecting to the spectator, of order Λmb.
The purple ‘spring’ lines entering the mesons indicate the soft gluon background in which the hard
subprocess takes place. Middle: Factorization into a product of a wave function and a form factor (to be
convoluted with a hard kernel HI or HII). Right: The B-type bilocal form factor (convoluted with HII)
factorizes further into wave functions. (According to the pQCD framework, this is also true for the soft
(A-type) form factor.)

AM1M2α
II
1,2 ∝ [HII ∗ φM2 ] ∗ [φB ∗ J ∗ φM1 ] (397)

of a convolution of hard and hard-collinear scattering kernels HII and J with meson wave
functions. An alternative is not to perform the hard-collinear factorization and define a
non-local form factor ζJ = φB ∗ J ∗ φM , information on which has to be extracted from
experiment. This works in practice to zeroth order in αs(mb) [51]. At higher orders,
the kernel HII acquires a dependence on how the momentum is shared between the M1

valence quarks, i.e. the convolution HII ∗ζJ becomes nontrivial. No higher-order analyses
have been performed. 27

For the type-I operators, in the collinear expansion one encounters divergent convo-
lutions in factorizing the hard-collinear scale already at the leading power, indicating
a soft overlap breaking (perturbative) factorization of soft and collinear physics. In this
case, however, not performing this factorization is more feasible, as it leaves a single form
factor (which can be taken to be an ordinary QCD form factor or the SCET soft form
factor) multiplying a convolution of a hard-scattering kernel with one light-meson wave
function,

AM1M2α
I
1,2 ∝ fBM1(0)HI ∗ φM2 . (398)

[By convention, the form factor is factored out into AM1M2 .] An alternative treatment
is kT factorization (“pQCD”) [48], where a transverse-momentum-dependent B-meson
wave function is introduced, which regularizes the endpoint divergence. In this case, a
convergent convolution arises (at lowest order), and within the uncertainties on the wave
function it is generally possible to accommodate the observed data. 28

Finally, certain power corrections were identified as potentially large in [40]. One class,
which is only relevant for final states containing pseudoscalars, consists of “chirally en-

27Strictly speaking, the convolution of the ζJ factor with HII might diverge at the endpoint. Correspond-
ingly, to such a convolution in general a non-perturbative soft rescattering phase should be associated.
An endpoint divergence indeed appears in the attempt to perturbatively factorize ζJ at first subleading
power, see below.
28 Independently of the convergence issue, a perturbative calculation in the kT (or any other) factorization
scheme must demonstrate that the result is dominated by modes which are perturbative.
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of a convolution of hard and hard-collinear scattering kernels HII and J with meson wave
functions. An alternative is not to perform the hard-collinear factorization and define a
non-local form factor ζJ = φB ∗ J ∗ φM , information on which has to be extracted from
experiment. This works in practice to zeroth order in αs(mb) [51]. At higher orders,
the kernel HII acquires a dependence on how the momentum is shared between the M1
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have been performed. 27

For the type-I operators, in the collinear expansion one encounters divergent convo-
lutions in factorizing the hard-collinear scale already at the leading power, indicating
a soft overlap breaking (perturbative) factorization of soft and collinear physics. In this
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factor (which can be taken to be an ordinary QCD form factor or the SCET soft form
factor) multiplying a convolution of a hard-scattering kernel with one light-meson wave
function,
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[By convention, the form factor is factored out into AM1M2 .] An alternative treatment
is kT factorization (“pQCD”) [48], where a transverse-momentum-dependent B-meson
wave function is introduced, which regularizes the endpoint divergence. In this case, a
convergent convolution arises (at lowest order), and within the uncertainties on the wave
function it is generally possible to accommodate the observed data. 28

Finally, certain power corrections were identified as potentially large in [40]. One class,
which is only relevant for final states containing pseudoscalars, consists of “chirally en-

27Strictly speaking, the convolution of the ζJ factor with HII might diverge at the endpoint. Correspond-
ingly, to such a convolution in general a non-perturbative soft rescattering phase should be associated.
An endpoint divergence indeed appears in the attempt to perturbatively factorize ζJ at first subleading
power, see below.
28 Independently of the convergence issue, a perturbative calculation in the kT (or any other) factorization
scheme must demonstrate that the result is dominated by modes which are perturbative.
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wave function is introduced, which regularizes the endpoint divergence. In this case, a
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function it is generally possible to accommodate the observed data. 28

Finally, certain power corrections were identified as potentially large in [40]. One class,
which is only relevant for final states containing pseudoscalars, consists of “chirally en-

27Strictly speaking, the convolution of the ζJ factor with HII might diverge at the endpoint. Correspond-
ingly, to such a convolution in general a non-perturbative soft rescattering phase should be associated.
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α
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4 a4 += r
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χ a6

β3
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like quark chiralities opposite quark chiralities

O(1/mb) but factorizes !

Figure 1: Graphical representation of the factorization formula (2). Only one
of the two form-factor terms is shown for simplicity.

The light-cone expansion implies that only leading-twist distribution amplitudes are
needed in the heavy-quark limit. There exist however a number of subleading quark–
antiquark distribution amplitudes of twist 3, which have large normalization factors for
pseudoscalar mesons, e.g. for the pion

rπ
χ(µ) =

2m2
π

mb(µ) (mu + md)(µ)
∼

ΛQCD

mb
. (3)

For realistic b-quark masses these “chirally-enhanced” terms are not much suppressed
numerically. We therefore include in our analysis all quark–antiquark twist-3 ampli-
tudes. (The quark–antiquark–gluon amplitude at twist-3 does not have an anomalously
large normalization.) In order to perform the same analysis for all final states we also
include the quark–antiquark twist-3 amplitudes for vector mesons, even though there is
no particular enhancement in this case, rχ being replaced by 2mV /mb times a ratio of
two decay constants (see below), with mV the vector-meson mass.

The inclusion of chirally-enhanced terms is important to account for the large branch-
ing fractions of penguin-dominated decay modes with pseudoscalar final-state mesons,
such as B → πK [10], but it also causes a number of conceptual problems. Factorization
is not expected to hold at subleading order in ΛQCD/mb and, somewhat unfortunately,
is indeed violated by some of the chirally-enhanced terms [8]. In contrast to the leading-
twist distribution amplitudes, the twist-3 two-particle amplitudes do not vanish at the
endpoints but rather approach constants. The kernels T I

ij in the first term of the fac-
torization formula also approach constants at the endpoints (modulo logarithms), and
hence there is no difficulty with this term. These kernels include the important scalar
penguin amplitude mentioned in the introduction, conventionally denoted by a6. How-
ever, the second term in the factorization formula, which accounts for the interactions
with the spectator quark, contains integrals that are dominated by the endpoint regions
if the distribution amplitudes do not vanish at the endpoint. These integrals formally
diverge logarithmically in a perturbative framework. This implies a non-factorizable soft
interaction with the spectator quark, while M1 is formed in a highly asymmetric con-
figuration, in which one quark carries almost all the momentum of the meson. Similar
factorization-breaking effects occur in weak annihilation contributions, which are also

5

However: but ~ 1 numerically
“chiral enhancement”

O(1/mb), does not factorize

no chiral enhancement present for vector M2  -> much smaller penguin amplitudes

large and complex in pQCD approach
very small in light-cone sum rules [Khodjamirian et al 2005]

[Keum, Li, Sanda 2000]

modeled by naively factorized expression with IR cutoff by BBNS

(“scalar penguin”)
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Status of perturbative kernels
• a4 computed to O(αs) (vertex kernel TI)

                         O(αs2) (spectator scattering kernel TII)

proves factorization & perturbative stability but leaves NLO 
results intact. Hence instead of quoting numbers I refer to 
the comprehensive phenomenology in [Beneke&Neubert 03]

• a6 computed to O(αs) (vertex kernel TI)
spectator scattering vanishes at this order

For the latter one needs to compute (besides simpler terms)

Topologies

u, c,
. . .

D q̄

b q

Q8

(e)

Factorization: plots, figures, equations – p.17

Topologies

u, c,
. . .

D q̄

b q

Q8

(e)

Factorization: plots, figures, equations – p.17

penguin loop could be large because C1~1 first appears at this order
however, due to a (not understood) cancellation it gives almost no contribution

At O(αs2) one needs to compute the same diagrams as above
could potentially be large contribution for PP and VP final states

Beneke, SJ 2006

Beneke et al 1999-2001

Beneke et al 1999-2001

Jain, Rothstein, Stewart 2007
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Comparison to data I
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8

small for M2 vector

pattern agrees quite
well with theory (also for
ρK, ρK*)

wrong imaginary part for
πK unless annihilation is
fairly large (well known
problem)

[Beneke, Neubert 2003;  Beneke, SJ 2007]

PM1M2
∼ α̂c

4(M1M2) = a4(M1M2) ± rM2

χ a6(M1M2) + βp
3
(M1M2)
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Figure 6: Comparing the PP, PV and VP penguin amplitude to data. The figures show
α̂c

4(πK̄(∗))/(α1(ππ) + α2(ππ)) compared to data, and the theory prediction for same
quantity in the ρK system. See text for explanations.

31

PM1M2
/(Cππ + Tππ) ∼ α̂c

4(M1M2)/(α1(ππ) + α2(ππ))

annihilation
(modeled a 
la BBNS)

factorizable 
power correction

chirally enhanced
for M2 pseudoscalar

can be fit to BR, ACP (π+K-)  and BR(π+π-) using one SU(3) relation

BBNS model 
of annihilation
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Charming penguin
• Charm penguin loops appear as part of the

penguin amplitude. Could a priori be large

• In the HQE, they enter both a4 and a6 ;
were argued to factorize at leading power (“hard” regions)

• Bauer et al (BPRS) 2004: One should add a 
nonperturbative contribution
for the nonrelativistic charm “threshold” region

• disagreement over power suppression of this region. It also 
evidently overlaps with the “hard” region.

• BBNS 2009: power counting in BPRS 2004 was wrong 
(error in matching onto nonrelativistic effective theory).

[Ciuchini et al 97]

I consider this issue fully resolved.

Figure 4: Penguin diagram with a charm-quark loop contributing to B → M1M2 decays.
The curly line may either represent a gluon in the case of a QCD penguin graph, or a
photon for an electromagnetic penguin.

Even though we cannot expect quark-hadron duality to hold, in practice the ρ-resonance
contribution is negligibly small. This scenario is relevant for up-quark penguins in B →
Xs,d l+l− decays.

6 Penguins with charm in B → ππ decays

It is interesting to contrast the situation in the rare leptonic process B → Xs l+l− with
the penguin amplitudes in exclusive hadronic decays such as B → ππ, where similar
diagrams with intermediate charm quarks contribute [19, 20, 21].

Corrections of the penguin type as shown in Figure 4 enter the perturbatively cal-
culable hard-scattering kernels for B → M1M2 decay amplitudes in QCD factorization.
Such penguin contributions are consistently included in the factorization formula at next-
to-leading order in perturbation theory, and at leading order in the heavy-quark limit
[2, 3, 4]. Nonperturbative strong interactions of the intermediate quarks and gluons do
exist, but they are suppressed by powers of ΛQCD/mb with respect to the leading, fac-
torizable amplitudes. In the following we shall discuss how the suppression comes about
in the penguin contributions with a charm-quark or a light-quark loop. Of particular
interest is the case of the charm penguin, where the validity of the usual factorization
formula has been questioned in the literature [22].

In order to discuss the physics of penguin-type matrix elements with charm-loop con-
tractions, it is instructive to consider first the case of electromagnetic penguins (Figure 4
with the gluon replaced by a photon). These are rather similar to the more prominent
gluonic penguins, but the QCD dynamics is simpler in this case. The electromagnetic
penguin matrix element contributes at O(α) to the factorization coefficient ap

10 (p = u,
c) in the transition operator for B → ππ decays, which contains the term [4]

ap
10

∑

q

(q̄b)V −A ⊗
3

2
eq (d̄q)V −A . (45)

The penguin contraction of the dominant current-current operators Qp
1,2 gives a correc-

13

2

!s )

c

c

b
d,s

q
q

....
q µ

!s(mv)

(

FIG. 1: Example of long distance charming penguins. The mv
gluons are nonperturbative and LO soft gluons are exchanged
by the b, c, c̄ and spectator quark which is not shown.

u

u

b
d,s

q
qu

FIG. 2: Example of a long distance light quark penguin which
matches onto a power suppressed operator. The q goes in the
n̄ direction, the q goes in the n direction, the broken u quark
line is soft or collinear and the ū and gluon remain hard.

Here the sum over q = u, d, s, c, b is implicit, α, β are color
indices and eq are electric charges. The ∆S = 1 HW is
obtained by replacing (f = d) → (f = s) in Eqs. (1,2).
The coefficients in Eq. (1) are known at NLL order [11].
In the NDR scheme taking αs(mZ) = 0.118 and mb =
4.8 GeV gives C7γ(mb) = −.317, C8g(mb) = −0.149 and

C1−10(mb) = {1.080 ,−.177 , .011 ,−.033 , .010 ,−.040 ,

4.9×10−4 , 4.6×10−4 ,−9.8×10−3 , 1.9×10−3} . (3)

The relevant scales in B → M1M2 are mb, mc, the jet
scale

√
EΛ and Λ. Varying Λ between 100 − 1000 MeV

the jet scale is numerically in the range
√

EΛ % 0.5 −
1.6 GeV. Integrating out ∼ mb fluctuations, the effective
Hamiltonian in SCETI [12] can be written as

HW =
2GF√

2

∑

n,n̄

{

∑

i

∫

[dωj ]
3
j=1c

(f)
i (ωj)Q

(0)
if (ωj)

+
∑

i

∫

[dωj ]
4
j=1b

(f)
i (ωj)Q

(1)
if (ωj) + Qcc̄ + . . .

}

, (4)

where c(f)
i and b(f)

i are Wilson coefficients, the ellipses
are higher order terms in Λ/Q, Q = {mb, E}, and Qcc̄

denotes operators appearing in long distance charm ef-
fects as in Fig. 1. Penguin contractions with light quark

loops are included in matching onto Q(0,1)
if since their

long distance contributions are power suppressed [1]. The
long-distance contributions occur when one or both of the
quark lines in the penguin loop become soft or collinear.
In matching onto SCET these quark lines are left uncon-
tracted and give rise to higher dimension operators which
are power suppressed. An example which gives rise to a
six quark operator is given in Fig. 2.

In penguin contractions with charm quarks the situa-
tion is different due to the threshold region. For the cc̄
system the offshellness depends on the value of q2 = m2

bx,
and long distance contributions from x → 0 or x → 1 are

B M

"~p 22 "~p 22"~p2 Q

~p2 Q2

"~p 22M’

FIG. 3: Factorization of B → MM ′ in SCET.

suppressed [4]. However, for q2 ∼ 4m2
c the charm quarks

are moving non-relativistically. This region corresponds
to momentum fractions x % 4m2

c/m2
b % 0.4 in the middle

of the distribution φM (x). These contributions have one
αs(2mc), but can not be calculated perturbatively. Using
NRQCD power counting they are “suppressed” by O(v)
with v % 0.4 − 0.5. Thus we conclude that these contri-
butions may be leading order, and comparable in size to
other penguin terms such as those from the small Wilson
coefficients C3−6. A rigorous account of these long dis-
tance cc̄ penguin contractions can only be obtained by
deriving a factorization theorem for them, however we
do not attempt to do so here, and therefore do not write
down operators for Qcc̄.

In Eq. (4) the O(λ0) operators are [sum over q = u, d, s]

Q(0)
1d =

[

ūn,ω1
n̄/PLbv

][

d̄n̄,ω2
n/PLun̄,ω3

]

, (5)

Q(0)
2d,3d =

[

d̄n,ω1
n̄/PLbv

][

ūn̄,ω2
n/PL,Run̄,ω3

]

,

Q(0)
4d =

[

q̄n,ω1
n̄/PLbv

][

d̄n̄,ω2
n/PL qn̄,ω3

]

,

Q(0)
5d,6d =

[

d̄n,ω1
n̄/PLbv

][

q̄n̄,ω2
n/PL,Rqn̄,ω3

]

,

with Q(0)
is obtained by swapping d̄ → s̄. In Eq. (5) the

“quark” fields with subscripts n and n̄ are products of
collinear quark fields and Wilson lines with large mo-
menta ωi. For example

ūn,ω = [ξ̄(u)
n Wn δ(ω−n̄·P†)] , (6)

where ξ̄n creates a collinear quark moving along the n
direction, or annihilates an antiquark. The bv field is the
standard usoft HQET field with Lagrangian Lh = b̄viv ·
Dbv. For a complete basis we also need operators with

octet bilinears. We take these to be Q(0)
i with T A ⊗ T A

color structure, for example

Q(0)

1d
=

[

ūn,ω1
n̄/PLT Abv

][

d̄n̄,ω2
n/PLT Aun̄,ω3

]

. (7)

These id and is operators do not contribute to the decays
B → M1M2 at leading order, but will in power correc-

tions. Our basis of Q(0)
id operators can be directly related

to the one derived in [8], except that we also included

4

M1M2 T1ζ(u) T2ζ(u) M1M2 T1ζ(u) T2ζ(u)

π−π+, ρ−π+, π−ρ+, ρ−
‖ ρ+

‖ c(d)
1 + c(d)

4 0 π+K(∗)−, ρ+K−, ρ+
‖ K∗−

‖ 0 c(s)
1 + c(s)

4

π−π0, ρ−π0 1√
2
(c(d)

1 +c(d)
4 ) 1√

2
(c(d)

2 −c(d)
3 −c(d)

4 ) π0K(∗)− 1√
2
(c(s)

2 −c(s)
3 ) 1√

2
(c(s)

1 +c(s)
4 )

π−ρ0, ρ−
‖ ρ0

‖
1√
2
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4 ) 1√

2
(c(d)

2 +c(d)
3 −c(d)

4 ) ρ0K−, ρ0
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(c(s)
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2
(c(s)

1 +c(s)
4 )

π0π0 1
2 (c(d)

2 −c(d)
3 −c(d)
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2 (c(d)

2 −c(d)
3 −c(d)

4 ) π−K̄(∗)0, ρ−K̄0, ρ−
‖ K̄∗0

‖ 0 −c(s)
4

ρ0π0 1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 −c(d)
3 −c(d)

4 ) π0K̄(∗)0 1√
2
(c(s)

2 −c(s)
3 ) − 1√

2
c(s)
4

ρ0
‖ρ

0
‖

1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) 1
2 (c(d)

2 +c(d)
3 −c(d)

4 ) ρ0K̄0, ρ0
‖K̄

∗0
‖

1√
2
(c(s)

2 +c(s)
3 ) − 1√

2
c(s)
4

K(∗)0K(∗)−, K(∗)0K̄(∗)0 −c(d)
4 0 K(∗)−K(∗)+ 0 0

TABLE I: Combinations of Wilson coefficients appearing in the factorization formula. Note that these results do not assume
isospin symmetry and all V V channels in this table are longitudinal. Due to our basis choice the coefficients T1J,2J (u, z) for all

these states are identical to T1ζ,2ζ(u) with each c(f)
i (u) replaced by b(f)

i (u, z).

Thus at LO only Acc̄ could give transverse polarized vec-
tor mesons so

A(B → V ⊥
1 V ⊥

2 ) =
2GF√

2
〈V ⊥

1 V ⊥
2 | Qcc̄|B〉 . (17)

Next consider B → V‖V‖, B → V‖P and B → PP
decays. Now it is the J term in Eq. (13) that con-
tributes along with possible long distance charming pen-
guins. Due to the form of our operators the J term is
identical to the analysis of the B → M form factors. The
LO factorization formula for A = 〈M1M2|HW |B〉 which
determines B̄0, B− → M1M2 with M1,2 pseudoscalars or
longitudinal vectors is

A(B̄ → M1M2) = λ(f)
c AM1M2

cc̄ +
GF m2

B√
2

{

fM2
ζBM1

×
∫ 1

0
du T2ζ(u)φM2 (u) + fM1

ζBM2

∫ 1

0
du T1ζ(u)φM1 (u)

+
fBfM1

fM2

mb

∫ 1

0
du

∫ 1

0
dx

∫ 1

0
dz

∫ ∞

0
dk+ J(z, x, k+)

[

T2J(u, z)

×φM1(x)φM2 (u) + T1J(u, z)φM2(x)φM1 (u)
]

φ+
B(k+)

}

,

(18)

where Acc̄ denote possible long distance charming pen-

guin amplitudes which contribute in channels where c(d,s)
4

appear. For each decay mode the set of hard coefficients
Tiζ and TiJ can be obtained from Table I.

A new result from our analysis is that the jet func-
tion J in Eq. (18) is the same as that appearing in the
factorization formula for B → M form factors [19]. We
quote here two of these formulas, one for the standard
B → P $ν̄ form factor f+(E), and one for the form factor
A‖ for B → V‖$ν̄ decays,

A‖(E)=
1

mV

[mBE A2(E)

mB+mV
−

(mB+mV )

2
A1(E)

]

, (19)

where

E =
m2

B + m2
M − q2

2mB
. (20)

At LO in SCET [12, 15, 16, 19, 20]

f+(E) = T (+)(E) ζBP (E) + N0

∫ 1

0
dz

∫ 1

0
dx

∫ ∞

0
dk+

×C(+)
J (z, E)J(z, x, k+, E)φM (x)φ+

B(k+) ,

A‖(E) = T (A‖)(E)ζBV‖(E) + N‖

∫ 1

0
dz

∫ 1

0
dx

∫ ∞

0
dk+

×C
(A‖)
J (z, E)J(z, x, k+, E)φM (x)φ+

B(k+), (21)

where N0 = fBfP mB/(4E2), N‖ = fBfV mB/(4E2),

and the functions T (+,A)(E), C(+,A)
J (z) are combina-

tions of SCET Wilson coefficients and can be found
in [19]. In that paper the jet functions J (⊥)(z, x, k+) in

Eq. (13) are denoted by J (⊥)
b (z, x, k+) and J (⊥)

a (x, k+) =
∫ 1
0 dz J (⊥)

b (x, z, k+). At the endpoint where E ' mB/2
the same parameters ζBM and jet function J appear in
the form factors and in the non-leptonic decays. Since
the analysis for J is identical to that in the form fac-
tors several important facts can be immediately taken
over for B → M1M2 decays. In particular to all orders
in perturbation theory only the φ+

B(k+) wavefunction is
obtained as proven in Ref. [19]. Also the convolution in-
tegrals with J are finite with an identical proof to the
one given in Ref. [15]. Finally it is clear that possible
messenger fluctuations [21] can not spoil factorization in

Q(0,1)
if which have color singlet n̄-bilinears, and so their

role will be identical to that in the form factors.
At this point we compare our result in Eq. (18) with

the result in QCDF [1]. From Eq. (25) of [1] the LO
factorization theorem is

〈M1M2|Oi|B〉 = (22)
{

FB→M1(0)fM2

∫

du T I
M2,i(u)φM2

(u) + (1 ↔ 2)
}

+fM1
fM2

fB

∫

du dx dk+

×T II
i (x, u, k+)φM1

(x)φM2
(u)φB(k+) , (23)

where the parameters are the QCD form factors
FB→M (0), φMi

, and φB (other parameters appear when

This paper also explains how in B->Xs l+l- 
the nonrelativistic charm region can account 
for 99% or the rate: It is not inclusive enough

l1 l1
l2

c

c
l1

c

c
l1

l2
l1

c

c
l1

l2

c

e
e

c

(a) (b)

Figure 3: Cuts through the l1 → l1 forward-scattering diagrams that contribute (a) to
the l1 → l2 e+e− decay rate and (b) to the inclusive hadronic decay rate for l1 → l2 + X.
See text for further explanation.

to an OPE of (39), which would imply a sum over all cuts, not just a restricted set. In
this way Γ(l1 → l2 e+e−) is seen not to be a truly inclusive quantity, for which global
duality would be expected to hold. Rather, the selection of a final state with an e+e−

pair represents a more “exclusive” choice, even for the integrated l1 → l2 e+e− rate,
which leads to an integral over |Π(q2)|2. The situation encountered here is similar to
that for the radiative decay B → Xsγ. As emphasized in [18], in this case contributions
to the decay rate for which the photon is not part of the local operators in the effective
weak Hamiltonian cannot be obtained from an OPE. They correspond to a subset of
cuts analogous to those in Figure 3.

On the other hand, a very different situation occurs for the inclusive hadronic decay
l1 → l2 X (see the second graph in Figure 3). In that case no restriction is placed
on the cuts, and an OPE can be applied to (39). Similarly to the rate of hadronic τ
decay [17], the decay rate is given by a weighted integral over the imaginary parts of the
vector-current (Π) and axial-vector current correlators (ΠT,L

A ),

Γ(l1 → l2 X) =
G2m5

1

16π2

∫ 1

0
ds (1 − s)2

[

(1 + 2s)
(

Im Π(q2) + Im ΠT
A(q2)

)

+ Im ΠL
A(q2)

]

,

(40)
and global duality works in the same way as for the charm contribution to the e+e− →
hadrons cross section.

Finally, we briefly return to the low-q2 region in l1 → l2 e+e− decays mentioned after
(22). Here a quark-level calculation is justified if q2 is sufficiently below the ψ resonance.
We estimate q2

max, the maximum value of q2, up to which a quark-level calculation of
Π(q2) can be trusted. For q2 close to zero the quark picture is reliable, and the ψ-
resonance contribution is only a small part in a hadronic representation of Π. As q2

gets close to M2
ψ, the resonance contribution dominates the correlator while the partonic

result for Π is too small. Therefore, as an estimate for q2
max we use the point in q2 where

the one-loop partonic result equals the ψ-resonance contribution to Π(q2)−Π(0). Using
[Π(q2) − Π(0)]ψ = (f 2

ψ/M2
ψ) q2/(M2

ψ − q2) and the partonic expression in (34) close to
threshold q2 = 4m2

c ≈ M2
ψ, we obtain q2

max = M2
ψ − 3π2f 2

ψ/2 ≈ 7 GeV2. Here we have
considered the limit f 2

ψ/M2
ψ $ 1 in order to obtain a simple analytic expression. We then

have Π(q2
max)−Π(0) = 0.04 for the one-loop result, 0.05 for the ψ-resonance contribution,
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Comparison to data II
• The direct CP asymmetries come out wrong for

several modes, particularly for the πK final states
(see talk by S Mishima)
     ACP (π+K-)      has opposite sign [cf above]
     ACP (π0K-)  ≠  ACP (π0K-)    at around 5σ

• It has been argued that this implies new physics, see eg

for instance through modified electroweak penguin 
contributions (which factorize similarly to tree amplitudes)

• and/or that the colour-suppressed tree amplitude is large 
and complex and/or the penguin imaginary parts are wrong 
in factorization (or receive large power corrections), see eg

Some support for the latter from ACP(π+π-) via SU(3)

[eg Belle, Nature 2008]   

[Buras, Fleischer, Recksiegel, Schwab 03; Baek et al 04; Lunghi, Soni 08; Arnowitt et al; Khalil, 
Kou; Hou; Soni et al 08; Barger et al 09; Khalil, Masiero, Murayama 09; many more ... ]   

Gronau et al; Buras, Fleischer, Recksiegel, Schwab 03; Baek et al 04, 09; Yoshikawa 03;  
Ciuchini et al 08, Gronau,Pirjol,Zupan 10
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Annihilation β3

• The colour-leading piece to the annihilation contribution       
to the QCD penguin amplitude has a naively factorizing 
structure

                                    (where Q6 has been “Fierzed” to
                                    colour singlet x singlet form)

This is proportional to the “scalar form factor”. A sum rule 
calculation gives a small and approximately real result, so it 
cannot resolve the penguin puzzles

• In contrast, the pQCD approach finds a large and complex
value albeit with large uncertainties. [Keum, Li, Sanda 2000]
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Figure 1: Emission, annihilation and emission-annihilation topologies of Wick contractions in the

matrix elements of operators Qi.

8

β3

Q6

Note that this is a relatively “simple” sum rule for a form factor, for which 
sum rules have a good track record (when compared with lattice or data 
driven determinations)

[Khodjamirian Mannel, Melcher, Melic, hep-ph/0509049]
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Summary
• Dynamical description of penguin amplitudes

- well-defined 1/mb expansion, leading terms factorize
  with a stable perturbation expansion

- one potentially large missing piece (in a6)

- leading-power long-distance charm penguin dead

• Data

- clearly respects the  hierarchies predicted by the HQ
  expansion (PP, VP versus PV, VV)

- on direct CP asymmetries doesn’t fit well with theory:
  either higher orders in a6 are important, or annihilation
  terms are large, or there is new physics in some
  amplitudes, or a combination of these
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