Measurement of sin2 φ_1 from B $\rightarrow \eta' K^0$, ωK_s and $\pi^0 K^0$

Tagir Aushev (ITEP, Moscow) on behalf of the Belle Collaboration

Introduction

• b \rightarrow s penguin dominated decays B \rightarrow $\eta' K^0$, ωK_s , $\pi^0 K^0$ are sensitive to sin2 ϕ_1 :

$$A_{f}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(\Delta t) \rightarrow f) - \Gamma(B^{0}(\Delta t) \rightarrow f)}{\Gamma(\overline{B}^{0}(\Delta t) \rightarrow f) + \Gamma(B^{0}(\Delta t) \rightarrow f)} = -C_{f}\cos(\Delta m_{B}\Delta t) + S_{f}\sin(\Delta m_{B}\Delta t)$$

- in case of pure penguin amplitude $S_f \approx sin 2\varphi_1$
- Presence of color-suppressed tree amplitudes shifts S_f from sin2 φ_1 for a value of 0.01~0.1 $\bar{b} \xrightarrow{W^+}_{B^0 \bar{u}, \bar{c}, \bar{t}} \xrightarrow{\bar{a}}_{d} \sqrt{W^+}_{R^0} = \bar{b} \xrightarrow{W^+}_{W^+} \sqrt{u}$

d

d

d

- Examining for a larger deviations of S_f from sin2 φ_1 is an important test of the Standard Model

d

Luminosity at B factories

- Signal extraction:
 - Multi-dimensional (M_{bc} , ΔE , $L_{s/b}$, ...)
 - Extended unbinned maximum likelihood fit

tCPV measurements on B-factories

$B^0 \rightarrow \eta' K^0$

TM & @ Nelvana

BaBar: 467M, PRD 79, 052003 (2009)

 $\eta'(\rho\gamma, \eta_{\gamma\gamma}\pi^+\pi^-, \eta_{3\pi}\pi^+\pi^-)K^0_S(\pi^+\pi^-)$ $\eta'(\rho\gamma, \eta_{\gamma\gamma}\pi^+\pi^-)K^0_S(\pi^0\pi^0)$ $\eta'(\eta_{\gamma\gamma} \pi^+\pi^-, \eta_{3\pi} \pi^+\pi^-)K_L^0$

B mass was used in case of $\eta' K_1$ to re-calculate unknown K₁ momentum

Signal yields: B⁰→η'K_S: 1457 ± 43 $B^0 \rightarrow \eta' K_1$: 341 ± 23

Belle: 535M, PRL 98, 031802 (2007)

Same decay modes are used as shown before

All variables which describes event shape are combined into a single variable $R_{\text{s/b}}$ used in the fit

Signal yields: η'K_s: 1421 ± 46 η'K_L: 454 ± 39

CPV in $B^0 \rightarrow \eta' K^0$

The only $b \rightarrow s$ mode where significant CPV is measured

 $B^0 \rightarrow \omega K_s$

BaBar: 467M, PRD 79, 052003 (2009) Belle: 535M, PRD 76, 091103(R) (2007)

CPV in $B^0 \rightarrow \omega K_s$

BaBar: 467M, PRD 79, 052003 (2009) Belle: 535M, PRD 76, 091103(R) (2007)

$B^0 \rightarrow K \pi$ isospin relations

- $A_{CP}(B^0 \rightarrow K^+\pi^-) \neq A_{CP}(B^+ \rightarrow K^+\pi^0)$ (Nature, 452, 332-335, 2008)
- Isospin sum rule (M.Gronau, PLB 672, 82-88, 2005):

Breaking sum rule indicates new physics

 $A_{CP}(K^0\pi^0)$ is the most poor measured value

Both S and A measurements are important

Complimentary information in Y.Unno's talk

 $B^0 \rightarrow \pi^0 K^0$

BaBar: 467M, PRD 79, 052003 (2009) Belle: 657M, PRD 81, 011101 (2010)

5.28

5.29

5.28

5.3

CPV in $B^0 \rightarrow \pi^0 K^0$

BaBar:

 $S = + 0.55 \pm 0.20 \pm 0.03$ $C = + 0.13 \pm 0.13 \pm 0.03$

BaBar: 467M, PRD 79, 052003 (2009) Belle: 657M, PRD 81, 011101 (2010)

Summary

Summary

Conclusion

- Current measurements are consistent with SM
- Further improvements are expected from Belle:
 - currently not the whole statistics is used
 - Belle data are re-processed with new reconstruction, which gives 10-30% improvement in the efficiency depending on the decay mode
- For the modes which require much more data Belle II will help