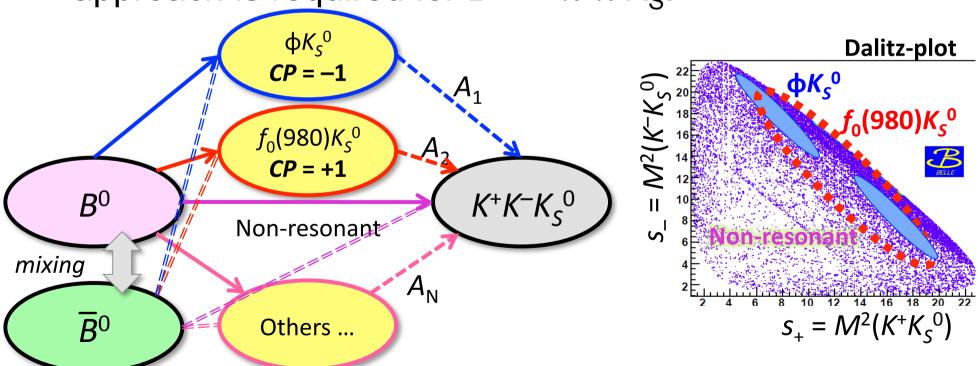
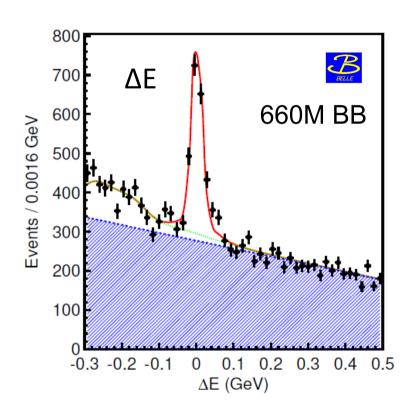
$φ_1(β)$ from $B^0 \rightarrow K^+K^-K_S$, $π^+π^-K_S$ and $K_SK_SK_S$

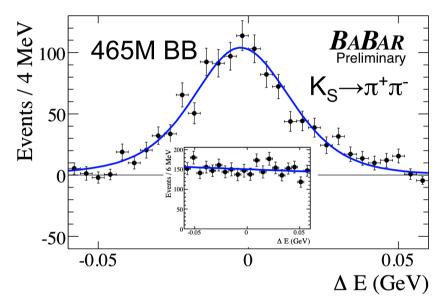

Kenkichi Miyabayashi Nara Women's Univ. CKM2010

Introduction

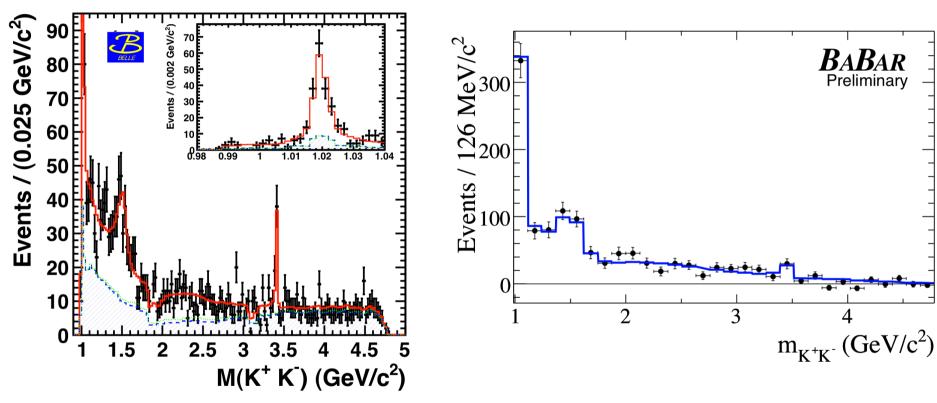

- Time-dependent CP violation measurements started with tree-mediated two-body B decays.
 – i.e. B⁰→J/ψ K⁰
- Penguin-mediated B decays are good place to seek possible deviation(=new physics) from tree-mediated process. The first round measurements used a quasi-two-body approach.
 - i.e. ϕ K⁰, η ' K⁰, etc.
- However as you know,

Several contributions are overlapping

- For example, B⁰→K⁺K⁻K_S final state has several different paths.
- Resolve them by fitting the Dalitz distribution. Same approach is required for B⁰ → π⁺π⁻K_S.



Reconstructed B⁰→K⁺K⁻K_s candidates


Belle: 1176±51 signal events.

(arXiv:1007.3848, submitted to PRD)

BaBar : $1268\pm43(K_S\rightarrow\pi^+\pi^-)$ and $160\pm19(K_S\rightarrow\pi^0\pi^0)$ signal events, in whole Dalitz fit region. Highmass and low-mass fits are also attempted.(arXiv:0808.0700)

Projections of Dalitz distribution (M_{K+K-})

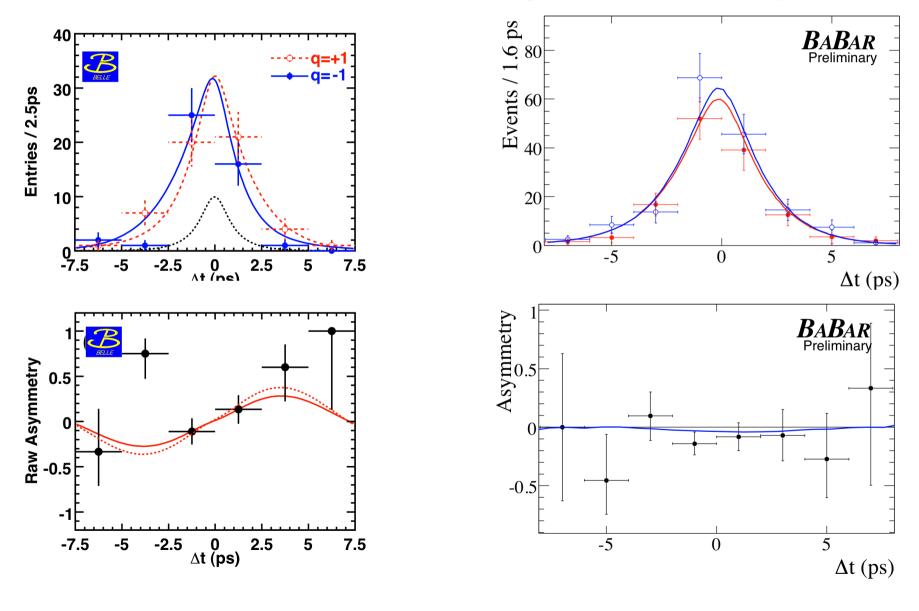
Peak around 1GeV/c²: ϕ (1020) and f₀(980)

Around 1.5GeV/c²: f_x

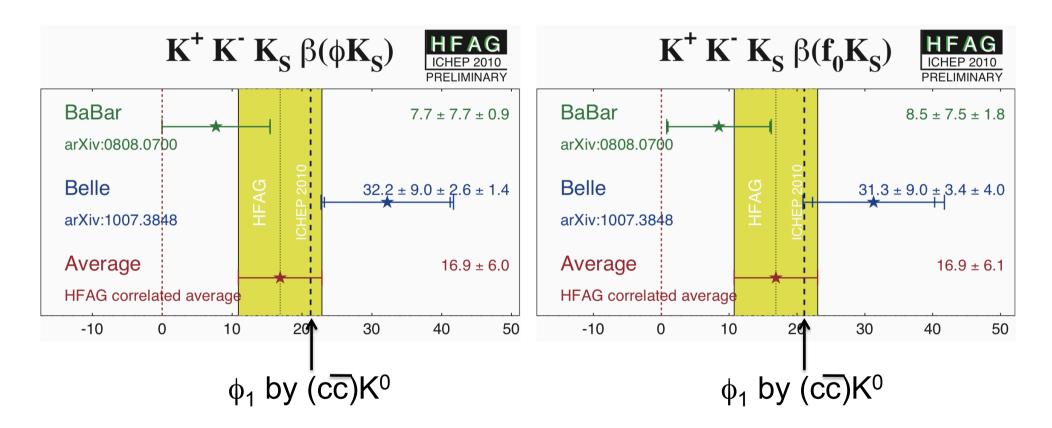
At 3.4GeV/c² : χ_{c0}

Multiple solutions

Belle found 4 solutions


	Solution 1	Solution 2	Solution 3	Solution 4
$A_{CP}(f_0(980)K_S^0)$	$-0.30 \pm 0.29 \pm 0.11 \pm 0.09$	$-0.20 \pm 0.15 \pm 0.08 \pm 0.05$	$+0.02\pm0.21\pm0.09\pm0.09$	$-0.18 \pm 0.14 \pm 0.08 \pm 0.06$
(- ($(31.3 \pm 9.0 \pm 3.4 \pm 4.0)^{\circ}$,	· · · · · · · · · · · · · · · · · · ·	,
$A_{CP}(\phi(1020)K_S^0)$	$+0.04 \pm 0.20 \pm 0.10 \pm 0.02$	$+0.08\pm0.18\pm0.10\pm0.03$	$-0.01 \pm 0.20 \pm 0.11 \pm 0.02$	$+0.21\pm0.18\pm0.11\pm0.05$
$\phi_1^{ ext{eff}}(\phi(1020)K_S^0)$	$(32.2 \pm 9.0 \pm 2.6 \pm 1.4)^{\circ}$	$(26.2 \pm 8.8 \pm 2.7 \pm 1.2)^{\circ}$	$(27.3 \pm 8.6 \pm 2.8 \pm 1.3)^{\circ}$	$(24.3 \pm 8.0 \pm 2.9 \pm 5.2)^{\circ}$
$\mathcal{A}_{CP}(ext{others})$	$-0.14 \pm 0.11 \pm 0.08 \pm 0.03$	$-0.06 \pm 0.15 \pm 0.08 \pm 0.04$	$-0.03\pm0.09\pm0.08\pm0.03$	$+0.04\pm0.11\pm0.08\pm0.02$
$\phi_1^{\text{eff}}(\text{others})$	$(24.9 \pm 6.4 \pm 2.1 \pm 2.5)^{\circ}$	$(29.8 \pm 6.6 \pm 2.1 \pm 1.1)^{\circ}$	$(26.2 \pm 5.9 \pm 2.3 \pm 1.5)^{\circ}$	$(23.8 \pm 5.5 \pm 1.9 \pm 6.4)^{\circ}$

The preferred solution can not be selected by the fit likelihood value alone. With external information, solution 1 is preferred.

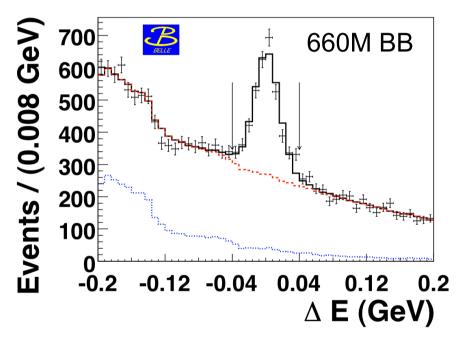

BaBar found 2 solutions in low-mass fit, (1) is chosen as nominal.

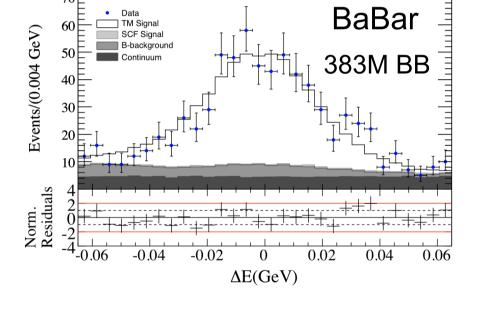
Name	Solution (1)	Solution (2)	Correlation			
			1	2	3	4
$1 A_{CP}(\phi K_S^0)$	$0.14 \pm 0.19 \pm 0.02$	0.13 ± 0.18	1.0	-0.09	-0.28	0.09
$2 \beta_{eff}(\phi K_S^0)$	$0.13 \pm 0.13 \pm 0.02$	0.14 ± 0.14		1.0	0.54	0.65
$3 A_{CP}(f_0 K_S^0)$	$0.01 \pm 0.26 \pm 0.07$	-0.49 ± 0.25			1.0	0.25
$4 \beta_{eff}(f_0 K_S^0)$	$0.15 \pm 0.13 \pm 0.03$	3.44 ± 0.19				1.0

Δt distribution in φ mass region

effective ϕ_1 of "solution 1"

No significant deviation from measurements with $B^0 \rightarrow (c\overline{c}) K^0 = \sin 2\phi_1$.

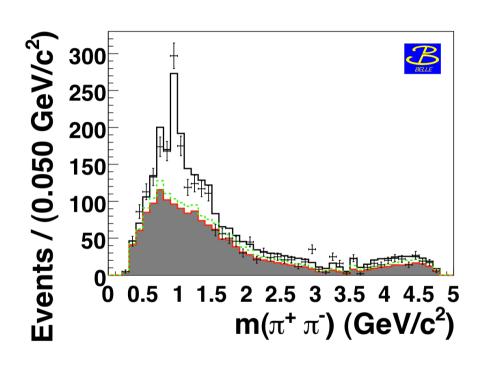

As for direct CP violation

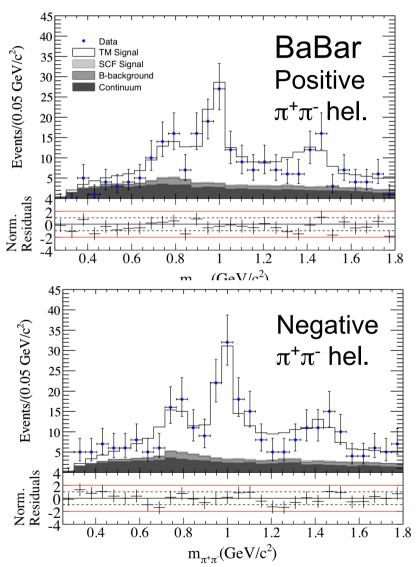


No significant direct CP violation has been observed.

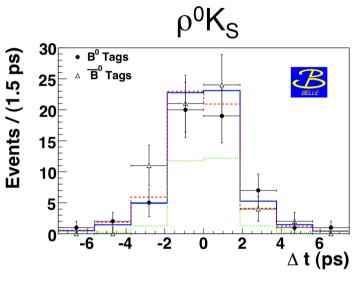
$B^0 \rightarrow \pi^+\pi^-K_S$

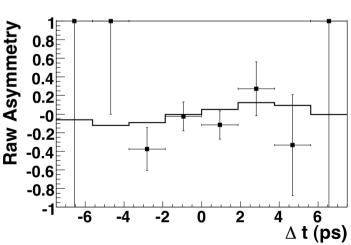
Reconstructed candidates

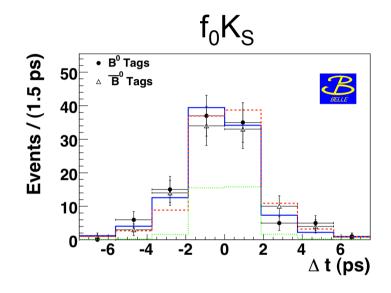


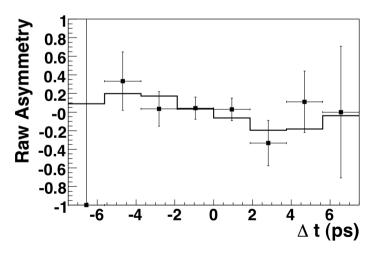

Belle: 1944±98 signal events. (PRD79,072004(2009))

BaBar : 2182±64 signal events. (PRD80,112001(2009))

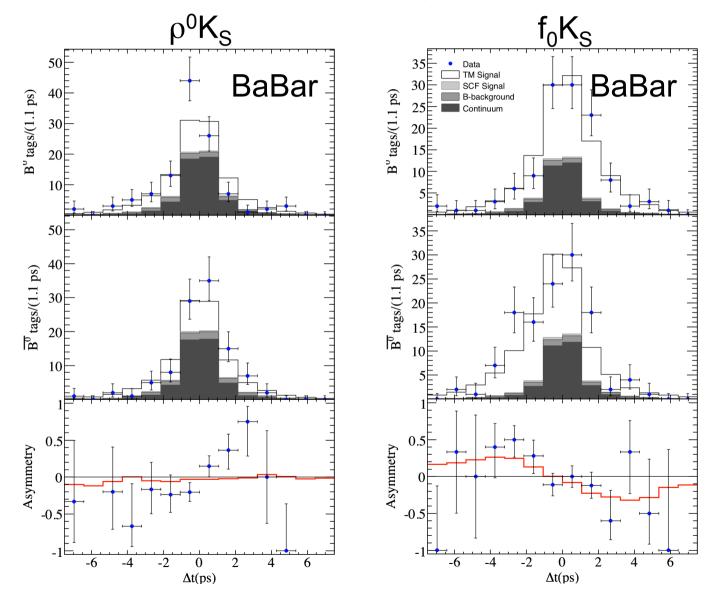

Projections of Dalitz distribution ($M_{\pi\pi}$)




 ρ^0 (770) and f₀(980) contributions are clearly seen.



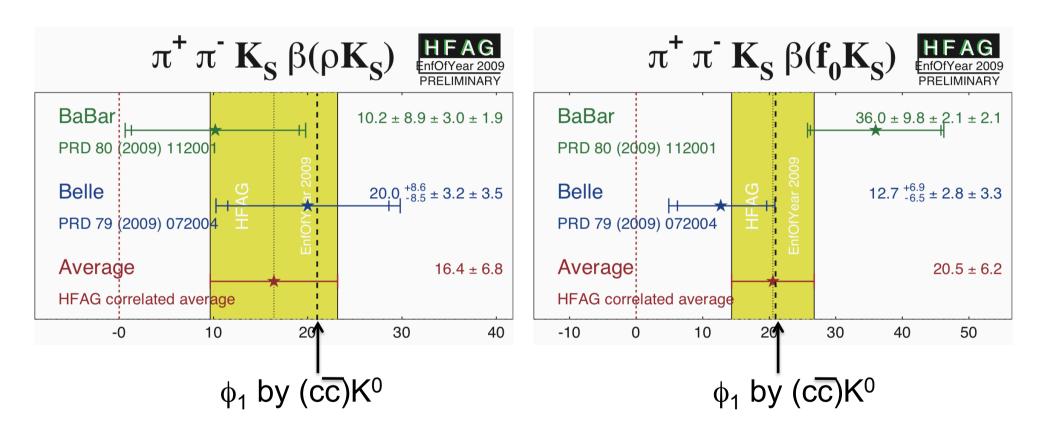
Δt distributions in $\rho^0 K_S$ and $f_0 K_S$ regions



Δt distributions in $\rho^0 K_S$ and $f_0 K_S$ regions

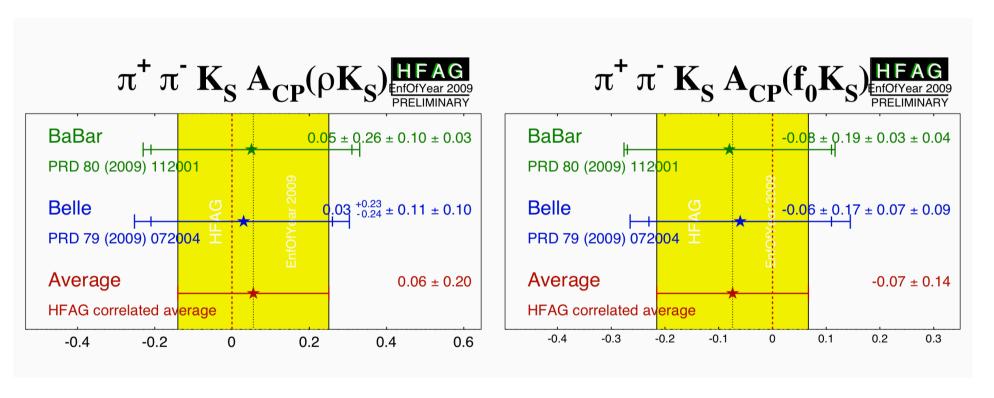
Again multiple solutions

Belle found 4 solutions. After ensemble test checks and by using external information, two of them are chosen as possible physical solutions. Solution 1 is preferred $(K^{*+}_{0}(1430)\pi)$ fraction and $K_{S}\pi$ mass spectrum). (PRD79,072004(2009))


Parameter	Solution 1 (-2In <i>L</i> =18472.5)	Solution 2 (-2ln <i>L</i> =18465.5)
$A(f_0K_S)$	0.08±0.19±0.03±0.04	0.23±0.19±0.03±0.04
$\beta(f_0K_S) = \phi_1(f_0K_S)$	(36.0±9.8±2.1±2.1)°	(56.2±10.4±2.1±2.1)°
$A(\rho^0K_S)$	-0.05±0.26±0.10±0.03	-0.14±0.26±0.10±0.03
$\beta(\rho^0 K_{S}) = \phi_1(\rho^0 K_{S})$	(10.2±8.9±3.0±1.9)°	(33.4±10.4±3.0±1.9)°

Again multiple solutions

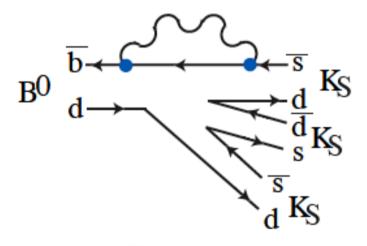
Parameter	Solution 1	Solution 2
$C(f_0K_S)=-A(f_0K_S)$	0.08±0.19±0.03±0.04	0.23±0.19±0.03±0.04
$\beta(f_0K_S) = \phi_1(f_0K_S)$	(36.0±9.8±2.1±2.1)°	(56.2±10.4±2.1±2.1)°
$C(\rho^0 K_S) = -A(\rho^0 K_S)$	-0.05±0.26±0.10±0.03	-0.14±0.26±0.10±0.03
$\beta(\rho^0 K_{S}) = \phi_1(\rho^0 K_{S})$	(10.2±8.9±3.0±1.9)°	(33.4±10.4±3.0±1.9)°


BaBar found 2 solutions. (PRD80,112001(2009))

effective ϕ_1 of "solution 1"

No significant deviation from measurements with $B^0 \rightarrow (c\overline{c}) K^0 = \sin 2\phi_1$.

As for direct CP violation

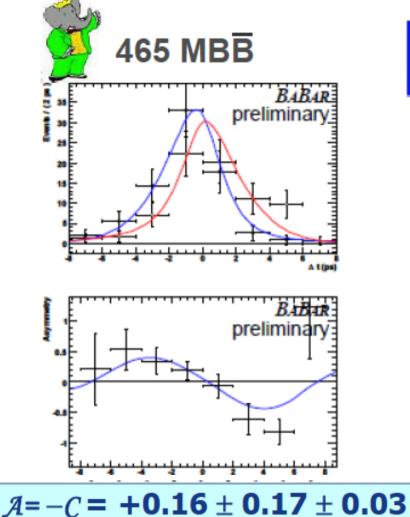


No significant direct CP violation has been observed.

$B^0 \rightarrow K_S K_S K_S$

B⁰ is a spin-0 meson, decays into three neutral spin-0 meson are CP eigenstate.

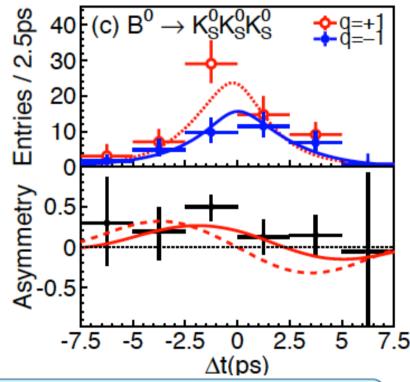
(T.Gershon and M.Hazumi, PLB596(2004)163)



 $B^0 \rightarrow K_S K_S K_S$ is CP-even final state caused purely by b \rightarrow s penguin. Measurements of Time-dep. CPV have been performed.

$$A_{CP}(\Delta t) = \frac{\Gamma(\overline{B^0}(\Delta t) \to f_{CP}) - \Gamma(\overline{B^0}(\Delta t) \to f_{CP})}{\Gamma(\overline{B^0}(\Delta t) \to f_{CP}) + \Gamma(\overline{B^0}(\Delta t) \to f_{CP})} = S_{f_{CP}} \sin(\Delta m \Delta t) + A_{f_{CP}} \cos(\Delta m \Delta t)$$

SM expectation is; $S_{KsKsKs} = -\sin 2\phi_1$ and $A_{KsKsKs} = 0$


Time-dep. CPV in $B^0 \rightarrow K_S K_S K_S$

 $S = -0.90 \pm {0.20 \atop 0.18} \pm {0.04 \atop 0.03}$

PRL 98 (2007) 031802 535 MBB

$$A = +0.31 \pm 0.20 \pm 0.07$$

 $S = -0.30 \pm 0.32 \pm 0.08$

Recent BaBar's Dalitz approach

- 200 \pm 15 signal events (305 \pm 18 $q\bar{q}$); 465M B \bar{B} , cuts slightly changed from Time-dependent CPV.
- We start with a baseline model with f_o (980), χ_{co} , and non-resonant. We add a resonance and scan the likelihood varying its mass and width;

- We only find significant contributions from f_o (1710) and f_z (2010), no evidence of the f_x (1500);
- We measure the inclusive branching fraction:

$$BF(B^0 \to K_S K_S K_S) = (6.5 \pm 0.5 \pm 0.4) \times 10^{-6}$$

Summary and prospects

- Both BaBar and Belle collaborations have carried out timedependent Dalitz analysis on B⁰→K⁺K⁻K_S and B⁰→π⁺π⁻K_S.
- In principle, overlapping contributions and interference between resonances can be solved by fitting the Dalitz plot.
- However, we encounter multiple solutions with the currently available statistics.
- No significant deviation of effective ϕ_1 with respect to ϕ_1 determined by charmonium modes, so far.
- No significant direct CP violation has been observed so far.
- With Super B-factory level statistics, the best of the multiple solutions can be identified from likelihood alone.
- BaBar performed a Dalitz analysis of B⁰→K_SK_SK_S.
 - $f_0(1710)$ and $f_2(2010)$ are evident.
 - It may be possible to measure the CP violation parameters of these new modes with higher statistics.

Backup slides

CP Violation Measurement in $B^0 \rightarrow K_S^0 K^+ K^-$

Solution #1 is most preferred from an external

information.

Intermediate state-by-state fraction

Parameter	Solution 1	Solution 2	Solution 3	Solution 4
$f_{f_0K_S^0}$	26.0 ± 7.4	54.0 ± 9.6	26.4 ± 7.8	68.1 ± 12.3
$f_{\phi K^0_S}$	14.2 ± 1.2	14.5 ± 1.2	14.2 ± 1.2	14.4 ± 1.2
$f_{f_{ m X}K_S^0}$	5.10 ± 1.39	5.89 ± 1.86	39.6 ± 2.6	59.0 ± 3.0
$f_{\chi_{c} 0 K_{c}^{0}}$	I		3.68 ± 0.73	
$f_{(K^+K^-)_{\operatorname{NR}}K^0_{\operatorname{S}}}$	138.4 ± 44.8			
	1.65 ± 4.17			
$f_{(K_S^0K^-)_{\mathrm{NR}}K^+}$	26.0 ± 12.9	78.0 ± 36.2	38.6 ± 18.1	6.27 ± 3.81
$F_{ m tot}$	215.2 ± 47.5	352.0 ± 66.8	284.5 ± 36.3	207.9 ± 18.4

- The $Br(f_0(980) \rightarrow \pi^+\pi^-)/Br(f_0(980) \rightarrow K^+K^-)$ favors solutions with low $f_0(980)K_S^0$ fraction, when compared to the PDG.
- The $Br(f_0(1500) \rightarrow \pi^+\pi^-)/Br(f_0(1500) \rightarrow K^+K^-)$ favors solutions with low $f_0(1500)K_S^0$ fraction, when compared to the PDG.
 - Here, we assume f_x as $f_0(1500)$.