Super γ : sensitivity with future experiments.

Anton Poluektov

The University of Warwick, UK, Budker Institute of Nuclear Physics, Novosibirsk, Russia

6-10 September 2010

In many cases, the answer given by the experiment does not really match the question asked by theory.

"They say the Ultimate Answer or whatever is Forty-two, how am I supposed to know what the question is?"

Douglas Adams The Hitchhiker's Guide to the Galaxy

This is not the case for γ (up to 10^{-6} precision).

And by the way, $\gamma=42^\circ$ is not ruled out yet...

Super B factories

Will refer to both projects as SuperB.

LHCb upgrade

Luminosity 2×10^{33} cm⁻²s⁻¹ $\int Ldt = 50 - 100$ fb⁻¹ Increased hadronic trigger efficiency (×2 - 3).

Perspectives

LHCb:

 $20 imes 10^{12}$ produced $B\overline{B}$ pairs detection efficiency < 1%. B/S typically O(1)

 50×10^9 produced $B\overline{B}$ pairs detection efficiency O(100%) clean signals

SuperB:

Benchmark modes			
Mode	SuperB (50 ab^{-1})	LHCb (50 fb $^{-1}$)	
$B \rightarrow D(K\pi)K$ allowed	200K	4M	
$B \rightarrow D(K_S \pi \pi) K$	100K	300K	
$B_s \rightarrow D_s(KK\pi)K$	-	700K	

- Main "golden" modes $(B \rightarrow DK \text{ with } D \rightarrow hh', D \rightarrow K_S hh)$ accessible to both LHCb and SuperB.
- SuperB can reconstruct modes with neutrals such as $K_S \pi^0$. Not possible or very hard at LHCb.
- B_s , B_c , Λ_b decays are available at LHCb.

- Expect to reach $O(1^{\circ})$ sensitivity with SuperB and LHCb.
- The methods used to extract γ need to have little or no theoretical uncertainty.
- Controlling experimental systematics can be tricky. Expect that most of it should also scale with statistics (depends on control samples).
- Statistical errors should be much easier to calculate: Gaussian regime.

Use simple likelihood estimates; compare SuperB and LHCb side-by-side.

 $\begin{aligned} R_{GLW\pm} &= 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma \\ A_{GLW\pm} &= \pm 2r_B \sin \delta_B \sin \gamma / R_{GLW\pm} \\ R_{ADS} &= r_B^2 \pm r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma \\ A_{ADS} &= 2r_B r_D \sin(\delta_B + \delta_D) \sin \gamma / R_{ADS} \end{aligned}$

CP-even: $D \rightarrow hh$ CP-odd: $K_S \pi^0$, $K_S \omega$ 6 observables 4 parameters: γ , r_B , δ_B , δ_D

$$\begin{aligned} R_{GLW\pm} &= 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma \\ A_{GLW\pm} &= \pm 2r_B \sin \delta_B \sin \gamma / R_{GLW\pm} \\ R_{ADS} &= r_B^2 \pm r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma \\ A_{ADS} &= 2r_B r_D \sin(\delta_B + \delta_D) \sin \gamma / R_{ADS} \end{aligned}$$

CP-even: $D \rightarrow hh$ CP-odd: $K_S \pi^0$, $K_S \omega$ 6 observables 4 parameters: γ , r_B , δ_B , δ_D

GLW+ADS, no δ_D constraint — still ambiguous non-Gaussian tail

 $\begin{aligned} R_{GLW\pm} &= 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma \\ A_{GLW\pm} &= \pm 2r_B \sin \delta_B \sin \gamma / R_{GLW\pm} \\ R_{ADS} &= r_B^2 \pm r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma \\ A_{ADS} &= 2r_B r_D \sin(\delta_B + \delta_D) \sin \gamma / R_{ADS} \end{aligned}$

CP-even: $D \rightarrow hh$ CP-odd: $K_{S}\pi^{0}$, $K_{S}\omega$ 6 observables 4 parameters: $\gamma, r_B, \delta_B, \delta_D$ Sensitivity with $r_{\rm R} = 0.1$ $\gamma = 70^{\circ}$ $\delta_B = 130^\circ$ $\delta_D = 22^{\circ} - 180^{\circ}$: $\sigma(\delta_D)$ $\sigma(\gamma)$ 5.1° 4.7° 11° 3.9° 1°

$$\begin{aligned} R_{GLW\pm} &= 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma \\ A_{GLW\pm} &= \pm 2r_B \sin \delta_B \sin \gamma / R_{GLW\pm} \\ R_{ADS} &= r_B^2 \pm r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma \\ A_{ADS} &= 2r_B r_D \sin(\delta_B + \delta_D) \sin \gamma / R_{ADS} \end{aligned}$$

CP-even: $D \rightarrow hh$ CP-odd: $K_S \pi^0$, $K_S \omega$ 6 observables 4 parameters: γ , r_B , δ_B , δ_D

Methods involving $D \rightarrow hh$: LHCb

$$\begin{split} & N(B^{\pm} \to D(K^{\pm}\pi^{\mp})K^{\pm}) = N_{K\pi} [1 + r_B^2 r_D^2 + 2r_B r_D \cos(\delta_B - \delta_D \pm \gamma)] \\ & N(B^{\pm} \to D(K^{\mp}\pi^{\pm})K^{\pm}) = N_{K\pi} [r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D \pm \gamma)] \\ & \overline{N(B^{\pm} \to D(h^+h^-)K^{\pm})} = N_{hh} [1 + r_B^2 + 2r_B \cos(\delta_B \pm \gamma)] \end{split}$$

Only CP-even states are available at LHCb. GLW+ADS modes provide enough constraints if $N_{K\pi}/N_{hh}$ is fixed.

Methods involving $D \rightarrow hh$: LHCb

$$\begin{split} & N(B^{\pm} \to D(K^{\pm}\pi^{\mp})K^{\pm}) = N_{K\pi} [1 + r_B^2 r_D^2 + 2r_B r_D \cos(\delta_B - \delta_D \pm \gamma)] \\ & N(B^{\pm} \to D(K^{\mp}\pi^{\pm})K^{\pm}) = N_{K\pi} [r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D \pm \gamma)] \\ & \overline{N(B^{\pm} \to D(h^+h^-)K^{\pm})} = N_{hh} [1 + r_B^2 + 2r_B \cos(\delta_B \pm \gamma)] \end{split}$$

Only CP-even states are available at LHCb. GLW+ADS modes provide enough constraints if $N_{K\pi}/N_{hh}$ is fixed.

Methods involving $D \rightarrow hh$: LHCb

$$\begin{split} & N(B^{\pm} \to D(K^{\pm}\pi^{\mp})K^{\pm}) = N_{K\pi} [1 + r_B^2 r_D^2 + 2r_B r_D \cos(\delta_B - \delta_D \pm \gamma)] \\ & N(B^{\pm} \to D(K^{\mp}\pi^{\pm})K^{\pm}) = N_{K\pi} [r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D \pm \gamma)] \\ & \overline{N(B^{\pm} \to D(h^+h^-)K^{\pm})} = N_{hh} [1 + r_B^2 + 2r_B \cos(\delta_B \pm \gamma)] \end{split}$$

Only CP-even states are available at LHCb. GLW+ADS modes provide enough constraints if $N_{K\pi}/N_{hh}$ is fixed.

Methods involving $D \rightarrow hh$: summary

- Combination of both ADS and GLW modes is essential to reach a good γ precision.
- External δ_D constraint is necessary to resolve ambiguities and to reach optimal precision: need $\sigma(\delta_D) \sim 1^{\circ}!$
- Sensitivity strongly depends on strong phase values δ_D and δ_B . In some unlucky cases up to $\times 10$ worse and more. Additional constraints may help in most cases. SuperB looks safer since more modes with potentially different δ_D and δ_B can be used.

Sensitivity for $r_B = 0.1$, $\gamma = 70^\circ$, $\delta_B = 130^\circ$, $\delta_D = 22^\circ - 180^\circ$:

	SuperB (50 ab^{-1})	LHCb (50 fb^{-1})
$D ightarrow hh, \ D ightarrow K\pi$	5.1°	1.4°
$D ightarrow {\it hh}, \ D ightarrow {\it K}\pi, \ \sigma(\delta_D) = 1^\circ$	3.9°	1.0°
$D \rightarrow hh, D \rightarrow K\pi, D \rightarrow K\pi\pi\pi$	2.4°	0.8°

• Other modes available at SuperB: $B^{\pm} \rightarrow D^*(D\pi^0)K^{\pm}$, $B^{\pm} \rightarrow D^*(D\gamma)K^{\pm}$, $B^{\pm} \rightarrow DK^{*\pm}$ can double the precision.

$B^+ \rightarrow DK^+$, $D \rightarrow 3$ body Dalitz analysis

Giri, Grossman, Soffer, Zupan, PRD 68, 054018 (2003) Bondar, Belle Dalitz analysis meeting (2002)

Observable — D decay Dalitz plot density (different for B^+ and B^-):

$$p(m_{+}^{2}, m_{-}^{2}) = |A_{\pm}|^{2} = \left| \sum_{i=1}^{n} + r_{B} e^{i\delta_{B} \pm i\gamma} \sum_{j=1}^{n} \right|^{2}$$

Convenient fit parameters: $x_{\pm} + iy_{\pm} = r_B e^{i(\delta_B \pm \gamma)}$. Model-dependent analysis — a few degree model error. Binned model-independent approach is a solution:

$$M_{i}^{\pm} = h\{K_{i} + r_{B}^{2}K_{-i} + 2\sqrt{K_{i}K_{-i}}(x_{\pm}c_{i} - y_{\pm}s_{i})\},\$$

 $c_i = \langle \cos(\Delta \delta_D) \rangle$, $s_i = \langle \sin(\Delta \delta_D) \rangle$ obtained by CLEO-c.

In the binned fit, can reach $\sim 90\%$ precision compared to the unbinned by choosing proper binning. With increased charm data — finer binning, closer to the unbinned precision.

$B^+ \rightarrow DK^+$, $D \rightarrow 3$ body Dalitz analysis

- Sensitivity practically independent of δ_B and γ .
- Errors scale proportional to $1/r_B$. Expect Gaussian errors with high statistics.
- In LHCb, $B/S \sim 1$ is expected \Rightarrow suppression of sensitivity.

	Event sample	$\sigma(\gamma)$
SuperB (50 ab^{-1})	100K	$1.5 - 2^{\circ}$
LHCb (50 fb $^{-1}$)	300K	$1-1.5^{\circ}$

- CLEO-c error of c_i , s_i translates to $2 3^\circ$ error in γ .
- There is a slight model assumption in CLEO-c analysis due to use of $K_L \pi \pi$ tags. To completely avoid model assumptions, use only $\sim 1/3$ of statistics \Rightarrow expect $3-5^{\circ}$ error.
- Reducing the model error to $\sim 1^{\circ}$ requires $\sim 10 20 \text{ fb}^{-1}$ of $e^+e^- \rightarrow \psi(3770)$ data.
- Other D modes can be used K_SKK, KKππ (SuperB, LHCb), πππ⁰, K_Sπππ⁰, Kππ⁰ (SuperB, LHCb?).

 $\begin{array}{c} B^0 \to DK^{*0} \text{ can be used in the same way as } B \to DK \text{ for ADS, GLW} \\ \text{analyses.} \\ \text{Smaller } \mathcal{B} \text{ by factor } 4\text{--}5 \\ \text{Larger } r_B = 0.3 \ (0.1 \text{ for } B \to DK). \end{array} \right\} \text{Expect similar sensitivity}$

Additional complication: other states in $B \rightarrow DK\pi$ amplitude. Turns out to be an advantage: simultaneous Dalitz analysis of $B \rightarrow D(K\pi)K\pi$ and $B \rightarrow D_{CP}(hh)K\pi$ decays provides additional sensitivity and resolution of ambiguities.

T. Gershon, M. Williams, PRD 08 092002 (2009), arXiv:0909:1495

Inherent model dependence — can be limiting with ~ 1° precision. Using binned analysis with the addition of $B \rightarrow D(K_S \pi \pi) K \pi$ state to the combined analysis allows to avoid model uncertainties. Correlations constrain $B \rightarrow DK \pi$ amplitude from $D \rightarrow K_S \pi \pi$.

T. Gershon, A.P., PRD 81 014025 (2010), arXiv:0910:5437

Time-integrated B^0 analyses

The amplitude of the $B^0 \to D(K_S \pi^+ \pi^-) K^+ \pi^-$ is $A = \overline{A}_B \overline{A}_D + e^{i\gamma} A_B A_D$ and thus the Dalitz plots $B^0 \to D K^+ \pi^-$ and $D \to K_S \pi^+ \pi^-$ are correlated (4D analysis!).

Binning ($M_{\alpha i}$: double Dalitz, N_{α} : $B^0 \rightarrow D_{fl}K^+\pi^-$, K_i : $D^0 \rightarrow K_S\pi\pi$):

$$M_{\alpha i} = h\{\overline{N}_{\alpha}K_{i} + N_{\alpha}K_{-i} + 2\sqrt{N_{\alpha}K_{i}\overline{N}_{\alpha}K_{-i}} \times [(\varkappa_{\alpha}c_{i} - \sigma_{\alpha}s_{i})\cos\gamma - (\varkappa_{\alpha}s_{i} + \sigma_{\alpha}c_{i})\sin\gamma]\}.$$

Phase parameters: c_i , s_i from charm data, \varkappa_{α} and σ_{α} — free parameters.

Very naive estimates for the sample $\sim 50~{\rm fb^{-1}}$ at LHCb (and without background) Amplitude is unknown, sensitivity may vary significantly.

Time-dependent analyses: $B_s \rightarrow D_s K$

Measurement unique to LHCb: sensitive to $\phi_s + \gamma$.

Looking at the time-dependent distributions for flavour-tagged $B_s \rightarrow D_s^{\pm} K^{\mp}$.

No external inputs needed except for ϕ_s (to be measured). Δm_s , mistag rate enter in the free parameters.

Sensitivity of 10° with 2 fb $^{-1}$ at LHCb is expected \Rightarrow scale to $\sim 1.5-2^\circ$ with 50 fb $^{-1}$ at SuperLHCb, but limiting systematic uncertainties still need to be understood.

Influence of D mixing

In the modes with neutral D (time-integrated measurement), ignoring D mixing with $(x_D, y_D) \sim 1\%$ can affect a precision measurement.

- If the charm parameters (r_D, K_i, etc.) are extracted taking mixing into account, the mixing correction is linear and significant (O(1°)). Silva, Soffer, PRD 61, 112001 (2000)
- If mixing is ignored in both charm and *B* parameters, mixing correction is of 2nd order in $(x_D, y_D) \Rightarrow$ can safely ignore. True for ADS, model-dependent Dalitz.

Grossman, Soffer, Zupan, PRD 72, 031501 (2005)

- In model-independent Dalitz, c_i and s_i are extracted from correlated $D\overline{D}$ data with $C = -1 \Rightarrow$ appear to be unaffected by mixing after integration over time. In that case, mixing corrections are linear, but suppressed by additional factors (incl. r_B). $\Delta \gamma \simeq 0.2^{\circ}$. Can be corrected. Bondar, AP, Vorobiev, PRD 82, 034033 (2010)
- Interestingly, in correlated $D\overline{D}$ decays produced with C = -1, mixing effects are enhanced \Rightarrow allows to measure x_D, y_D in time-integrated analysis at DD^* threshold.

- \bullet Various independent methods should allow for $\sim 1-3^\circ$ measurement with SuperB and upgraded LHCb:
 - ADS + GLW modes
 - $B \rightarrow D(K_S \pi \pi) K$ Dalitz analysis
 - Self-tagging $B^0 \to DK\pi$ modes
 - $B_s \rightarrow D_s K$ (LHCb only)
- Overall, LHCb sensitivity with 50 fb⁻¹ potentially looks better than that of SuperB, but higher backgrounds can reduce it. SuperB is more stable against "unlucky" parameter combinations when the sensitivity can be significantly reduced.
- Having a large (\sim 10-20 fb⁻¹) sample at charm threshold is desirable for an efficient use of B data:
 - Significant fraction of BES-III sample.
 - Dedicated charm-tau factory.
 - SuperB operated at low energy.