

Determination of α/ϕ_2 from B $\rightarrow a_1\pi$ and B $\rightarrow K_{1A}\pi$ decays

Simone Stracka (Milan U.)

Outline

$B^0 \rightarrow a_1^{\pm} \pi^{\mp}$ branching fraction

• $a_1(1260)^{\pm} \rightarrow (\rho \pi)^{\pm}$ dominant, $J^P = 1^+$ - $\pi^+ \pi^- \pi^{\pm} \sim 50\%$ - possible $\sigma \pi \Rightarrow 2.5\%$ systematic

• BaBar: ML fit (ΔE , m_{ES}, Fisher, m_{a₁}, cos θ_H)

- N_{sg} = 421 ± 48 ⇒ BF = $(33.2 \pm 3.8 \pm 3.0) \times 10^{-6}$

• $m_{a1(1260)}$ and $\Gamma_{a1(1260)}$ poorly known (model uncertainties) \Rightarrow extract from the fit to the data

$$m_{a1(1260)} = [1229 \pm 21(stat)] \text{ MeV}$$

 $\Gamma_{a1(1260)} = [393 \pm 62 \text{ (stat)}] \text{ MeV *}$ * within ranges allowed by PDG

- Belle BF (535M BB) is consistent with BaBar
 - 3D fit (ΔE , m_{ES} , $cos\theta_H$) + 1D fit to m_{a_1}
 - \sim BF = (29.8 ± 3.2 ± 4.6) × 10⁻⁶ [arXiv:0706.3279]

Simone Stracka - CKM 2010 - University of Warwick - September b-10

PRL 97, 051802

α measurement in non CP-eigenstates

• Time-dependence of $B^0(\rightarrow \bar{B}^0) \rightarrow a_1^{\pm}\pi^{\mp}$ [Aleksan et al.: NPB 361, 141 (1991)]

$$F_{Q_{tag}}^{a_{1}^{\pm}\pi^{\mp}}(\Delta t) = (1 \pm \mathcal{A}_{CP}) \frac{e^{-|\Delta t|/\tau}}{8\tau} \left\{ 1 + Q_{tag} \times \left[\underbrace{S_{\pm}}_{(S \pm \Delta S)} \sin(\Delta m_{d} \Delta t) - (\underline{C \pm \Delta C}) \cos(\Delta m_{d} \Delta t) \right] \right\}$$

• Penguin pollution and strong phase between tree amplitudes

$$S_{\pm} = \sqrt{1 - C_{\pm}^2} \times \sin(2\alpha + 2\Delta\alpha \pm \hat{\delta}) \qquad 2\alpha_{\rm eff} \pm \hat{\delta}$$

δ[°]4

180 \oplus

- get $\alpha_{\rm eff}\equiv \alpha+\Delta\alpha$ by averaging out δ
- 8 trigonometric ambiguities
 - Reduced to 2 (factorization $\Rightarrow |\delta| \ll 90^{\circ}$)
 - Negligible rescattering

[Gronau and Zupan: PRD 70, 074031 (2004); PRD 73, 057502 (2006)]

Simone Stracka - CKM 2010 - University of Warwick - September 6-10

α[°]

for $\Delta \alpha = 0$

$B^0 \rightarrow a_1^{\pm} \pi^{\mp}$ time-dependent analysis

- Fit Δt model to data (N_{tagged} = 461 ± 46)
 - $S = 0.37 \pm 0.21 \pm 0.07$ $\Delta S = -0.14 \pm 0.21 \pm 0.06$ $C = -0.10 \pm 0.15 \pm 0.09$ $\Delta C = 0.26 \pm 0.15 \pm 0.07$ $A_{CP} = -0.07 \pm 0.07 \pm 0.02$
- $m_{a1(1260)} = 1229 \text{ MeV}$ $\Gamma_{a1(1260)} = 393 \text{ MeV}$ [PRL 97, 051802 (2006)]
- Correlations are weak (at O(%) level)

$$\alpha_{\text{eff}} = (79 \pm 7)^{\circ}$$

$$\{11,41,49,79,101,131,139,169\}$$

Simone Stracka - CKM 2010 - University of Warwick - September 6-10

1-CL

Constraining penguin contributions

• Use symmetries to constrain $\Delta \alpha \equiv \alpha_{eff} - \alpha$

2Ã⁰⁰

√2 A⁺⁰

√Zð

ã†

√2 A°*

[Lipkin et al.: PRD 44, 1454 (1991); Gronau: PLB 265, 389 (1991)]

SU(2) not a viable option

 \rightarrow use approximate flavor SU(3)

[Gronau and Zupan: PRD 70, 074031 (2004); PRD 73, 057502 (2006)]

• $\Delta S=0$ decays: $A(B^0 \to a_1^+ \pi^-) = e^{i\gamma} t_+ + p_+$ $A(B^0 \to a_1^- \pi^+) = e^{i\gamma} t_- + p_-$

∕2ã-°

• $\Delta S=1$ decays: $A(B^+ \to K_{1A}^0 \pi^+) = -(\bar{\lambda})^{-1} \frac{f_{K_{1A}}}{f_{a_1}} p_+$ $A(B^+ \to a_1^+ K^0) = -(\bar{\lambda})^{-1} \frac{f_K}{f_\pi} p_-$

> $ar{\lambda} = |V_{cd}|/|V_{cs}| \sim 0.23$ ______ Simone Stracka - CKM 2010 - University of Warwick - September 6-10

Constraining penguin contributions

 Derive bounds on Δα from ratios of CP-averaged rates of ΔS=1 and ΔS=0 B decays:

$$\cos 2(\alpha_{\text{eff}}^{\pm} - \alpha) \geq (1 - 2R_{\pm}^{0})/\sqrt{1 - (\mathcal{A}_{CP}^{\pm})^{2}}$$
$$\cos 2(\alpha_{\text{eff}}^{\pm} - \alpha) \geq (1 - 2R_{\pm}^{+})/\sqrt{1 - (\mathcal{A}_{CP}^{\pm})^{2}}$$

– Rates for $\Delta S=1$ decays to $K_{1A}\pi$ and a_1K are *both* necessary

$$R^{0}_{+} \equiv \frac{\bar{\lambda}^{2} f_{a_{1}}^{2} \mathcal{B}(K_{1A}^{+} \pi^{-})}{f_{K_{1A}}^{2} \mathcal{B}(a_{1}^{+} \pi^{-})} \qquad \qquad R^{+}_{-} \equiv \frac{\bar{\lambda}^{2} f_{\pi}^{2} \mathcal{B}(a_{1}^{+} K^{0})}{f_{K}^{2} \mathcal{B}(a_{1}^{-} \pi^{+})}$$

- Include *factorizable* SU(3) corrections
 - Ratios of decay constants
 - Neglect exchange ($\Delta S=0$) and weak annihilation ($\Delta S=1$) diagrams

[Gronau and Zupan: PRD 70, 074031 (2004); PRD 73, 057502 (2006)]

 $B^0 \rightarrow a_1^-K^+$ and $B^+ \rightarrow a_1^+K^0$

• BaBar: ML fit (ΔE , m_{ES}, Fisher, m_{a₁}, cos θ_H)

- BF(B⁰ \rightarrow a₁⁻K⁺) = (16.4 ± 3.0 ± 2.4) × 10⁻⁶ N_{sg} = 272 ± 44 (S=5.1 σ); A_{ch} = -0.16 ± 0.12 ± 0.01
- BF(B⁺ \rightarrow a₁⁺K⁰) = (34.8 ± 5.0 ± 4.4) × 10⁻⁶ N_{sg} = 241 ± 32 (S=6.2\sigma); A_{ch} = 0.12 ± 0.11 ± 0.02

Th: BF(B⁺ → a₁⁺ K⁰) ~ BF(B⁰ → a₁⁻ K⁺))
 Not consistent with experiment

[Cheng, PRD 76, 114020 (2007)]

K_1 mesons

- K_{1A} and K_{1B} mixtures of two mass eigenstates [Brandenburg et al.: PRL 36, 703 (1976) Carnegie et al.: PLB 68, 287 (1977)]
 - K_{1A} & K_{1B}: SU(3) partners of a₁ & b₁
 - $|K_1(1400)\rangle = |K_{1A}\rangle \cos\theta + |K_{1B}\rangle \sin\theta$ $|K_1(1270)\rangle = -|K_{1A}\rangle \sin\theta + |K_{1B}\rangle \cos\theta$
- Experimental features in the Kππ system explained by two resonances:

	K ₁ (1270)	K ₁ (1400)
M (MeV)	1273 ± 7	1402 ± 7
Γ (MeV)	90 ± 20	174 ± 13
BF[K*π]	42 ± 6	94 ± 6
BF[ρK]	16 ± 5	3 ± 3
$BF[(K\pi)_{s-wave}\pi]$	28 ± 4	_
D-wave/S-wave [K*π]	1.0 ± 0.7	0.04 ± 0.01

PWA of diffractive K p \rightarrow K $\pi\pi$ p data [ACCMOR: PLB 187, 1 (1981)]

Signal model for $K_1 \rightarrow K \pi \pi$ PRD 81, 052009 (2010)

- K-matrix model for interfering resonances [Aitchison, NPA 189, 417 (1972)]
 - 2 resonances x 6 channels [(K* π)_S, K ρ , (K π)_S π , K ($\pi\pi$)_S, (K* π)_D, K ω]

- Decay parameters determined from a fit to the results of PWA of diffractive K p \rightarrow K $\pi\pi$ p data [ACCMOR, NPB 187, 1 (1981)]
- Production parameters determined from a fit to B-decay data
 - overall normalization \Rightarrow combined BF[B \rightarrow K₁(1270) π +K₁(1400) π]
 - $tan \theta = |f_{pb}/f_{pa}|$: relative $K_1(1270)$ and $K_1(1400)$ fraction
 - $\phi = arg(f_{pb}/f_{pa})$: interference effects

$K_1 \pi$ production parameters PRD 81, 052009 (2010)

- (9, ϕ) scan: at each node, ML fit (ΔE , m_{ES}, Fisher, m_{K $\pi\pi$}, cos θ_H)
 - $m_{K\pi\pi}$ PDF templates modeled upon MC for each $\zeta = (9, \phi)$ set:

$$\mathcal{M}(\boldsymbol{\zeta}) = \sum_{i \neq \omega K} F_i(M_{K\pi\pi}; \boldsymbol{\zeta}) \ \mathcal{C}_i \ \mathcal{BW}_i(m_{56}) \ \mathcal{A}_i(\Theta, \Phi, \beta)$$

$B \rightarrow K_{1A} \pi$ branching fractions $(2010)^{PRD 81, 052009}$

- Weighted average over (ϑ, φ) weight $(\vartheta, \varphi) = L(\vartheta, \varphi) \otimes$ syst.
 - Systematics on BF_{sum} included (convolution of L[BF] with 1D gaussian)
- In MC, "turn off" one K_1 at a time: $c_a{}^{(i)} \, f_{pa} + \, c_b{}^{(i)} \, f_{pb} \rightarrow 0$
 - Evaluate corr_j(ϑ, φ) = BF_j / BF_{sum} using MC (j \neq i)

Decay	BF (x10 ⁻⁶)	<mark>S (σ)</mark>
$B^0 \rightarrow K_1(1270)^+\pi^- + K_1(1400)^+\pi^-]$	31 ⁺⁸ -7	7.5
$B^+ \rightarrow K_1(1270)^0 \pi^+ + K_1(1400)^0 \pi^+]$	29 ⁺²⁹ -17	3.2
$B^0 \rightarrow K_1(1270)^+ \pi^-$	1 7 ⁺⁸ -11	
$B^0 \rightarrow K_1(1400)^+ \pi^-$	17 ⁺⁷ -9	
$B^0 \rightarrow K_{1A}^+ \pi^-$	14 ⁺⁹ -10	
$B^+ \rightarrow K_1 (1270)^0 \pi^+$	<40	
$B^+ \rightarrow K_1 (1400)^0 \pi^+$	<39	
$B^+ \rightarrow K_{1A}{}^0 \pi^+$	<36	
	∑ _i BF _i ≠	BF _{su}

12/15

a_1 and K_{1A} decay constants

• Agreement between f_{a1} values obtained by different methods:

Method	f _{a1} (MeV)	Ref.
QCD sum rules	238 ± 10	[1]
f _{K1(1270)} + SU(3)	215 – 223*	[2]
$ au^- ightarrow \pi^- \pi^+ \pi^- u$	203 ± 18	[3]

* depends on K₁ mixing angle

[1] Yang: NPB 776, 187 (2007)
[2] Nardulli: Pham, PLB 623, 65 (2005)
[3] Bloch et al.: PRD 60, 111502R (1999)

- $|f_{K1(1270)}|=175 \pm 19 \text{ MeV from Br}[\tau \rightarrow K_1(1270) \nu]$ [ALEPH: EPJC 11, 599 (1999), Cheng: PRD 67, 094007 (2003)]
- f_{K1A} calculated from quark model
 - use $|f_{K1(1270)}|$ and $|f_{a1}|=203$ MeV as input [Cheng: PRD 69, 074025 (2004)]

[Cheng, Yang: PRD 76, 114020 (2007)]

• Naive quark model estimate of $|f_{K1A}|$ variation with $\theta_{K1} = 58^{\circ} \rightarrow 72^{\circ}$ $\Rightarrow |f_{K1A}|$ decreases by O(20 MeV) (used in K-matrix)

Extraction of bounds on $\Delta \alpha$ PRD 81, 052009 (2010)

- MC trials: generate quantities from experimental distributions
 - For each set of values, solve system of inequalities for $\Delta \alpha$

$BF(a_1^{\pm}\pi^{\mp})$ [10 ⁻⁶]	BF(a ₁ ⁻ K ⁺) [10 ⁻⁶]	BF(a ₁ +K ⁰) [10 ⁻⁶]	BF(K _{1A} ⁺ π ⁻) [10 ⁻⁶]	$BF(K_{1A}^{0}\pi^{+})$ [10 ⁻⁶]
$33.2\pm3.8\pm3.0$	$16.3 \pm 2.9 \pm 2.3$	$34.8\pm5.0\pm4.4$	14 ⁺⁹ -10	<36
f _π (MeV)	f _к (MeV)	f _{a1} (MeV)	f _{K1A} (MeV)	θ [°]
130.4 ± 0.2	155.5 ± 0.9	203 ± 18	207 ± 20	72

Summary and outlook

- BaBar measured α / ϕ_2 from $a_1 \pi$ + SU(3) to constrain penguins
 - 8 ambiguities, reduced to 2 with assumptions on strong phase δ
 - $\alpha_{eff} = [11 \pm 7]^{\circ}, [79 \pm 7]^{\circ}, |\alpha \alpha_{eff}| < 11^{\circ}(13^{\circ}) \text{ at } 68\%(90\%) \text{ CL}$
 - 4th independent measurement awaiting for Belle results
- Will benefit from further input from theory and experiment:
 - Decay constants, K1 mixing angle
 - Null tests of assumptions, e.g., $BF(B^0 \rightarrow K_1^{\pm}K^{\mp})$ (annihilation)
- Future measurements at LHC-b and Super B-factories
 - Statistical error from TD analysis ~ $\rho\rho$
 - $(P/T)_{\rho\rho} < (P/T)_{a_1\pi} \le (P/T)_{\rho\pi} < (P/T)_{\pi\pi}$
 - Resume full SU(3) fit? Could provide cross check of assumptions
 Thank you!

15/15

Backup

Charmless (quasi) two-body analysis

• Kinematic variables: energy subsituted mass, energy difference

• Event shape: distinguish "jet-like" qq events and more isotropic B decays

 Extract the signal yield and CP asymmetries via an unbinned Maximum Likelihood fit to several observables

Time dependent analysis

 $\otimes R(\Delta t_{meas} - \Delta t, \sigma_{\Delta t})$

$$F^{\pm}(\Delta t_{meas}) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left\{ 1 \mp \Delta w \pm (1-2w) \left[S \sin(\Delta m_d \Delta t) - C \cos(\Delta m_d \Delta t) \right] \right\} \text{ tagging performance}$$

Experimental ∆t resolution: convolution with triple gaussian, with parameters obtained from a large sample of fully reconstructed B decays, and free to differ between tagging category