Current and Future Charm Experiments

Yangheng Zheng Graduate University of Chinese Academy of Sciences Sep. 7, 2010 *(a)* Univ. of Warwick

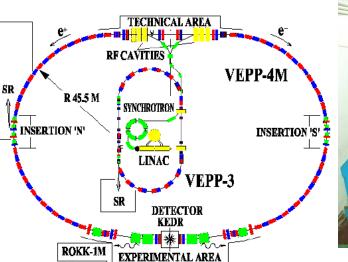
Outline

Introduction to the Charm experiments Status of BEPCII/BESIII experiment Accelerator and Detector performance Selected results Data taking plan & Future upgrade Charm experiments in the future Summary

Charm from dedicated colliders

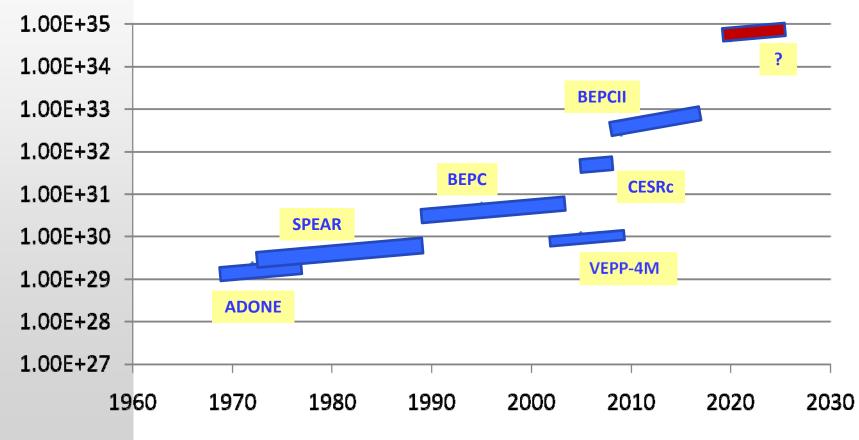
ADONE, FRASCATI '69-'90

SPEAR, SLAC, '72-'90 6 × 10²⁹ cm⁻².s⁻¹



CESRc, Cornell, '04-'08 7×10^{31} cm⁻².s⁻¹

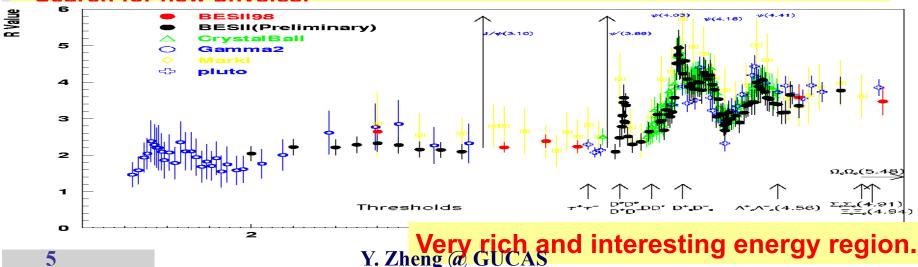
VEPP-4M, Novosibisk, '02-'12(?) 1 × 10³⁰ cm⁻².s⁻¹

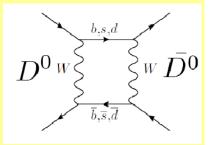


BEPCII, IHEP, '08-'18(?) 1×10³³ cm⁻².s⁻¹

A very long history

Luminosity(cm⁻²s⁻¹)




Physics of tau – charm region

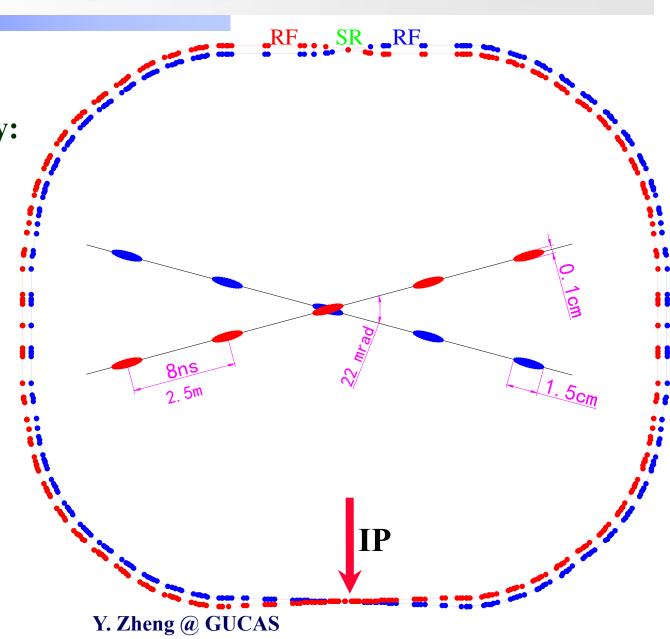
Open charm factory

- precise measurement (~1.6%) of CKM (Vcd, Vcs)
- f _{D+}, f_{Ds}, form factors in leptonic D decays
- D⁰ D⁰bar mixing
- CP violation, strong phase.
- Quantum correlations (ψ")
- Absolute BR measurements of D and Ds decays
- Rare D decay
- Can provide calibrations and tests of lattice QCD.
- light meson spectroscopy in D⁰ and D⁺ Dalitz plot analyses.

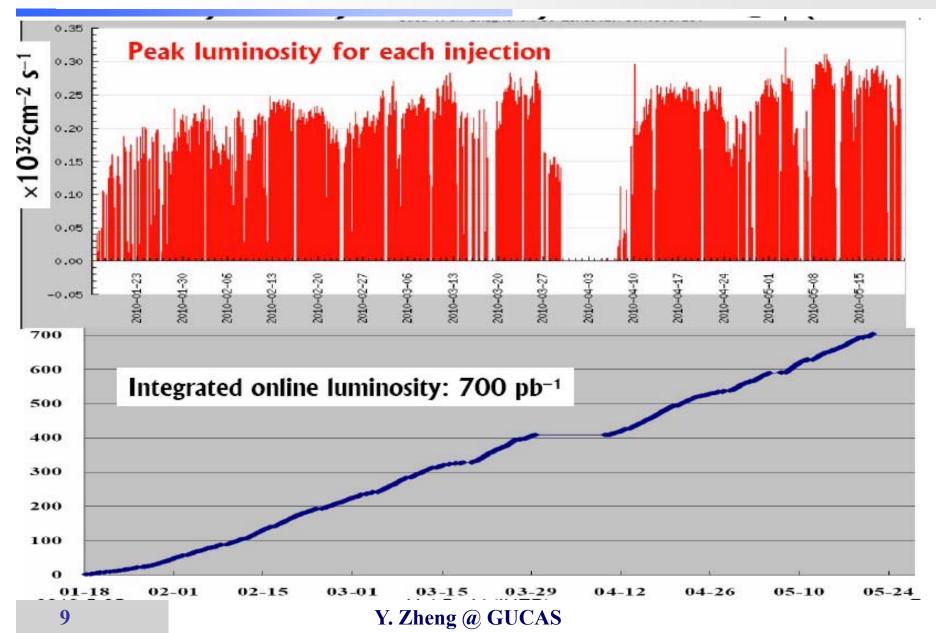
Search for new physics.

Charm meson productions

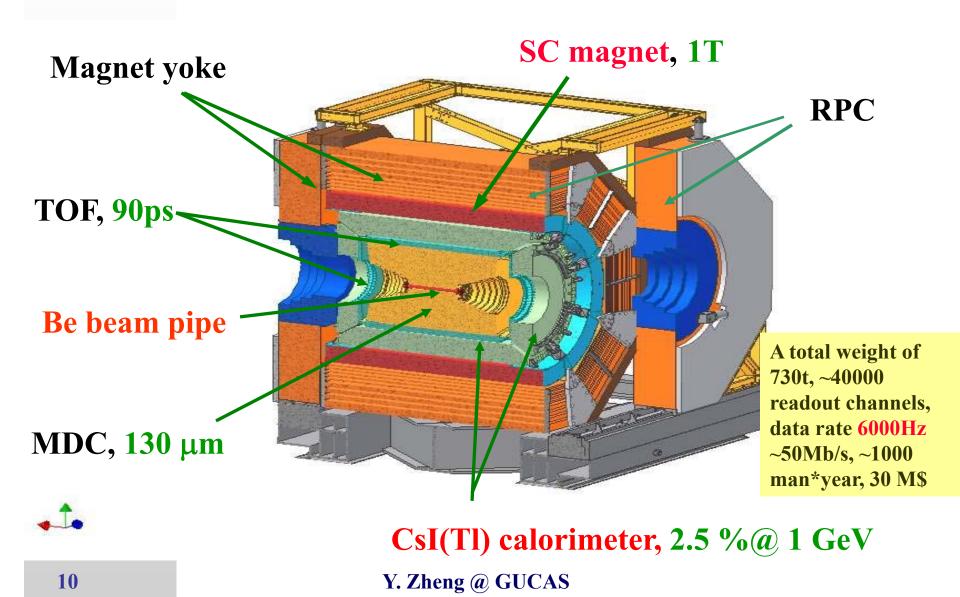
- Hadron colliders (huge cross-section, energy boost)
 - Tevetron
 - LHC (LHCb, CMS, ATLAS)
- e⁺e⁻ Colliders (clean environment, ~100% trigger efficiency)
 - B-factories (Belle, BaBar)
 - Threshold production (CLEOc, BESIII)
 - Quantum correlations and CP-tagging are unique
 - Double Tag techniques: (partial-) reconstruct both D mesons
 - Ratio of signal to background is optimum
 - Lots of systematic uncertainties cancellation while applying double tag method


BEPCII/BESIII experiment

A mainstream High Energy Physics project in China

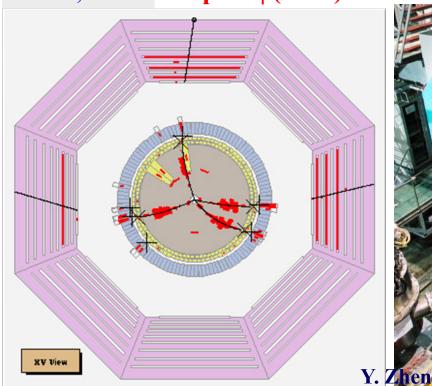

- A major upgrading from BEPC/BES(II)
- ◆BEPCII : e⁺e⁻ collider
 - ✦~60% Physics run
 - ~30% Synchrotron radiation run
- **+BESIII:** particle detector
- Start testing run on July, 2008
- Start official data taking on March, 2009
- In 2010, 3 Published papers and 5 7 more expected

BEPC II Storage ring: Double ring

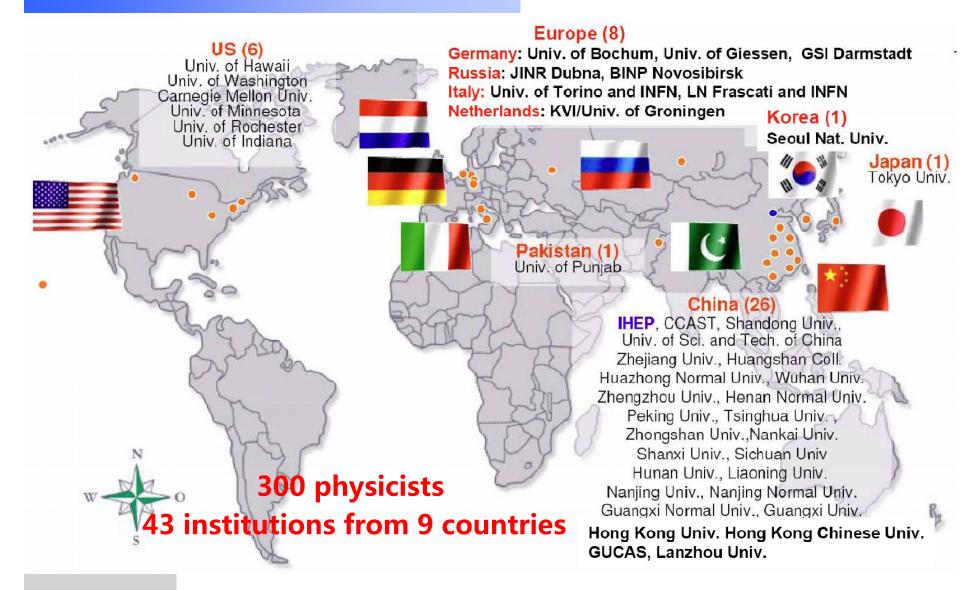

Beam energy: 1.0-2.3 GeV **Design Luminosity:** 1×10^{33} cm⁻²s⁻¹ **Optimum energy:** 1.89 GeV **Energy spread:** 5.16 × 10⁻⁴ No. of bunches: **93 Bunch length:** 1.5 cm **Total current: 0.91** A

BEPCII Luminosity (Up to May)

The BESIII Detector


Comparing with recent e⁺e⁻ Charm colliders

BESII BEPC: Luminosity@J/ψ ~ 5x10³⁰/cm²·s Tradition Magnet, magnetic field: 0.4T ♦ MDC: σ_{xv} ~ 220 μm, σ_P ~ 1.2% @1GeV + Electromagnetic Shower Counter: $\Delta E/\sqrt{E} \sim 21 \%$ ◆TOF: σ_τ~ 180 ps Completed on 2003 CLEOc CESR-c: Luminosity@ψ(3770) ~ 7x10³¹/cm²·s Optimized for B-physics, no Muon detector used for **Charm physics** + Not operating on J/ψ resonance Completed on 2007


BESIII Commissioning and data taking milestones

July 19, 2008: First e⁺e⁻ collision event in BESIII Nov. 2008: ~ 14M ψ (2S) events collected April 14, 2009 ~110M ψ (2S) events collected(×4 CLEOc) May 30, 2009 42 pb⁻¹ at continuum collected July 28, 2009 ~230M J/ ψ events collected(×4 BESII) February, 2010 3 journal paper published June 28, 2010 950 pb⁻¹ ψ (3770) data collected

Peak Lumi. @ Nov. 2008: 1.2 × 10³²cm⁻²s⁻¹ Peak Lumi. @ May 2010: 3.3 × 10³²cm⁻²s⁻¹ → ×5 CESRc ×30 BEPC

BESIII Collaboration

Observation of h_c : Inclusive $\psi(2S) \rightarrow \pi^0 h_c$ + Select inclusive π^0 (untagged) + Plot mass recoiling against π^{0} . Fit with double-Gaussian x BW signal + 4th Poly. bkg (mass and width fixed to tagged values) Combine with tagged results to determine: $Br(\psi \rightarrow \pi^0 h_c) = (8.4 \pm 1.3 \pm 1.0) \times 10^{-4}$ (First measurement) Br(h_c \rightarrow γη_c) = (54.3 ± 6.7 ± 5.2) % (First measurement) BESIII ₹ S 50000 40000 2500 2000 1500 **BESIII Collaboration, PRL 104,** 30000 1000 background 500 132002 (2010) 20000 subtracted -500 10000 -1000 3.51 3.52 3.53 3.54 3.51 3.52 3.53 3.54 14 π^0 recoil mass (GeV/c²)

Data taking plan

 6-year running plan (Approved by the Collaboration).
 Philosophy: Keeps all analysis groups provided with world class data samples as quickly as possible with the potential of maximizing the overall BES-III physics output

Year	Running
2010	ψ (3770) and ψ((3770) scan
2011	J/ψ (+ψ (2S))
2012	<mark>ψ(3770)</mark> or ψ(2S)
2013	Ds + R (E > 4 GeV) or ψ(2S)
2014	ψ(2S) or Ds + R (E > 4 GeV)
2015	R (E < 4 GeV) and τ

Up to June 28, 2010, 950 pb⁻¹ ψ(3770) data collected (Including ~70 pb⁻¹ ψ(3770) line shape scan data)
 10 fb⁻¹ open charm data expected in total Y. Zheng @ GUCAS

Status of BEPCII/BESIII

BEPCII

- Commissioning and stable running of Linac necessary
- 1/3 of the luminosity design value was reached, further studies are needed.
- The dark current of detector limits the beam current right now, and needs to be improved.

BESIII

- 15 analysis memos are under the referees review, and 5
 7 will be submitted in few months
- Systematic studies for neutral tracks (γ, π⁰, η^(')) are in good shape (MC agrees with data)
- It will take time to fully understand the systematics for the charged tracks (expecting <1% per track)</p>

To enhance luminosity

- Conventional ways:
 - Increase bunch current, beam current
 - Shorten bunch spacing to get more bunches collision
 - **\checkmarkSqueeze** β_{y}^{*}
 - Move transverse tunes closer to half integers
- Possible peak luminosity:
 L ~ 5×10³² cm⁻²s⁻¹ @ 1.89GeV

Long term upgrade

BEPCII

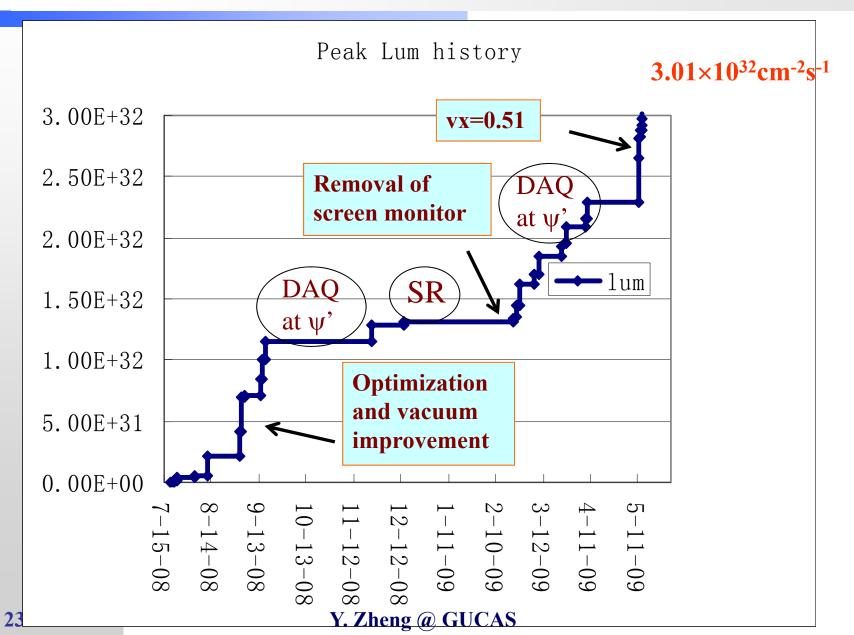
Crab-waist for higher luminosity

- Some changes in the IR (crossing angle of collision beams, magnets' positions near the IP, etc.)
- Limit from the constraints of BESIII solenoid
- **+**Beam Energy: Emax = 4.6 GeV \Rightarrow 5 GeV
- Collision with (e⁻) polarized beam
- ♦ BESIII
 - PID system
 - Inner Drift Chamber

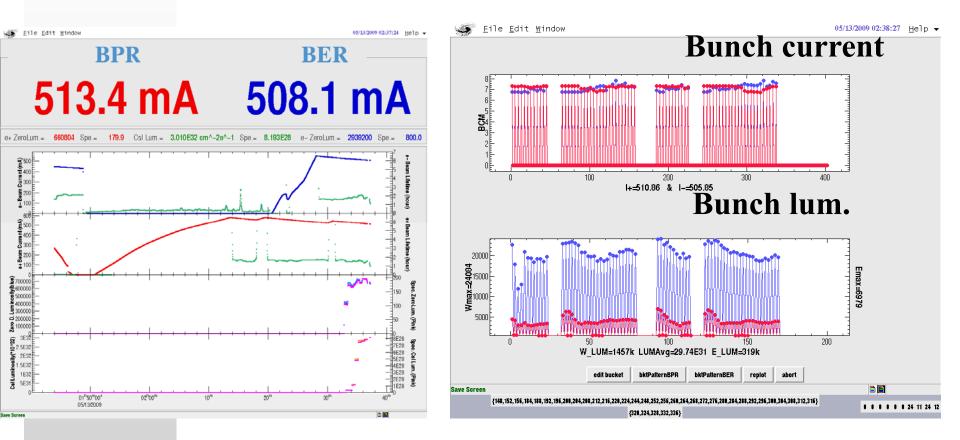
Future Charm Experiment(s)

Hadron Colliders FAIR/PANDA Experiment (Under) construction, operating on 2015?) Fermilab proposals +e⁺e⁻ Colliders (Running at threshold?) Super tau-Charm factory Super B factory (Approved, complete) on 2014?) Super Flavor factory (Linear collider?) Other ideas...

Summary


BEPCII reached a luminosity of 3.3×10³² cm⁻²s⁻¹

- BESIII detector performance excellent, physics results published
 - High quality data samples in hand (110 M ψ' and 230 M J/ψ, 950pb⁻¹ ψ(3770) data obtained)
 - Analysis in progress, more publications in a few months
 - "Open Charm" analyses have already be launched, expect more exciting results
- Few billions of J/ψ and ψ', ~10 fb⁻¹ open charm data will be accumulated in the future
- Rich physics topics in Charm sector. More experiments are coming.



Backup slides

BEPCII Peak Luminosity evolution

Peak Luminosity of $3.0*10^{32}$ achieved on May 13 with ~ 2×500mA and 71 bunches

Main parameters achieved in collision mode

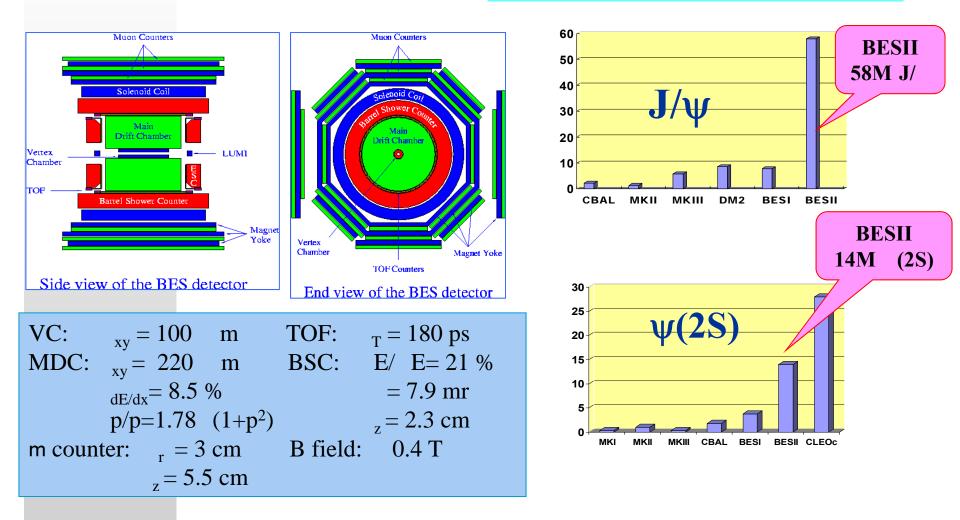
parameters	design	Achieved	
		BER	BPR
Energy (GeV)	1.89	1.89	1.89
Beam curr. (mA)	910	650	700
Bunch curr. (mA)	9.8	>10	>10
Bunch number	93	93	93
RF voltage	1.5	1.5	1.5
$* \nu_{s}$ @1.5MV	0.033	0.032	0.032
$eta_{_X}^{*}/eta_{_Y}^{*}$ (m)	1.0/0.015	~1.0/0.016	~1.0/0.016
Inj. Rate (mA/min)	$200 e^{-}/50 e^{+}$	>200	>50
Lum. $(10^{33} \text{cm}^{-2} \text{s}^{-1})$	1	0. 30	

Problems on the way of further upgrades

- Heating of bellows, vacuum chamber, etc.
- Background when bunch current increases
- Possible ECI after bunch current increases or bunch spacing shortening
- Longitudinal instabilities after bunch spacing shortening
- + Etc, etc.

Long term upgrade of the BEPC-II

Crab-waist for higher luminosity


- Some changes in the IR (crossing angle of collision beams, magnets' positions near the IP, etc.)
- Limit from the constraints of BES solenoid

Collision with polarized beam

- Physics requirement
- Possibility of realization (e- beam? Location for rotators?)
- Budget limitation
- Other problems...

BESII Detector

World J/ and (2S) Samples (×10⁶)

