6-10 September 2010, University of Warwick, UK CKM2010 - 6th International Workshop on the CKM Unitarity Triangle

$b \rightarrow s, dv\bar{v}$ FROM B-FACTORIES

KAI-FENG CHEN NATIONAL TAIWAN UNIVERSITY

INTRODUCTION & MOTIVATION

- The FCNC b→s(d)vv processes only occur via Z-penguin or W-box diagrams.
- The decay branching fractions in the Standard Model are small, but:
 - Theoretically clean: <u>absence of long distance effects</u>.
 - Loop processes are ideal places to look for new physics, e.g.

q

- Light scaler dark matter;
- MSSM through chargino or charged Higgs;
- Extra dimensions;
- Unparticle;
- etc.

If any of these NP exists, we should observe a large boost on the $b \rightarrow s(d)vv$ branching fractions!

WANTED

B mesons decaying into a kaon or a pion together with invisible neutrinos

3

EXPERIMENTAL TECHNIQUE

Visible particles from *B*_{sig}

 K^{+}, π^{+}, K^{*}

Require **no particle** and **no energy** left after removing B_{tag} and visible particles of B_{sig} in the recoil system. $\Upsilon(4S)$

11

Using a well-reconstructed *B* meson as a "**tag**"

Utilize the fact that the *B* mesons are actually produced through Y(4S) at *B*-factories.

 B_{tag}

4

 $B_{\rm sig}$

TAG B MESONS IN HADRONIC CHANNELS

- Belle: Fully reconstruct B mesons in one of the hadronic channels, e.g. D^(*)π, D^(*)ρ, D^(*)a₁, D^(*)D_s^(*), etc.
- BaBar: Full reconstruction with $D^{(*)}$ + many light hadrons (include hadrons up to 5 K^+/π^+ , up to 2 K_S , and up to 2 π^0)

Pro: Higher purity, good resolution, full kinematics can be examined. **Con:** Lower efficiency (can be as low as 0.1~<1%)

TAG B MESONS IN SEMILEPTONIC CHANNELS

- BaBar: Reconstruct a $B \rightarrow D^{(*)}lv$ decay with a clean $D^{(*)}$ meson plus a high momentum charged lepton.
- Belle: Not implemented for this analysis yet.

Pro: Higher efficiency **Con:** Lower purity, bad resolution, additional neutrino

KEY KINEMATICAL VARIABLES

Extra energy in calorimeter

- The most powerful variable for separating signal and background.
- Sum up neutral clusters that are not associated with B_{tag} and B_{sig} .
- Signal: zero or tiny extra energy from beam background.

Continuum

Momentum of visible B_{sig} daughter(s)

• Signal: large momentum according to the kinematic constraint of $b \rightarrow s(d)vv$.

7

• However, tight selection also reduces the sensitivity to the heaver invisible NP particles, e.g. dark matters.

MULTI-VARIANT ANALYSIS

 BaBar has adopt some multi-variant analysis tools in order to improve the sensitivity for K⁺vv and K^{*}vv.

Neutral network is used in BaBar's $B \rightarrow K^* vv$ hadronic tag analysis. These variables are included: R2, $\cos\theta^*(B_{\text{tag}}, T)$, $E_{\text{miss}} + P_{\text{miss}}, \cos\theta_{\text{miss}}, M_{K^*}, M_{Ks}, E_{\text{Extra}}$ **Bagged decision tree** is introduced in $B \rightarrow K^+ vv$ and $K^0 vv$, total 26/38 variables included for K^+/K^0 leptonic tag analysis: Signal kinematics, tag qualities, missing qualities, event qualities, e.g. $E_{\text{Extra}}, P^*_K, \cos\theta^*_K, E_{\text{miss}}, P_{\text{miss}}, ...$

RESULTS TO BE SHOWN IN THIS PRESENTATION

 $K^+ v v$ $K^0 v v$ $\pi^+ \nu \nu$ $\pi^0 v v$ $K^{*0}vv$ $K^{*+}\nu\nu$ $\rho^0 v v$ $\rho^+ \nu \nu$ $\varphi^0 v v$ invisible YVV

9

<u>References</u>

Belle Collaboration Phys. Rev. Lett. 99, 221802 (2007)

Babar Collaboration Phys. Rev. Lett. 93, 091802(2004) Phys. Rev. Lett. 94, 101801 (2005) Phys. Rev. D78, 072007 (2008) C. Vuosalo's talk at LLWI'10 (arXiv:0911.1988)

Several non-b \rightarrow *s*,*dvv* channels but with a similar analysis technique are also included.

$B \rightarrow K^+ \nu \nu \& K^0 \nu \nu$

$B \longrightarrow K^+ \nu \nu \& K^0 \nu \nu$

 BaBar semi-leptonic tag analysis with Bagged Decision Tree classifier:

$P^{*}_{K} > 1.5 \text{ GeV}/c$

The most stringent limit to date, but it's still 3x larger then the SM branching fraction.

	$\mathbf{N}_{\mathrm{obs}}$	Nb	U.L.
$K^+\nu\nu$ (high P^*_K)	19.4±4.4	17.6±2.8	1 0 V 10-5
$K^+\nu\nu$ (low P^*_K)	164±13	187±47	< 1.3 X 10 ³
Κονν	$6.1^{+4.0}_{-2.2}$	3.9±1.4	< 5.6 x 10 ⁻⁵

Ref. C. Vuosalo's talk at LLWI'10

 $B \rightarrow \pi^+ \nu \nu$

SM BF (~1.3x10⁻⁵) x 20

• Belle hadronic tag analysis:

	Nobs	N_{b}	U.L.
K*ovv	7	4.2±1.4	< 3.4 x 10 ⁻⁴
<i>K</i> *+ <i>vv</i>	4	5.6±1.8	< 1.4 X 10 ⁻⁴

$B \longrightarrow K^{*+} \nu \nu \& K^{*0} \nu \nu$

• BaBar semi-leptonic tag analysis:

	Expected Yields		Fitted Yields		Semileptonic
	N_{s}	N_b	N_{s}	N_b	U.L.
$K^{*+}(\rightarrow K^+\pi^0)\nu\nu$	3.31	697	-22 ±16 ±14	754 ±32	< 0 x 10 ⁻⁵
$K^{*+}(\rightarrow K_S\pi^+)\nu\nu$	2.54	827	$3 \pm 17 \pm 15$	869 ±34	< 9 x 10 °
$K^{*o}(\rightarrow K^{+}\pi^{-})\nu\nu$	4.07	468	$35 \pm 13 \pm 9$	476 ±25	< 18 x 10 ⁻⁵

$B \rightarrow K^{*+} \nu \nu \& K^{*0} \nu \nu$

BABAR 454M *Phys. Rev.* D78, 072007

• BaBar hadronic tag analysis with neural network:

Hadronic tags + semi-leptonic tags

	Expected Yields		Fitted Yields		Hadronic	Combined
	N_{s}	N_{b}	N_{s}	N_b	U.L.	U.L.
$K^{*+}(\rightarrow K^+\pi^0)\nu\nu$	0.87	46	$5 \pm 6 \pm 4$	39 ±9	< 01 y 10-5	$< 9 \times 10^{-5}$
$K^{*+}(\rightarrow K_S\pi^+)\nu\nu$	0.77	35	$3 \pm 7 \pm 4$	51 ± 10	< 21 X 10 °	< 0 X 10 °
$K^{*o}(\rightarrow K^+\pi^-)\nu\nu$	1.64	73	-10 ±9 ±6	77 ±13	< 11 x 10 ⁻⁵	< 12 x 10 ⁻⁵

OTHER CHANNELS

OTHER CHANNELS

- BaBar semi-leptonic tag analysis.
- SM $B \rightarrow vv$ is predicted to be strongly suppressed by the factor of $(m_v/m_B)^2$, but NP may contribute to the final state of $B \rightarrow$ invisible.
- BF($B \rightarrow \gamma v v$) is predicted to be around 10⁻⁹.

0 0.1 0.2 0.3 0.4 0.5 0.6	0.7 0.8 0.9 1 Easter (GeV)	Fitted Yields		
		N_s	Nb	U.L.
BABAR	B→invisible	17±9	19 +10 -8	< 2.2 X 10 ⁻⁴
89M	$B \rightarrow \gamma \nu \nu$	$-1.1 \stackrel{+2.4}{_{-1.9}}$	28 +6 -5	< 4.7 x 10 ⁻⁵
Phys. Rev. Lett. 93, 091802	17			

SUMMARY

- The best experimental limits from B-factories for *b*→*svv*, *dvv*, and other similar decay channels are summarized.
- Limits of 10⁻⁴~10⁻⁵ are approached based large data sets with hadronic tags and/or semi-leptonic tags.
- The current sensitivity is still below the expected SM branching fractions; but they can be probed with the upcoming super B factory experiment(s).
- Any deviations from the prediction could provide a hint to the physics beyond the SM, e.g. unparticle, dark matter, etc.

	Target Channel	Best B-factories Exp. Limits
	$B \rightarrow K^+ \nu \nu$	< 1.3 x 10 ⁻⁵
SWV	$B \rightarrow K^{0} \nu \nu$	< 5.6 x 10 ⁻⁵
$p \rightarrow q$	$B \rightarrow K^{*o} v v$	< 12 x 10 ⁻⁵
	$B \rightarrow K^{*+} \nu \nu$	< 8 x 10 ⁻⁵
$b \rightarrow dw$	$B \rightarrow \pi^+ \nu \nu$	< 1.0 x 10 ⁻⁴
	$B \rightarrow \rho^+ \nu \nu$	< 1.5 x 10 ⁻⁴
	$B \rightarrow \rho^0 \nu \nu$	< 4.4 x 10 ⁻⁴
	$B \rightarrow \pi^{0} \nu \nu$	< 2.2 X 10 ⁻⁴
others	$B \rightarrow \phi \nu \nu$	< 5.8 x 10 ⁻⁵
	$B \rightarrow \text{invisible}$	< 2.2 X 10 ⁻⁴
	$B \rightarrow \gamma \nu \nu$	< 4.7 x 10 ⁻⁵

SENSITIVITY TO LIGHT DARK MATTERS

PROSPECTS OF SUPER B • BELLE II

- Key factors for such searches for the future super *B*-factories:
 - Large statistics, since the reconstruction efficiency of B_{tag} is not high.
 - Detector acceptance: as high as possible (smaller CM boost will also help) this improves both *B*_{tag} efficiency and background suppression.
 - Lower beam background will improve the resolution, but higher luminosity is accompanied by large beam backgrounds.

PROSPECTS OF SUPER B • BELLE II

• We can easily improve the limits on the light dark matter by simply adding more data.

Extra energy scaled to 10/ab data. Assuming the same performance of Belle detector.

FINAL REMARK

- Significant analysis improvement is foreseeable even **BEFORE** Super *B*-factories era:
 - We are only reconstructing <1% of the total *B* decays at this moment a large room for improvement is still there.
 - Not all of the analyses utilize the full power of hadronic+semi-leptonic tags.
 - For example new Belle hadronic tags:

22

BACKUP SLIDES

$B \rightarrow K^+ \nu \nu \& K^0 \nu \nu$

• BaBar semi-leptonic tag analysis with random forest:

	Nobs	N_b	U.L.
$K^+ \nu \nu$	38	31±12	< 4.5 x 10 ⁻⁵