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Outline

• b → s/d νν in the SM

• Observables 

• Theory predictions 

• Prospects (given SuperB precision reach)

• b → s/d νν beyond the SM

• Sensitivity to NP 

• Interplay with other observables See later talk by David Straub

See later talk by Marco Ciuchini
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Figure 1: The tree-level charged-current process and the Z penguin FCNC process (the W box is understood) contributing to
the rare charged meson decays, shown for B+ → K(∗)+νν̄ for definiteness.

lepton width Γ� has to be accounted for to regulate the divergence when the lepton pole is inside the phase-space,
and is introduced using the usual substitution m2

� → m2
� − im�Γ�.

This contribution is formally of order G4
F , i.e. of the same weak order as the loop-level FCNC contributions (see

Fig. 1). However, the Z penguin is dominated by the quadratic SU(2)L breaking, leading to an effective dimension-six
operator, hence to an a priori larger contribution of O(G2

F α2) to the total rate. This näıve counting does not hold if
the intermediate lepton can be on-shell, since the rate is then given to an excellent approximation by

Γ(P+ → P �+ν�ν̄�)Tree =
��G2

F VijV ∗
klfP fP �

��2

256π3m3
P

2πm�(m2
P � −m2

�)
2(m2

P −m2
�)

2

Γ�
+O(Γ0

�) . (3)

With Γ� of order G2
F , the tree-level contribution is of order G2

F and could become dominant.
The relative strength of the tree and loop contributions is very different in the case of the K, D or B meson decays,

and we will now discuss them in turn.

The rare decay K+ → π+νν̄

Since the P+ → �+ν� process is helicity-suppressed, i.e. the amplitude is proportional to m�, one could think that
the τ lepton would give the largest contribution, the two mτ factors from the vertices cancelling the m2

τ of the τ
propagator. However, for off-shell τ , the helicity suppression is no longer effective: the τ momentum pτ occurs instead
of mτ , and since pτ ∼ O(mK)� mτ , the amplitude is suppressed by O(m2

K/m2
τ ):

M
�
K+ (p)→ π+ (k) ντ (pν) ν̄τ (pν̄)

�
Tree

= G2
F V ∗

usVudfKfπ
p2

τ

p2
τ −m2

τ

uν �k (1− γ5) vν̄ . (4)

This amplitude can be seen as deriving from an effective dimension-ten operator suppressed by M4
W m2

τ . Numerically,
this leads to a tiny Br(K+ → π+ντ ν̄τ )Tree ∼ 10−18 (using PDG values for the masses and decay constants [4]), to
be compared to the SD contribution from the Z penguin and W box of (8.51± 0.73) × 10−11 in the SM [6, 9]. The
interference with the short-distance contribution is larger but still negligible, Br(K+ → π+νν̄)Int. ∼ 10−15.

On the other hand, the contributions from the light leptons are not suppressed by a large mass scale. These
effects where considered in Ref. [6], along with chiral loop corrections, and amount to a small correction usually
incorporated in δPu,c in the SM prediction for K+ → π+νν̄. The tree-level exchanges are thus much smaller than the
SD contributions. In fact, even the residual up-quark contribution to the Z penguin gives a larger effect, see Ref. [6]
for details.

The rare decays D+
(s) → π+νν̄ and D+

(s) → K+νν̄

The GIM suppression is very effective for D+ → π+νν̄ and D+
s → K+νν̄, and makes their loop-level FCNC

contributions extremely small. Further, the Z penguin does not contribute to D+ → K+νν̄ and D+
s → π+νν̄. Even

including the LD contributions from vector mesons, the branching ratios for all these modes are tiny, typically below
the 10−14 level [7]. On the other hand, compared to K → πνν̄, the τ can now be on-shell and gives a large tree-level
contribution. In fact, all the other contributions are so suppressed that D+ → π+νν̄ and D+

s → π+νν̄ are used to
measure the corresponding leptonic decays D+ → τ+ντ and D+

s → τ+ντ , since Eq. (3) can be written as

Γ(D+
(s) → π+ντ ν̄τ )Tree =

1
Γτ

Γ(D+
(s) → τ+ντ )Γ

�
τ+ → π+ν̄τ

�
+O(Γ0

τ ) . (5)



Motivation

• Why b → s/d νν ?

• In SM: Z-penguin observable

• Leading short distance contribution known to ~1%: 

• Absence of photonic penguin operator which dominates B → Xs l+l- 
at low q2

• Beyond SM: b → s/d Emiss experimental signature allows to probe 
new light SM singlet particles

2. Exclusive and inclusive b → sνν̄ decays

In this section we summarize the effective Hamiltonian for b→ sνν̄ transitions and collect
all B decays probing this quark level transition. Our focus is on the decay B → K∗νν̄

which, due to its additional polarization observable, offers a richer source of information
than the two other decays B → Kνν̄ and B → Xsνν̄. Combining all decays we end up
with four observables which are functions of the invariant mass of the neutrino-antineutrino
pair.

2.1 Effective Hamiltonian

The effective Hamiltonian for b→ sνν̄ transitions is generally given by

Heff = −4 GF√
2

VtbV
∗
ts (Cν

LOν
L + Cν

ROν
R) + h.c. , (2.1)

with the operators

Oν
L =

e2

16π2
(s̄γµPLb)(ν̄γµ(1− γ5)ν) , Oν

R =
e2

16π2
(s̄γµPRb)(ν̄γµ(1− γ5)ν) . (2.2)

In the SM, Cν
R is negligible while Cν

L = −X(xt)/ sin2 θw, where xt = m2
t /m2

W and the
function X(xt) can be found in ref. [10, 11] at the next-to-leading order in QCD.

Taking into account the latest top mass measurement from the Tevatron [12], we obtain

(Cν
L)SM = −6.38± 0.06 , (2.3)

where the error is dominated by the top mass uncertainty. The corresponding operator
is not renormalized by QCD, so the only renormalization scale dependence enters X(xt)
through the running top quark mass, which is however largely cancelled through NLO QCD
corrections. The residual scale dependence is taken into account in the error in eq. (2.3).

2.2 B → K∗νν̄

The decay B → K∗νν̄ has the virtue that the angular distribution of the K∗ decay products
allows to extract information about the polarization of the K∗, just like in B → K∗µ+µ−

decays. Since the neutrinos escape the detector unmeasured, the experimental information
that can be obtained from the process B → K∗(→ Kπ)νν̄ with an on-shell K∗ is completely
described by the double differential decay distribution in terms of the two kinematical
variables sB = q2/m2

B, where q2 is the invariant mass of the neutrino-antineutrino pair, and
θ, the angle between the K∗ flight direction in the B rest frame and the K flight direction
in the Kπ rest frame. The normalized invariant mass sB ranges from 0 to the kinematical
endpoint (1 − �mK∗)2 ≈ 0.69, where here and in the following we use �mi = mi/mB, while
θ ranges from 0 to π.

The spectrum can be expressed in terms of B → K∗ transversity amplitudes A⊥,�,0,
which are given in terms of form factors and Wilson coefficients as

A⊥(sB) = 2N
√

2λ1/2(1, �m2
K∗ , sB)(Cν

L + Cν
R)

V (sB)
(1 + �mK∗)

, (2.4)
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FIGURE 2. Left: Hypothetical constraints on the ε-η-plane, assuming all four b → sνν̄ observables
have been measured with infinite precision. The error bands include the uncertainties due to the form
factors in the case of the exclusive decays and the uncertainties of the CKM elements as well as the
uncertainty in the SM Wilson coeffcient. The green band (dashed line) represents BR(B → K

∗νν̄), the
black band (solid line) BR(B → Kνν̄), the red band (dotted line) BR(B → Xsνν̄) and the orange band
(dot-dashed line) �FL�. The shaded area is ruled out experimentally at the 90% confidence level. The
red and green areas are the projected sensitivity at SuperB with 75ab

−1 integrated luminosity [11] .
Right: dependence of FL on the momentum transfer for different values of η , from top to bottom:
η = 0.5,0,−0.2,−0.4,−0.45.

with the operators

O
ν
L =

e
2

16π2 (s̄γµPLb)(ν̄γµ(1− γ5)ν) , O
ν
R =

e
2

16π2 (s̄γµPRb)(ν̄γµ(1− γ5)ν) . (3)

The quark level transition b → sνν̄ gives rise to three B decays with a total of four
observables. These are the three branching ratios and one additional polarization ratio
in the case of B → K

∗νν̄ , measuring the fraction FL of longitudinally polarized K
∗

mesons [4]. This polarization fraction can be extracted from the angular distribution
in the invariant mass of the neutrino-antineutrino pair and the angle between the K

∗

flight direction in the B rest frame and the K flight direction in the Kπ rest frame.
A major source of uncertainties of the b → sνν̄ based decays are the QCD/hadronic
ingredients entering the calculation. A well known problem in the inclusive decay is the
mb dependence, which leads to considerable uncertainties. The traditional approach is to
normalize the decay rate to the semileptonic inclusive b → c decay. On the other hand,
this introduces again uncertainties through the dependence of the semileptonic phase
space factor on the charm quark mass. Instead of this normalization, we use the b mass
evaluated in the 1S scheme [10], being known at a precision of 1%. For the B → Kνν̄ 1

decay we use the form factors given in [8], being valid in the full physical range, while
we use the already mentioned set of [1] for the decay B → K

∗νν̄ . These improvements
combined with an up to date top mass [9] lead to a significantly lower prediction for
BR(B → K

∗νν̄) and a considerably more accurate prediction for BR(B → Xsνν̄), than
the ones present in the literature.

In table 1 we give a summary of our SM predictions. The four observables accessible
in the three different b → sνν̄ decays are dependent on the two in principle complex
Wilson coefficients C

ν
L

and C
ν
R

. However, only two real combinations of these complex

1 For a recent reconsideration of this mode see [13] and [14].
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Figure 1: The tree-level charged-current process and the Z penguin FCNC process (the W box is understood) contributing to
the rare charged meson decays, shown for B+ → K(∗)+νν̄ for definiteness.
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The rare decay K+ → π+νν̄

Since the P+ → �+ν� process is helicity-suppressed, i.e. the amplitude is proportional to m�, one could think that
the τ lepton would give the largest contribution, the two mτ factors from the vertices cancelling the m2
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This amplitude can be seen as deriving from an effective dimension-ten operator suppressed by M4
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effects where considered in Ref. [6], along with chiral loop corrections, and amount to a small correction usually
incorporated in δPu,c in the SM prediction for K+ → π+νν̄. The tree-level exchanges are thus much smaller than the
SD contributions. In fact, even the residual up-quark contribution to the Z penguin gives a larger effect, see Ref. [6]
for details.

The rare decays D+
(s) → π+νν̄ and D+

(s) → K+νν̄

The GIM suppression is very effective for D+ → π+νν̄ and D+
s → K+νν̄, and makes their loop-level FCNC

contributions extremely small. Further, the Z penguin does not contribute to D+ → K+νν̄ and D+
s → π+νν̄. Even

including the LD contributions from vector mesons, the branching ratios for all these modes are tiny, typically below
the 10−14 level [7]. On the other hand, compared to K → πνν̄, the τ can now be on-shell and gives a large tree-level
contribution. In fact, all the other contributions are so suppressed that D+ → π+νν̄ and D+

s → π+νν̄ are used to
measure the corresponding leptonic decays D+ → τ+ντ and D+

s → τ+ντ , since Eq. (3) can be written as

Γ(D+
(s) → π+ντ ν̄τ )Tree =
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τ+ → π+ν̄τ
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(Cν
L)SM = −6.33± 0.06

Brod et al., 1009.0947 



Observables: Inclusive B → Xs,d νν

• Theoretically cleanest (HQE & OPE)

• QCD corrections to partonic rate known at NLO (17% reduction of Br)

• NLO (1/mb2) OPE contributions known at LO in QCD (3% reduction of Br)

• Residual perturbative & non-perturbative uncertainties estimated at 5%

Y. Grossman et al., hep-ph/9510378.
G. Buchalla al., hep-ph/9512380.
C. Bobeth et al., hep-ph/0112305.

C. W. Bauer, et al., hep-ph/0408002.
A. F. Falk,et al., hep-ph/9507284.

W. Altmannshofer et al., 0902.0160

dΓ(B → Xsνν̄)SM

dŝ
= m5

b
α2G2

F

128π5
|V ∗

tsVtb|2κ(0)|CSM
L |2S(m̂s, ŝ)



Observables: Inclusive B → Xs,d νν

• Theoretically cleanest (HQE & OPE)

• mb5 parametric uncertainty traditionally reduced via B → Xc l ν 
- introduces phase-space dependence on mc 

• recently suggested to use 1S mb mass (and OPE 
parameters) directly - introduces ~3% uncertainty in Br

• Additional parametric uncertainty due to CKM(~3% in Br)

• Leads to precise SM prediction:

Altmannshofer et al., 0902.0160
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Observables: Inclusive B → Xs,d νν
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contributions in 
charged B modesExperimentally challenging
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B(B0 → Xsνν̄)SM = (2.8± 0.2)× 10−5
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Observables: Exclusive B → K(*) νν

• B+ → K+ νν presently provides most stringent bound on NP (x3 SM)

• SuperB could reach 3σ with 10ab-1, while 50ab-1 needed for B → K* mode

• K* final state offers additional observable

• longitudinal/transverse polarization fractions

• experimentally accessible through angular distribution of K* decay products

• FL theoretically cleaner than total Br

A�(sB) = −2N
√

2(1 + �mK∗)(Cν
L − Cν

R)A1(sB) , (2.5)

A0(sB) = −N(Cν
L − Cν

R)
�mK∗

√
sB

�
(1− �m2

K∗ − sB)(1 + �mK∗)A1(sB)− λ(1, �m2
K∗ , sB)

A2(sB)
1 + �mK∗

�
,

(2.6)

where

N = VtbV
∗
ts

�
G2

F α2m3
B

3 · 210π5
sBλ1/2(1, �m2

K∗ , sB)
�1/2

(2.7)

and λ(a, b, c) = a2 + b2 + c2 − 2(ab + bc + ac).
The analysis in our paper is done with B → K∗ form factors V (q2), A1(q2) and A2(q2),

which are based on the low-q2 form factors given in [6], which are calculated from QCD sum
rules on the light cone. For the high q2 region, where the light-cone expansion breaks down,
we adopt an extrapolation following the steps of [13]. There the low-q2 form factors, which
are obtained from light-cone sum rules as well, are fitted to parametrizations accounting
for resonances in the form factors. To estimate the dependence of our analysis on the form
factors, we will confront in section 3.1 some of our results with the results using two older
sets of form factors given in the literature.

Defining the invariant mass spectrum with a longitudinally and transversely polarized
K∗, respectively, as

dΓL

dsB
= 3m2

B|A0|2 ,
dΓT

dsB
= 3m2

B

�
|A⊥|2 + |A�|2

�
, (2.8)

where the factor of 3 stems from the sum over neutrino flavours∗, the double differential
spectrum can be written as

d2Γ
dsBdcosθ

=
3
4

dΓT

dsB
sin2 θ +

3
2

dΓL

dsB
cos2 θ . (2.9)

Thus, dΓL/dsB and dΓT /dsB can be extracted by an angular analysis of the K∗ decay
products.

Instead of these two observables, one can choose the following two independent ob-
servables accessible from the double differential decay distribution: the dineutrino mass
distribution dΓ/dsB, where

dΓ
dsB

=
� 1

−1
dcosθ

d2Γ
dsBdcosθ

=
dΓL

dsB
+

dΓT

dsB
= 3m2

B

�
|A⊥|2 + |A�|2 + |A0|2

�
, (2.10)

and either of the K∗ longitudinal and transverse polarization fractions FL,T also used in
studies of B → K∗�+�− decays and defined as

FL,T =
dΓL,T /dsB

dΓ/dsB
, FL = 1− FT . (2.11)

∗
Here we assume that the Wilson coefficients do not depend on the neutrino flavour, which is an excellent

approximation in all the models we consider in sec. 3.
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Observables: Exclusive B → K(*) νν

• Main theoretical uncertainty due to normalization & shape of the relevant form 
factors

• Most precise calculations based on QCD sum rule techniques

• Normalization uncertainty estimated at ~14% in the Br.
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Figure 1: Dependence of the four b→ sνν̄ observables on the normalized neutrino invariant masses
squared sb,B within the SM. The error bands reflect the theoretical uncertainties. In the lower plots,
the black dashed lines and dotted red lines are the results based on the form factor sets B and C,
respectively. See the text for more details.

form factors of about 7% is taken into account in our uncertainty estimates. We emphasize
however that this effect of the differing normalizations is absent in FL, since overall factors
cancel in this ratio. For completeness, we give the branching ratios obtained by using the
two older sets of form factors together with our values for the parameters as in table 1:
BR(B → K∗νν̄)B = 6.7 × 10−6, BR(B → K∗νν̄)C = 8.9 × 10−6. We note that both
these values and our prediction for BR(B → K∗νν̄) are lower than the ones present in the
literature [40, 41].

The estimates of the theoretical uncertainties in table 2 and the error bands in figure 1
include the uncertainties due to the form factors in the case of the exclusive decays and
the uncertainties of the CKM elements as listed in table 1 as well as the uncertainty in the
SM Wilson coefficient as given in eq. (2.3), for all decays.

For the inclusive decay, the uncertainty is dominated by the theory error of m1S
b .

For the branching ratio prediction, we took into account the O(Λ2/m2
b) corrections and

the corresponding errors of λ1,2 as indicated in table 1. To be conservative, we assume an
additional uncertainty of the inclusive branching ratio of 5% to account for neglected higher
order corrections. For the inclusive dineutrino mass spectrum in figure 1, we omitted the
O(Λ2/m2

b) corrections, since they become singular at the kinematical endpoint. Therefore,
in order to be on the conservative side and bearring in mind that local quantities are
harder to estimate we increased the additional error on the dineutrino mass spectrum to
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The advantage of this choice of observables is twofold. First, the normalization of FL,T on
the total dineutrino spectrum strongly reduces the hadronic uncertainties associated with
the form factors as well as parametric uncertainties associated with CKM elements. Second,
in the absence of right-handed currents (Cν

R = 0), the dependence on the remaining Wilson
coefficient Cν

L drops out in FL,T , making it a perfect observable to probe such right-handed
currents.

In section 3.2, we will also consider the sB-integrated form of FL,T , which we define as

�FL,T � =
ΓL,T

Γ
, where Γ(L,T ) =

� 1−em2
K∗

0
dsB

dΓ(L,T )

dsB
. (2.12)

As a final note, we emphasize that the transverse asymmetry

AT =
−2Re(A⊥A∗

�)
|A⊥|2 + |A�|2

(2.13)

which was studied in [14] cannot be extracted from a measurement of the angular distri-
bution of B → K∗(→ Kπ)νν̄ [15] as this would require a measurement of the neutrino
polarization, which is clearly impossible. This fact was discussed in ref. [7] in the context
of B → K∗(→ Kπ)�+�−, where the corresponding asymmetry is denoted A(1)

T .

2.3 B → Kνν̄

The dineutrino invariant mass distribution for the exclusive decay B → Kνν̄ can be written
as [16]

dΓ(B → Kνν̄)
dsB

=
G2

F α2

256π5
|V ∗

tsVtb|2 m5
Bλ3/2(sB, �m2

K , 1)
�
fK
+ (sB)

�2 |Cν
L + Cν

R|2 . (2.14)

We use the B → K form factor fK
+ given in [17], which is valid in the full physical

regime 0 ≤ sB ≤ (1− �mK)2 ≈ 0.82. As argued by the authors of [17], we assume that the
maximum uncertainty is at sB = 0 and, to be conservative, we adopt this uncertainty for
the full sB range.

2.4 B → Xsνν̄

The decay B → Xsνν̄ offers the theoretically cleanest constraint on the Wilson coefficients
Cν

L and Cν
R as it does not involve any form factors. Its dineutrino invariant mass distribution

is sensitive to yet another combination of Cν
L and Cν

R,

dΓ(B → Xsνν̄)
dsb

= m5
b
α2G2

F

128π5
|V ∗

tsVtb|2κ(0)(|Cν
L|2 + |Cν

R|2)

×
�

λ(1, m̂2
s, sb)

�
3sb(1 + m̂2

s − sb − 4m̂s
Re (Cν

LCν∗
R )

|Cν
L|2 + |Cν

R|2 ) + λ(1, m̂2
s, sb)

�
, (2.15)

where we have defined m̂i = mi/mb and κ(0) = 0.83 represents the QCD correction to the
b → sνν̄ matrix element [18, 19, 20].
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Observables: Exclusive B → K(*) νν

• Main theoretical uncertainty due to normalization & shape of the relevant form 
factors

• Most precise calculations based on QCD sum rule techniques

• Normalization uncertainty estimated at ~14% in the Br.
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Figure 1: Dependence of the four b→ sνν̄ observables on the normalized neutrino invariant masses
squared sb,B within the SM. The error bands reflect the theoretical uncertainties. In the lower plots,
the black dashed lines and dotted red lines are the results based on the form factor sets B and C,
respectively. See the text for more details.

form factors of about 7% is taken into account in our uncertainty estimates. We emphasize
however that this effect of the differing normalizations is absent in FL, since overall factors
cancel in this ratio. For completeness, we give the branching ratios obtained by using the
two older sets of form factors together with our values for the parameters as in table 1:
BR(B → K∗νν̄)B = 6.7 × 10−6, BR(B → K∗νν̄)C = 8.9 × 10−6. We note that both
these values and our prediction for BR(B → K∗νν̄) are lower than the ones present in the
literature [40, 41].

The estimates of the theoretical uncertainties in table 2 and the error bands in figure 1
include the uncertainties due to the form factors in the case of the exclusive decays and
the uncertainties of the CKM elements as listed in table 1 as well as the uncertainty in the
SM Wilson coefficient as given in eq. (2.3), for all decays.

For the inclusive decay, the uncertainty is dominated by the theory error of m1S
b .

For the branching ratio prediction, we took into account the O(Λ2/m2
b) corrections and

the corresponding errors of λ1,2 as indicated in table 1. To be conservative, we assume an
additional uncertainty of the inclusive branching ratio of 5% to account for neglected higher
order corrections. For the inclusive dineutrino mass spectrum in figure 1, we omitted the
O(Λ2/m2

b) corrections, since they become singular at the kinematical endpoint. Therefore,
in order to be on the conservative side and bearring in mind that local quantities are
harder to estimate we increased the additional error on the dineutrino mass spectrum to
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The advantage of this choice of observables is twofold. First, the normalization of FL,T on
the total dineutrino spectrum strongly reduces the hadronic uncertainties associated with
the form factors as well as parametric uncertainties associated with CKM elements. Second,
in the absence of right-handed currents (Cν

R = 0), the dependence on the remaining Wilson
coefficient Cν

L drops out in FL,T , making it a perfect observable to probe such right-handed
currents.

In section 3.2, we will also consider the sB-integrated form of FL,T , which we define as

�FL,T � =
ΓL,T

Γ
, where Γ(L,T ) =

� 1−em2
K∗

0
dsB

dΓ(L,T )

dsB
. (2.12)

As a final note, we emphasize that the transverse asymmetry

AT =
−2Re(A⊥A∗

�)
|A⊥|2 + |A�|2

(2.13)

which was studied in [14] cannot be extracted from a measurement of the angular distri-
bution of B → K∗(→ Kπ)νν̄ [15] as this would require a measurement of the neutrino
polarization, which is clearly impossible. This fact was discussed in ref. [7] in the context
of B → K∗(→ Kπ)�+�−, where the corresponding asymmetry is denoted A(1)

T .

2.3 B → Kνν̄

The dineutrino invariant mass distribution for the exclusive decay B → Kνν̄ can be written
as [16]

dΓ(B → Kνν̄)
dsB

=
G2

F α2

256π5
|V ∗

tsVtb|2 m5
Bλ3/2(sB, �m2

K , 1)
�
fK
+ (sB)

�2 |Cν
L + Cν

R|2 . (2.14)

We use the B → K form factor fK
+ given in [17], which is valid in the full physical

regime 0 ≤ sB ≤ (1− �mK)2 ≈ 0.82. As argued by the authors of [17], we assume that the
maximum uncertainty is at sB = 0 and, to be conservative, we adopt this uncertainty for
the full sB range.

2.4 B → Xsνν̄

The decay B → Xsνν̄ offers the theoretically cleanest constraint on the Wilson coefficients
Cν

L and Cν
R as it does not involve any form factors. Its dineutrino invariant mass distribution

is sensitive to yet another combination of Cν
L and Cν

R,

dΓ(B → Xsνν̄)
dsb

= m5
b
α2G2

F

128π5
|V ∗

tsVtb|2κ(0)(|Cν
L|2 + |Cν

R|2)

×
�

λ(1, m̂2
s, sb)

�
3sb(1 + m̂2

s − sb − 4m̂s
Re (Cν

LCν∗
R )

|Cν
L|2 + |Cν

R|2 ) + λ(1, m̂2
s, sb)

�
, (2.15)

where we have defined m̂i = mi/mb and κ(0) = 0.83 represents the QCD correction to the
b → sνν̄ matrix element [18, 19, 20].
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LD contributions to B+ → K(*)+ νν

• Important background from B+ → τ+ ν with tau decaying into K(*)+ ν

• can be measured and subtracted

• or can be computed and added (Vub, fB,K)

• Presently, the associated uncertainty is ~3(4)% in B+ → K(*)+ νν 
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Figure 3: Comparison of the total available phase-space in B → Xνν̄ (denoted simply by the νν̄ invariant mass q2) with that
where the τ can be on-shell, as a function of the total invariant mass mX of the visible decay products X.

In principle, there could be a sizable interference between the SD and LD contributions. However, the τ resonance is
extremely narrow and often completely contained inside the Dalitz plot. When integrating over the pτ variable, the
SD part is fairly flat, with no appreciable phase shifts compared to the LD part. Therefore the resonance phase shift
around the τ pole integrates the interference contribution almost to zero (it is of the order of 10−11 for B → Kνν̄).

Because the rare B+ decay modes can be used either to measure B+ → τ+ντ or to probe FCNC transitions, one
has to decide how to deal with them on a case-by-case basis.

Experimentally, the mode B+ → π+ν�ν̄� has been observed and used to extract the B+ → τ+ντ rate. This appears
to be safe since compared to B+ → K+ν�ν̄�, the SD amplitude is Cabibbo-suppressed while the tree-level amplitude is
Cabibbo-favoured, resulting in a relative enhancement of LD with respect to SD by a factor sin−4 θc ≈ 400. However,
note that the τ pole contribution is only about 97% of the total B+ → π+ν�ν̄� rate in the SM. If the SD piece were
enhanced by NP contributions, it would show up as a discrepancy between the Br(B+ → τ+ντ ) measured using
τ+ → π+ν̄τ and other τ decay channels like τ+ → e+νeν̄τ or τ+ → µ+νµν̄τ where there is no issue of entanglement
with a SD contribution (still, the number of final state neutrinos is not measured so processes with identical charged
leptons and hadrons but different numbers of neutrinos may be difficult to disentangle experimentally).

On the other hand, the B+ → K(∗)+ν�ν̄� modes should not be used to measure the B+ → τ+ντ rate. In fact, one
would rather want to remove the τ contribution as it is obscuring the interesting short-distance physics, and potential
signals of NP. This is however difficult. Compared to the D decays discussed in the previous section, there is no way
to cut away the τ pole contribution using the invisible invariant mass q2 in B → K(∗)νν̄ decays, as can be seen from
Fig. 2. The best one can do is to cut away the low q2 region (or high K(∗) momentum) where the τ pole effect is the
strongest, but a sizeable residual τ contribution is unavoidable.

The kinematical configurations of the B+ → K(∗)+ν�ν̄� decays are actually the worst possible to disentangle the
SD and LD contributions. In Fig. 3 is shown the maximal kinematically allowed q2 together with q2

cut of Eq. (6)
for a generic B+ → Xν�ν̄� decay, as a function of the invariant mass of the X state. It is only when this invariant
mass is sufficiently large that the τ pole contribution can be cut away while still leaving a significant portion of
phase-space to probe the SD contribution. In the extreme situation where the X invariant mass is larger than mτ , the
τ can never be on-shell and its contribution is negligible. Of course, for such a large invariant mass, experimentally
reconstructing the decay is probably too difficult, while the SD contribution is significantly suppressed by the smaller
matrix elements for B → X. Therefore, the feasibility of this strategy remains to be seen, and for the time being, the
τ pole contribution has to be considered as an irreducible background when probing the FCNC transition b → sνν̄
with charged B decays.1

Finally, it should be mentioned that the τ pole contribution suffers from significant parametric uncertainties due
to our poor knowledge of Vub and fB . Fortunately, this uncertainty can be reduced in the SM by normalizing the

1 Alternatively, one could probe the b→ sνν̄ transition with B+
c → D+

s νν̄ for which the τ can never be on-shell. With a branching ratio
around 10−6 [13], the non-resonant τ contribution can be safely neglected.

C. Smith & J.F.K.
0908.1174 Formally of order GF4 - compensated by 

narrow width of intermediate tau lepton

Account for 98% in B+ → π+  νν   
12% in B+ → K+  νν  
14% in B+ → K*+νν

(Also affects inclusive B → Xs,d νν)
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Figure 1: The tree-level charged-current process and the Z penguin FCNC process (the W box is understood) contributing to
the rare charged meson decays, shown for B+ → K(∗)+νν̄ for definiteness.

lepton width Γ� has to be accounted for to regulate the divergence when the lepton pole is inside the phase-space,
and is introduced using the usual substitution m2

� → m2
� − im�Γ�.

This contribution is formally of order G4
F , i.e. of the same weak order as the loop-level FCNC contributions (see

Fig. 1). However, the Z penguin is dominated by the quadratic SU(2)L breaking, leading to an effective dimension-six
operator, hence to an a priori larger contribution of O(G2

F α2) to the total rate. This näıve counting does not hold if
the intermediate lepton can be on-shell, since the rate is then given to an excellent approximation by

Γ(P+ → P �+ν�ν̄�)Tree =
��G2

F VijV ∗
klfP fP �

��2

256π3m3
P

2πm�(m2
P � −m2

�)
2(m2

P −m2
�)

2

Γ�
+O(Γ0

�) . (3)

With Γ� of order G2
F , the tree-level contribution is of order G2

F and could become dominant.
The relative strength of the tree and loop contributions is very different in the case of the K, D or B meson decays,

and we will now discuss them in turn.

The rare decay K+ → π+νν̄

Since the P+ → �+ν� process is helicity-suppressed, i.e. the amplitude is proportional to m�, one could think that
the τ lepton would give the largest contribution, the two mτ factors from the vertices cancelling the m2

τ of the τ
propagator. However, for off-shell τ , the helicity suppression is no longer effective: the τ momentum pτ occurs instead
of mτ , and since pτ ∼ O(mK)� mτ , the amplitude is suppressed by O(m2

K/m2
τ ):

M
�
K+ (p)→ π+ (k) ντ (pν) ν̄τ (pν̄)

�
Tree

= G2
F V ∗

usVudfKfπ
p2

τ

p2
τ −m2

τ

uν �k (1− γ5) vν̄ . (4)

This amplitude can be seen as deriving from an effective dimension-ten operator suppressed by M4
W m2

τ . Numerically,
this leads to a tiny Br(K+ → π+ντ ν̄τ )Tree ∼ 10−18 (using PDG values for the masses and decay constants [4]), to
be compared to the SD contribution from the Z penguin and W box of (8.51± 0.73) × 10−11 in the SM [6, 9]. The
interference with the short-distance contribution is larger but still negligible, Br(K+ → π+νν̄)Int. ∼ 10−15.

On the other hand, the contributions from the light leptons are not suppressed by a large mass scale. These
effects where considered in Ref. [6], along with chiral loop corrections, and amount to a small correction usually
incorporated in δPu,c in the SM prediction for K+ → π+νν̄. The tree-level exchanges are thus much smaller than the
SD contributions. In fact, even the residual up-quark contribution to the Z penguin gives a larger effect, see Ref. [6]
for details.

The rare decays D+
(s) → π+νν̄ and D+

(s) → K+νν̄

The GIM suppression is very effective for D+ → π+νν̄ and D+
s → K+νν̄, and makes their loop-level FCNC

contributions extremely small. Further, the Z penguin does not contribute to D+ → K+νν̄ and D+
s → π+νν̄. Even

including the LD contributions from vector mesons, the branching ratios for all these modes are tiny, typically below
the 10−14 level [7]. On the other hand, compared to K → πνν̄, the τ can now be on-shell and gives a large tree-level
contribution. In fact, all the other contributions are so suppressed that D+ → π+νν̄ and D+

s → π+νν̄ are used to
measure the corresponding leptonic decays D+ → τ+ντ and D+

s → τ+ντ , since Eq. (3) can be written as

Γ(D+
(s) → π+ντ ν̄τ )Tree =

1
Γτ

Γ(D+
(s) → τ+ντ )Γ

�
τ+ → π+ν̄τ

�
+O(Γ0

τ ) . (5)

Using decay constant estimates from: 
V. Lubicz and C. Tarantino, 0807.4605
P. Ball, et al., hep-ph/0612081.

B(B+ → K+νν̄)LD ∝ B(B+ → τ+ν)× B(τ+ → K+ν̄)



LD contributions to B+ → K(*)+ νν

• Important background from B+ → τ+ ν with tau decaying into K(*)+ ν

• B+ → π+  νν much worse - completely dominated by B → τ+ ν

• need to measure B+ → τ+ ν and τ+ → π+ ν to better than 2% accuracy 
to have any sensitivity (or impose severe cut on Eπ)!

• Possible to reduce form factor uncertainty via normalization to B+ → π+ l ν

4

Τ pole phase�space

total phase�space

B�
�
K
�
ΝΝ

B�
�
Π�
ΝΝ

B�
�
K
��
ΝΝ

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.0

0.2

0.4

0.6

0.8

1.0

mX�mB

q m
ax
2 �m B2

Figure 3: Comparison of the total available phase-space in B → Xνν̄ (denoted simply by the νν̄ invariant mass q2) with that
where the τ can be on-shell, as a function of the total invariant mass mX of the visible decay products X.

In principle, there could be a sizable interference between the SD and LD contributions. However, the τ resonance is
extremely narrow and often completely contained inside the Dalitz plot. When integrating over the pτ variable, the
SD part is fairly flat, with no appreciable phase shifts compared to the LD part. Therefore the resonance phase shift
around the τ pole integrates the interference contribution almost to zero (it is of the order of 10−11 for B → Kνν̄).

Because the rare B+ decay modes can be used either to measure B+ → τ+ντ or to probe FCNC transitions, one
has to decide how to deal with them on a case-by-case basis.

Experimentally, the mode B+ → π+ν�ν̄� has been observed and used to extract the B+ → τ+ντ rate. This appears
to be safe since compared to B+ → K+ν�ν̄�, the SD amplitude is Cabibbo-suppressed while the tree-level amplitude is
Cabibbo-favoured, resulting in a relative enhancement of LD with respect to SD by a factor sin−4 θc ≈ 400. However,
note that the τ pole contribution is only about 97% of the total B+ → π+ν�ν̄� rate in the SM. If the SD piece were
enhanced by NP contributions, it would show up as a discrepancy between the Br(B+ → τ+ντ ) measured using
τ+ → π+ν̄τ and other τ decay channels like τ+ → e+νeν̄τ or τ+ → µ+νµν̄τ where there is no issue of entanglement
with a SD contribution (still, the number of final state neutrinos is not measured so processes with identical charged
leptons and hadrons but different numbers of neutrinos may be difficult to disentangle experimentally).

On the other hand, the B+ → K(∗)+ν�ν̄� modes should not be used to measure the B+ → τ+ντ rate. In fact, one
would rather want to remove the τ contribution as it is obscuring the interesting short-distance physics, and potential
signals of NP. This is however difficult. Compared to the D decays discussed in the previous section, there is no way
to cut away the τ pole contribution using the invisible invariant mass q2 in B → K(∗)νν̄ decays, as can be seen from
Fig. 2. The best one can do is to cut away the low q2 region (or high K(∗) momentum) where the τ pole effect is the
strongest, but a sizeable residual τ contribution is unavoidable.

The kinematical configurations of the B+ → K(∗)+ν�ν̄� decays are actually the worst possible to disentangle the
SD and LD contributions. In Fig. 3 is shown the maximal kinematically allowed q2 together with q2

cut of Eq. (6)
for a generic B+ → Xν�ν̄� decay, as a function of the invariant mass of the X state. It is only when this invariant
mass is sufficiently large that the τ pole contribution can be cut away while still leaving a significant portion of
phase-space to probe the SD contribution. In the extreme situation where the X invariant mass is larger than mτ , the
τ can never be on-shell and its contribution is negligible. Of course, for such a large invariant mass, experimentally
reconstructing the decay is probably too difficult, while the SD contribution is significantly suppressed by the smaller
matrix elements for B → X. Therefore, the feasibility of this strategy remains to be seen, and for the time being, the
τ pole contribution has to be considered as an irreducible background when probing the FCNC transition b → sνν̄
with charged B decays.1

Finally, it should be mentioned that the τ pole contribution suffers from significant parametric uncertainties due
to our poor knowledge of Vub and fB . Fortunately, this uncertainty can be reduced in the SM by normalizing the

1 Alternatively, one could probe the b→ sνν̄ transition with B+
c → D+

s νν̄ for which the τ can never be on-shell. With a branching ratio
around 10−6 [13], the non-resonant τ contribution can be safely neglected.
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12% in B+ → K+  νν  
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2

Figure 1: The tree-level charged-current process and the Z penguin FCNC process (the W box is understood) contributing to
the rare charged meson decays, shown for B+ → K(∗)+νν̄ for definiteness.

lepton width Γ� has to be accounted for to regulate the divergence when the lepton pole is inside the phase-space,
and is introduced using the usual substitution m2

� → m2
� − im�Γ�.

This contribution is formally of order G4
F , i.e. of the same weak order as the loop-level FCNC contributions (see

Fig. 1). However, the Z penguin is dominated by the quadratic SU(2)L breaking, leading to an effective dimension-six
operator, hence to an a priori larger contribution of O(G2

F α2) to the total rate. This näıve counting does not hold if
the intermediate lepton can be on-shell, since the rate is then given to an excellent approximation by
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With Γ� of order G2
F , the tree-level contribution is of order G2

F and could become dominant.
The relative strength of the tree and loop contributions is very different in the case of the K, D or B meson decays,

and we will now discuss them in turn.

The rare decay K+ → π+νν̄

Since the P+ → �+ν� process is helicity-suppressed, i.e. the amplitude is proportional to m�, one could think that
the τ lepton would give the largest contribution, the two mτ factors from the vertices cancelling the m2

τ of the τ
propagator. However, for off-shell τ , the helicity suppression is no longer effective: the τ momentum pτ occurs instead
of mτ , and since pτ ∼ O(mK)� mτ , the amplitude is suppressed by O(m2

K/m2
τ ):
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uν �k (1− γ5) vν̄ . (4)

This amplitude can be seen as deriving from an effective dimension-ten operator suppressed by M4
W m2

τ . Numerically,
this leads to a tiny Br(K+ → π+ντ ν̄τ )Tree ∼ 10−18 (using PDG values for the masses and decay constants [4]), to
be compared to the SD contribution from the Z penguin and W box of (8.51± 0.73) × 10−11 in the SM [6, 9]. The
interference with the short-distance contribution is larger but still negligible, Br(K+ → π+νν̄)Int. ∼ 10−15.

On the other hand, the contributions from the light leptons are not suppressed by a large mass scale. These
effects where considered in Ref. [6], along with chiral loop corrections, and amount to a small correction usually
incorporated in δPu,c in the SM prediction for K+ → π+νν̄. The tree-level exchanges are thus much smaller than the
SD contributions. In fact, even the residual up-quark contribution to the Z penguin gives a larger effect, see Ref. [6]
for details.

The rare decays D+
(s) → π+νν̄ and D+

(s) → K+νν̄

The GIM suppression is very effective for D+ → π+νν̄ and D+
s → K+νν̄, and makes their loop-level FCNC

contributions extremely small. Further, the Z penguin does not contribute to D+ → K+νν̄ and D+
s → π+νν̄. Even

including the LD contributions from vector mesons, the branching ratios for all these modes are tiny, typically below
the 10−14 level [7]. On the other hand, compared to K → πνν̄, the τ can now be on-shell and gives a large tree-level
contribution. In fact, all the other contributions are so suppressed that D+ → π+νν̄ and D+

s → π+νν̄ are used to
measure the corresponding leptonic decays D+ → τ+ντ and D+

s → τ+ντ , since Eq. (3) can be written as

Γ(D+
(s) → π+ντ ν̄τ )Tree =

1
Γτ

Γ(D+
(s) → τ+ντ )Γ

�
τ+ → π+ν̄τ

�
+O(Γ0

τ ) . (5)



LD contributions to B+ → K(*)+ νν

• Important background from B+ → τ+ ν with tau decaying into K(*)+ ν

• Resulting SM predictions (with τ contribution included in charged modes):
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Figure 3: Comparison of the total available phase-space in B → Xνν̄ (denoted simply by the νν̄ invariant mass q2) with that
where the τ can be on-shell, as a function of the total invariant mass mX of the visible decay products X.

In principle, there could be a sizable interference between the SD and LD contributions. However, the τ resonance is
extremely narrow and often completely contained inside the Dalitz plot. When integrating over the pτ variable, the
SD part is fairly flat, with no appreciable phase shifts compared to the LD part. Therefore the resonance phase shift
around the τ pole integrates the interference contribution almost to zero (it is of the order of 10−11 for B → Kνν̄).

Because the rare B+ decay modes can be used either to measure B+ → τ+ντ or to probe FCNC transitions, one
has to decide how to deal with them on a case-by-case basis.

Experimentally, the mode B+ → π+ν�ν̄� has been observed and used to extract the B+ → τ+ντ rate. This appears
to be safe since compared to B+ → K+ν�ν̄�, the SD amplitude is Cabibbo-suppressed while the tree-level amplitude is
Cabibbo-favoured, resulting in a relative enhancement of LD with respect to SD by a factor sin−4 θc ≈ 400. However,
note that the τ pole contribution is only about 97% of the total B+ → π+ν�ν̄� rate in the SM. If the SD piece were
enhanced by NP contributions, it would show up as a discrepancy between the Br(B+ → τ+ντ ) measured using
τ+ → π+ν̄τ and other τ decay channels like τ+ → e+νeν̄τ or τ+ → µ+νµν̄τ where there is no issue of entanglement
with a SD contribution (still, the number of final state neutrinos is not measured so processes with identical charged
leptons and hadrons but different numbers of neutrinos may be difficult to disentangle experimentally).

On the other hand, the B+ → K(∗)+ν�ν̄� modes should not be used to measure the B+ → τ+ντ rate. In fact, one
would rather want to remove the τ contribution as it is obscuring the interesting short-distance physics, and potential
signals of NP. This is however difficult. Compared to the D decays discussed in the previous section, there is no way
to cut away the τ pole contribution using the invisible invariant mass q2 in B → K(∗)νν̄ decays, as can be seen from
Fig. 2. The best one can do is to cut away the low q2 region (or high K(∗) momentum) where the τ pole effect is the
strongest, but a sizeable residual τ contribution is unavoidable.

The kinematical configurations of the B+ → K(∗)+ν�ν̄� decays are actually the worst possible to disentangle the
SD and LD contributions. In Fig. 3 is shown the maximal kinematically allowed q2 together with q2

cut of Eq. (6)
for a generic B+ → Xν�ν̄� decay, as a function of the invariant mass of the X state. It is only when this invariant
mass is sufficiently large that the τ pole contribution can be cut away while still leaving a significant portion of
phase-space to probe the SD contribution. In the extreme situation where the X invariant mass is larger than mτ , the
τ can never be on-shell and its contribution is negligible. Of course, for such a large invariant mass, experimentally
reconstructing the decay is probably too difficult, while the SD contribution is significantly suppressed by the smaller
matrix elements for B → X. Therefore, the feasibility of this strategy remains to be seen, and for the time being, the
τ pole contribution has to be considered as an irreducible background when probing the FCNC transition b → sνν̄
with charged B decays.1

Finally, it should be mentioned that the τ pole contribution suffers from significant parametric uncertainties due
to our poor knowledge of Vub and fB . Fortunately, this uncertainty can be reduced in the SM by normalizing the

1 Alternatively, one could probe the b→ sνν̄ transition with B+
c → D+

s νν̄ for which the τ can never be on-shell. With a branching ratio
around 10−6 [13], the non-resonant τ contribution can be safely neglected.

C. Smith & J.F.K.
0908.1174 Formally of order GF4 - compensated by 

narrow width of intermediate tau lepton

Account for 98% in B+ → π+  νν   
12% in B+ → K+  νν  
14% in B+ → K*+νν

(Implications for leptonic B,D decays)

2

Figure 1: The tree-level charged-current process and the Z penguin FCNC process (the W box is understood) contributing to
the rare charged meson decays, shown for B+ → K(∗)+νν̄ for definiteness.

lepton width Γ� has to be accounted for to regulate the divergence when the lepton pole is inside the phase-space,
and is introduced using the usual substitution m2

� → m2
� − im�Γ�.

This contribution is formally of order G4
F , i.e. of the same weak order as the loop-level FCNC contributions (see

Fig. 1). However, the Z penguin is dominated by the quadratic SU(2)L breaking, leading to an effective dimension-six
operator, hence to an a priori larger contribution of O(G2

F α2) to the total rate. This näıve counting does not hold if
the intermediate lepton can be on-shell, since the rate is then given to an excellent approximation by

Γ(P+ → P �+ν�ν̄�)Tree =
��G2

F VijV ∗
klfP fP �

��2

256π3m3
P

2πm�(m2
P � −m2

�)
2(m2

P −m2
�)

2

Γ�
+O(Γ0

�) . (3)

With Γ� of order G2
F , the tree-level contribution is of order G2

F and could become dominant.
The relative strength of the tree and loop contributions is very different in the case of the K, D or B meson decays,

and we will now discuss them in turn.

The rare decay K+ → π+νν̄

Since the P+ → �+ν� process is helicity-suppressed, i.e. the amplitude is proportional to m�, one could think that
the τ lepton would give the largest contribution, the two mτ factors from the vertices cancelling the m2

τ of the τ
propagator. However, for off-shell τ , the helicity suppression is no longer effective: the τ momentum pτ occurs instead
of mτ , and since pτ ∼ O(mK)� mτ , the amplitude is suppressed by O(m2

K/m2
τ ):

M
�
K+ (p)→ π+ (k) ντ (pν) ν̄τ (pν̄)

�
Tree

= G2
F V ∗

usVudfKfπ
p2

τ

p2
τ −m2

τ

uν �k (1− γ5) vν̄ . (4)

This amplitude can be seen as deriving from an effective dimension-ten operator suppressed by M4
W m2

τ . Numerically,
this leads to a tiny Br(K+ → π+ντ ν̄τ )Tree ∼ 10−18 (using PDG values for the masses and decay constants [4]), to
be compared to the SD contribution from the Z penguin and W box of (8.51± 0.73) × 10−11 in the SM [6, 9]. The
interference with the short-distance contribution is larger but still negligible, Br(K+ → π+νν̄)Int. ∼ 10−15.

On the other hand, the contributions from the light leptons are not suppressed by a large mass scale. These
effects where considered in Ref. [6], along with chiral loop corrections, and amount to a small correction usually
incorporated in δPu,c in the SM prediction for K+ → π+νν̄. The tree-level exchanges are thus much smaller than the
SD contributions. In fact, even the residual up-quark contribution to the Z penguin gives a larger effect, see Ref. [6]
for details.

The rare decays D+
(s) → π+νν̄ and D+

(s) → K+νν̄

The GIM suppression is very effective for D+ → π+νν̄ and D+
s → K+νν̄, and makes their loop-level FCNC

contributions extremely small. Further, the Z penguin does not contribute to D+ → K+νν̄ and D+
s → π+νν̄. Even

including the LD contributions from vector mesons, the branching ratios for all these modes are tiny, typically below
the 10−14 level [7]. On the other hand, compared to K → πνν̄, the τ can now be on-shell and gives a large tree-level
contribution. In fact, all the other contributions are so suppressed that D+ → π+νν̄ and D+

s → π+νν̄ are used to
measure the corresponding leptonic decays D+ → τ+ντ and D+

s → τ+ντ , since Eq. (3) can be written as

Γ(D+
(s) → π+ντ ν̄τ )Tree =

1
Γτ

Γ(D+
(s) → τ+ντ )Γ

�
τ+ → π+ν̄τ

�
+O(Γ0

τ ) . (5)

B(B+ → K+νν̄)SM = 5.1(0.8)× 10−6

B(B+ → K∗+νν̄)SM = 8.4(1.4)× 10−6

B(B0 → K∗0νν̄)SM = 6.8(1.1)× 10−6

C. Smith & J.F.K.
0908.1174

Altmannshofer et al., 
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Combining information on B→K l+l- and B→K ν ν

• In SM B→K l+l- receives additional (photonic penguin) contributions

• new form factor (fT) associated with O7 operator matrix element  

• long distance (uu, cc loop) resonance contributions to a9

• larger non-perturbative effects (Λ/mb, Λ2/mc2)

• WA contributions appear at LO in HQ expansion

• NP would affect both modes differently

M. Bartsch et al., 0909.1512

where q2 is the dilepton invariant mass squared and mB is the mass of the B meson.
The kinematical range of q2 and its relation with the kaon energy EK are given by

4m2
l ! 0 ≤ q2 ≤ (mB − mK)2 q2 = m2

B + m2
K − 2mBEK (5)

We also use the phase-space function

λK(s) = 1 + r2
K + s2 − 2rK − 2s − 2rKs (6)

The differential branching fractions for B̄ → K̄νν̄ and B̄ → K̄l+l− can then be
written as follows:

dB(B̄ → K̄νν̄)

ds
= τB

G2
Fα2m5

B

256π5
|VtsVtb|2 λ3/2

K (s)f 2
+(s) |a(Kνν)|2 (7)

dB(B̄ → K̄l+l−)

ds
= τB

G2
F α2m5

B

1536π5
|VtsVtb|2 λ3/2

K (s)f 2
+(s)

(

|a9(Kll)|2 + |a10(Kll)|2
)

(8)

Here τB is the B-meson lifetime, GF the Fermi constant, α = 1/129 the electromagnetic
coupling and Vts, Vtb are elements of the CKM matrix. A second contribution to the
amplitudes proportional to V ∗

usVub has been neglected. It is below 2% for B̄ → K̄l+l−

and much smaller still for B̄ → K̄νν̄.
The factorization coefficient a(Kνν) is simply given by a short-distance Wilson co-

efficient at the weak scale, Cν
L, [5]

a(Kνν) = Cν
L = −

1

sin2 ΘW
ηXX0(xt) (9)

where X0 is an Inami-Lim function [12] and xt = m2
t /M

2
W , with mt = m̄t(mt) the

MS mass of the top quark. The factor ηX = 0.994 accounts for the effect of O(αs)
corrections [13]. At this order the residual QCD uncertainty is at the level of 1-2% and
thus practically negligible.

The factorization coefficient a9(Kll) contains the Wilson coefficient C̃9(µ) combined
with the short-distance kernels of the B̄ → K̄l+l− matrix elements of four-quark op-
erators evaluated at µ = O(mb). The coefficient a9(Kll) multiplies the local operator
(s̄b)V −A(l̄l)V . At next-to-leading order (NLO) the result can be extracted from the ex-
pressions for the inclusive decay B̄ → Xsl+l− given in [12,14,15], where also the Wilson
coefficients and operators of the effective Hamiltonian and further details can be found.
The NLO coefficient reads

a9(Kll) = C̃9 + h(z, ŝ) (C1 + 3C2 + 3C3 + C4 + 3C5 + C6)

−
1

2
h(1, ŝ) (4C3 + 4C4 + 3C5 + C6)

−
1

2
h(0, ŝ) (C3 + 3C4) +

2

9
(3C3 + C4 + 3C5 + C6) +

2mb

mB
C7 (10)

3
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Combining information on B→K l+l- and B→K ν ν

• In SM B→K l+l- receives additional (photonic penguin) contributions

• use HQ form factor relations (hold both in soft and hard kaon limits) to 
reduce O7 operator contributions

• estimate power corrections, WA using QCD factorization at small s

• cut away narrow Ψ(1S,2S) resonances, extrapolate non-resonant part

• estimate higher (broad) resonance contributions using sum over few states

• Leads to SM prediction (‘non-resonant’): 

M. Bartsch et al., 0909.1512

Here

C̃9(µ) = P0 +
Y0(xt)

sin2 ΘW
− 4Z0(xt) + PEE0(xt) (11)

is the Wilson coefficient in the NDR scheme, P0, PE are QCD factors and E0, Y0, Z0 are
Inami-Lim functions. The function h(z, ŝ), z = mc/mb, ŝ = q2/m2

b arises from one-loop
electromagnetic penguin diagrams, which determine the matrix elements of four-quark
operators. In contrast to C̃9 the quantity a9(Kll) is scale and scheme independent
at NLO. To this order the coefficients Ci, i = 1, . . . 7 in (10) are needed only in leading
logarithmic approximation (LO). Note that here the labeling of C1 and C2 is interchanged
with respect to the convention of [12].

The coefficient a10(Kll) is

a10(Kll) = C̃10 = −
1

sin2 ΘW
Y0(xt) (12)

3.2 Form factors

The long-distance hadronic dynamics of B̄ → K̄νν̄ and B̄ → K̄l+l− is contained in the
matrix elements

〈K̄(p′)|s̄γµb|B̄(p)〉 = f+(s) (p + p′)µ + [f0(s) − f+(s)]
m2

B − m2
K

q2
qµ (13)

〈K̄(p′)|s̄σµνb|B̄(p)〉 = i
fT (s)

mB + mK
[(p + p′)µqν − qµ(p + p′)ν ] (14)

which are parametrized by the form factors f+, f0 and fT . Here q = p−p′ and s = q2/m2
B.

The term proportional to qµ in (13), and hence f0, drops out when the small lepton
masses are neglected as has been done in (7) and (8). The ratio fT /f+ is independent
of unknown hadronic quantities in the small-s region due to the relations between form
factors that hold in the limit of large kaon energy [16,17]

fT (s)

f+(s)
=

mB + mK

mB
+ O(αs, Λ/mb) (15)

Here we have kept the kinematical dependence on mK in the asymptotic result. In
contrast to f+ the form factor fT is scale and scheme dependent. This dependence is
of order αs and has been neglected in (15). Within the approximation we are using we
may take µ = mb to be the nominal scale of fT .

We remark that the same result for fT /f+ is also obtained in the opposite limit where
the final state kaon is soft, that is in the region of large s = O(1). This follows from
the asymptotic expressions for f+ and fT in heavy hadron chiral perturbation theory
[18,19,20,21,22]. From this observation we expect (15) to be a reasonable approximation
in the entire physical domain. This is indeed borne out by a detailed analysis of QCD
sum rules on the light cone [23], which cover a range in s from 0 to 0.5. Relation (15) is
further discussed in appendix A.

4
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where q2 is the dilepton invariant mass squared and mB is the mass of the B meson.
The kinematical range of q2 and its relation with the kaon energy EK are given by

4m2
l ! 0 ≤ q2 ≤ (mB − mK)2 q2 = m2

B + m2
K − 2mBEK (5)

We also use the phase-space function

λK(s) = 1 + r2
K + s2 − 2rK − 2s − 2rKs (6)

The differential branching fractions for B̄ → K̄νν̄ and B̄ → K̄l+l− can then be
written as follows:

dB(B̄ → K̄νν̄)

ds
= τB

G2
Fα2m5

B

256π5
|VtsVtb|2 λ3/2

K (s)f 2
+(s) |a(Kνν)|2 (7)

dB(B̄ → K̄l+l−)

ds
= τB

G2
F α2m5

B

1536π5
|VtsVtb|2 λ3/2

K (s)f 2
+(s)

(

|a9(Kll)|2 + |a10(Kll)|2
)

(8)

Here τB is the B-meson lifetime, GF the Fermi constant, α = 1/129 the electromagnetic
coupling and Vts, Vtb are elements of the CKM matrix. A second contribution to the
amplitudes proportional to V ∗

usVub has been neglected. It is below 2% for B̄ → K̄l+l−

and much smaller still for B̄ → K̄νν̄.
The factorization coefficient a(Kνν) is simply given by a short-distance Wilson co-

efficient at the weak scale, Cν
L, [5]

a(Kνν) = Cν
L = −

1

sin2 ΘW
ηXX0(xt) (9)

where X0 is an Inami-Lim function [12] and xt = m2
t /M

2
W , with mt = m̄t(mt) the

MS mass of the top quark. The factor ηX = 0.994 accounts for the effect of O(αs)
corrections [13]. At this order the residual QCD uncertainty is at the level of 1-2% and
thus practically negligible.

The factorization coefficient a9(Kll) contains the Wilson coefficient C̃9(µ) combined
with the short-distance kernels of the B̄ → K̄l+l− matrix elements of four-quark op-
erators evaluated at µ = O(mb). The coefficient a9(Kll) multiplies the local operator
(s̄b)V −A(l̄l)V . At next-to-leading order (NLO) the result can be extracted from the ex-
pressions for the inclusive decay B̄ → Xsl+l− given in [12,14,15], where also the Wilson
coefficients and operators of the effective Hamiltonian and further details can be found.
The NLO coefficient reads

a9(Kll) = C̃9 + h(z, ŝ) (C1 + 3C2 + 3C3 + C4 + 3C5 + C6)

−
1

2
h(1, ŝ) (4C3 + 4C4 + 3C5 + C6)

−
1

2
h(0, ŝ) (C3 + 3C4) +

2

9
(3C3 + C4 + 3C5 + C6) +

2mb

mB
C7 (10)

3
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Combining information on B→K l+l- and B→K ν ν

• Next, define ratio of rates

• form factor uncertainties largely cancel in the ratio 

• (6%) uncertainty dominated by estimate of higher-order perturbative 
corrections

• using experimental value for B(B→K l+l-) leads to precise SM prediction:

We have displayed the sensitivity to the form factor parameters, which are by far the
dominant sources of uncertainty. The form factor normalization f+(0) has the largest
impact, while the shape parameters are relatively less important.

The fully integrated, non-resonant B̄ → K̄l+l− branching fraction can be evaluated
in a similar way. This quantity corresponds essentially to the experimental result in
(3), which has been obtained by cutting out the large background from the two narrow
charmonium resonances and by extrapolating the measurements to the entire q2 range
to recover the total non-resonant rate. The precise correspondence between theoretical
and experimental results will depend on the details of the cuts and the extrapolation
procedure. We will treat the resonance region more carefully later when we study pre-
cision observables. For our present discussion we simply identify the integral over the
non-resonant spectrum in (8) with the measurement in (3). This appears justified as
the error from this identification is expected to be below the experimental uncertainty.
Adopting these considerations we compute

B(B− → K−l+l−) · 106 = 0.58 +0.17
−0.15 (f+(0)) +0.10

−0.09 (a0)
+0.00
−0.09 (b1)

+0.04
−0.03 (µ) (45)

In addition to the still dominant dependence on the form factor we have in this case a
non-negligible perturbative uncertainty, which we estimate in the standard way through
a variation of the scale µ between mb/2 and 2mb around the reference value of µ = mb.
The scale dependence is at a rather moderate level of ±6% with NLO accuracy, much
smaller than the error from the hadronic parameters. Within sizeable, mainly theoretical
uncertainties, the prediction (45) is in agreement with the measurement in (3).

Whereas the individual branching fractions (44) and (45) suffer from large hadronic
uncertainties, we expect their ratio to be under much better theoretical control. It
is obvious that the form factor normalization f+(0) cancels in this ratio. Moreover,
as illustrated in Fig. 2, the shape of the q2 spectrum is almost identical for the two
modes. This is because the additional q2-dependence from charm loops in B → Kl+l−,
compared to B → Kνν̄, is numerically only a small effect outside the region of the
narrow charmonium states. As a consequence, also the dependence on the form factor
shape will be greatly reduced in the ratio

R =
B(B− → K−νν̄)

B(B− → K−l+l−)
(46)

Numerically we find
R = 7.59 +0.01

−0.01 (a0)
+0.00
−0.02 (b1)

−0.48
+0.41 (µ) (47)

This prediction is independent of form factor uncertainties for all practical purposes.
It is limited essentially by the perturbative uncertainty at NLO of ±6%. Using the
experimental result in (3), the theory prediction (47), and assuming the validity of the
standard model, we obtain

B(B− → K−νν̄) = R · B(B− → K−l+l−)exp = (3.64 ± 0.47) · 10−6 (48)
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We have displayed the sensitivity to the form factor parameters, which are by far the
dominant sources of uncertainty. The form factor normalization f+(0) has the largest
impact, while the shape parameters are relatively less important.

The fully integrated, non-resonant B̄ → K̄l+l− branching fraction can be evaluated
in a similar way. This quantity corresponds essentially to the experimental result in
(3), which has been obtained by cutting out the large background from the two narrow
charmonium resonances and by extrapolating the measurements to the entire q2 range
to recover the total non-resonant rate. The precise correspondence between theoretical
and experimental results will depend on the details of the cuts and the extrapolation
procedure. We will treat the resonance region more carefully later when we study pre-
cision observables. For our present discussion we simply identify the integral over the
non-resonant spectrum in (8) with the measurement in (3). This appears justified as
the error from this identification is expected to be below the experimental uncertainty.
Adopting these considerations we compute

B(B− → K−l+l−) · 106 = 0.58 +0.17
−0.15 (f+(0)) +0.10

−0.09 (a0)
+0.00
−0.09 (b1)

+0.04
−0.03 (µ) (45)

In addition to the still dominant dependence on the form factor we have in this case a
non-negligible perturbative uncertainty, which we estimate in the standard way through
a variation of the scale µ between mb/2 and 2mb around the reference value of µ = mb.
The scale dependence is at a rather moderate level of ±6% with NLO accuracy, much
smaller than the error from the hadronic parameters. Within sizeable, mainly theoretical
uncertainties, the prediction (45) is in agreement with the measurement in (3).

Whereas the individual branching fractions (44) and (45) suffer from large hadronic
uncertainties, we expect their ratio to be under much better theoretical control. It
is obvious that the form factor normalization f+(0) cancels in this ratio. Moreover,
as illustrated in Fig. 2, the shape of the q2 spectrum is almost identical for the two
modes. This is because the additional q2-dependence from charm loops in B → Kl+l−,
compared to B → Kνν̄, is numerically only a small effect outside the region of the
narrow charmonium states. As a consequence, also the dependence on the form factor
shape will be greatly reduced in the ratio

R =
B(B− → K−νν̄)

B(B− → K−l+l−)
(46)

Numerically we find
R = 7.59 +0.01

−0.01 (a0)
+0.00
−0.02 (b1)

−0.48
+0.41 (µ) (47)

This prediction is independent of form factor uncertainties for all practical purposes.
It is limited essentially by the perturbative uncertainty at NLO of ±6%. Using the
experimental result in (3), the theory prediction (47), and assuming the validity of the
standard model, we obtain

B(B− → K−νν̄) = R · B(B− → K−l+l−)exp = (3.64 ± 0.47) · 10−6 (48)

15

M. Bartsch et al., 0909.1512

*
*assumes subtraction 
of LD tau contributions
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FIGURE 2. Left: Hypothetical constraints on the ε-η-plane, assuming all four b → sνν̄ observables
have been measured with infinite precision. The error bands include the uncertainties due to the form
factors in the case of the exclusive decays and the uncertainties of the CKM elements as well as the
uncertainty in the SM Wilson coeffcient. The green band (dashed line) represents BR(B → K

∗νν̄), the
black band (solid line) BR(B → Kνν̄), the red band (dotted line) BR(B → Xsνν̄) and the orange band
(dot-dashed line) �FL�. The shaded area is ruled out experimentally at the 90% confidence level. The
red and green areas are the projected sensitivity at SuperB with 75ab

−1 integrated luminosity [11] .
Right: dependence of FL on the momentum transfer for different values of η , from top to bottom:
η = 0.5,0,−0.2,−0.4,−0.45.

with the operators

O
ν
L =

e
2

16π2 (s̄γµPLb)(ν̄γµ(1− γ5)ν) , O
ν
R =

e
2

16π2 (s̄γµPRb)(ν̄γµ(1− γ5)ν) . (3)

The quark level transition b → sνν̄ gives rise to three B decays with a total of four
observables. These are the three branching ratios and one additional polarization ratio
in the case of B → K

∗νν̄ , measuring the fraction FL of longitudinally polarized K
∗

mesons [4]. This polarization fraction can be extracted from the angular distribution
in the invariant mass of the neutrino-antineutrino pair and the angle between the K

∗
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ν
L

and C
ν
R
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1 For a recent reconsideration of this mode see [13] and [14].

• Parametrize SM+NP in OPE:

• Only two independent combinations measurable with present observables

• important feature of FL: only depends on η 

• Any deviation from SM would imply presence of right-handed currents
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With the theoretical predictions for ∆Sf used in
Table V, the golden b → s penguin modes for this
NP search are B0 → η�K0 and B0 → K0
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S , to-

gether with B0 → f0
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S for which the calculation of

the SM uncertainty is however less accurate. Some
interesting three-body modes, notably B0 → φK0

Sπ
0

and B0 → π0π0K0
S , presently lack an assessment of

the theoretical uncertainty.
One can see from the table that it is possible to

discover NP if there is a deviation of 0.02 from SM
expectations of sin2β as measured in tree decays. It is
possible to observe a deviation of 5σ or more of about
0.1 in sin2βeff from b → s transitions in the golden
modes. It is worth noting however that these conclu-
sions may change depending on the models used for
computing ∆Sf . Indeed not all sources of theoreti-
cal error are under control in these estimates and in
some case even the sign of the correction can be model
dependent. On the other hand, theoretical estimates
not explicitly data-driven also rely on experimental in-
formation to some extent and and could benefit from
the SuperB large data set. This improvement has not
be taken into account in Table V. Clearly, if SuperB
will find significant deviations in these measurements,
further theoretical and phenomenological work will be
required to pin down the SM value of ∆Sf and firmly
establish the presence of NP. In the absence a theoret-
ical leap in the understanding of non-leptonic decays,
data-driven methods are expected to play a prominent
role. In this respect, the opportunity of measuring sev-
eral modes with different theoretical uncertainties, but
possibly correlated NP contributions, is a unique ad-
vantage of SuperB.

The golden b → d process is B0 → J/ψπ0 from
an experimental perspective. Yet current theoretical
understanding indicates that the measurements of Sf

for b → d modes are theoretically limited.

B. Theoretical aspects of rare decays

1. New physics in B → K(∗)νν̄ decays

Rare B decays with a νν̄ pair in the final state are in-
teresting probes of new physics, since they allow one to
transparently study Z penguin and other electroweak
penguin effects in the absence of dipole operator and
Higgs penguin contributions, which are often more im-
portant than Z contributions in b → s�+�− decays.
Moreover, since the neutrinos escape the detector un-
measured, the B → K(∗)+Emiss channel can also con-
tain contributions from other light SM-singlet particles
substituting the neutrinos in the decay.

The inclusive decay B̄ → Xsνν̄ is the theoretically
cleanest b → sνν̄ decay due to the absence of form
factor uncertainties, but is experimentally very chal-

lenging to measure. The exclusive decay B → Kνν̄
currently provides most stringent constraints on NP
with an experimental upper bound only a factor of
three above the SM prediction. The B → K∗νν̄ decay
has the advantage that, in addition to its differential
decay rate, it in principle provides access to an addi-
tional observable via the angular distribution of the
K∗ decay products K±π∓: the K∗ longitudinal po-
larization fraction FL(q2), which is theoretically very
clean since form factor uncertainties cancel to a large
extent [63].

The SM predictions and current experimental up-
per bounds are summarized in table VI. However, for
the modes involving a charged B in the initial state,
it should be noted that the bounds in the rightmost
column do not take into account an important back-
ground from B → τν decays with the τ subsequently
decaying to aK orK∗ and a (anti-)neutrino, which has
been recently pointed out in [64]. This contribution is
expected to be small at SuperB (roughly 15–30% of
the SM value for B+ → K+νν̄). With data available
at SuperB it will be possible to accurately determine
the background contribution from B(B → τν) decays
and on doing so increase the precision with which we
can extract the signal. The sensitivities quoted in the
table are conservative for this reason.

The b → sνν̄ transition is governed by the effective
Hamiltonian

Heff = −4GF√
2

VtbV
∗
ts (C

ν
LOν

L + Cν
ROν

R) + h.c. , (6)

where the operators are Oν
L,R =

e2

8π2 (s̄γµPL,Rb)(ν̄PLν), and the Cν
L,R are the corre-

sponding Wilson coefficients. In the SM, Cν
L ≈ −6.38

and the right-handed Wilson coefficient vanishes. In
models beyond the SM, both Cν

L and Cν
R can be

non-zero and complex; however, the two exclusive and
the inclusive decay rates as well as FL only depend
on two independent combinations of these Wilson
coefficients, which can be written as

� =

�
|Cν

L|2 + |Cν
R|2

|(Cν
L)

SM| , η =
−Re (Cν

LC
ν∗
R )

|Cν
L|2 + |Cν

R|2
, (7)

implying (�, η)SM = (1, 0). This allows one to express
the observables of b → sνν̄ decays in a general NP
model as

R(B → K∗νν̄) = (1 + 1.31 η)�2, (8)

R(B → Kνν̄) = (1− 2 η)�2, (9)

R(B̄ → Xsνν̄) = (1 + 0.09 η)�2, (10)

�FL�/�FL�SM =
(1 + 2 η)

(1 + 1.31 η)
, (11)

where R(X) = B(X)/B(X)SM and �FL� refers to FL

appropriately integrated over the neutrino invariant
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One can see from the table that it is possible to

discover NP if there is a deviation of 0.02 from SM
expectations of sin2β as measured in tree decays. It is
possible to observe a deviation of 5σ or more of about
0.1 in sin2βeff from b → s transitions in the golden
modes. It is worth noting however that these conclu-
sions may change depending on the models used for
computing ∆Sf . Indeed not all sources of theoreti-
cal error are under control in these estimates and in
some case even the sign of the correction can be model
dependent. On the other hand, theoretical estimates
not explicitly data-driven also rely on experimental in-
formation to some extent and and could benefit from
the SuperB large data set. This improvement has not
be taken into account in Table V. Clearly, if SuperB
will find significant deviations in these measurements,
further theoretical and phenomenological work will be
required to pin down the SM value of ∆Sf and firmly
establish the presence of NP. In the absence a theoret-
ical leap in the understanding of non-leptonic decays,
data-driven methods are expected to play a prominent
role. In this respect, the opportunity of measuring sev-
eral modes with different theoretical uncertainties, but
possibly correlated NP contributions, is a unique ad-
vantage of SuperB.

The golden b → d process is B0 → J/ψπ0 from
an experimental perspective. Yet current theoretical
understanding indicates that the measurements of Sf

for b → d modes are theoretically limited.
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Rare B decays with a νν̄ pair in the final state are in-
teresting probes of new physics, since they allow one to
transparently study Z penguin and other electroweak
penguin effects in the absence of dipole operator and
Higgs penguin contributions, which are often more im-
portant than Z contributions in b → s�+�− decays.
Moreover, since the neutrinos escape the detector un-
measured, the B → K(∗)+Emiss channel can also con-
tain contributions from other light SM-singlet particles
substituting the neutrinos in the decay.

The inclusive decay B̄ → Xsνν̄ is the theoretically
cleanest b → sνν̄ decay due to the absence of form
factor uncertainties, but is experimentally very chal-

lenging to measure. The exclusive decay B → Kνν̄
currently provides most stringent constraints on NP
with an experimental upper bound only a factor of
three above the SM prediction. The B → K∗νν̄ decay
has the advantage that, in addition to its differential
decay rate, it in principle provides access to an addi-
tional observable via the angular distribution of the
K∗ decay products K±π∓: the K∗ longitudinal po-
larization fraction FL(q2), which is theoretically very
clean since form factor uncertainties cancel to a large
extent [63].

The SM predictions and current experimental up-
per bounds are summarized in table VI. However, for
the modes involving a charged B in the initial state,
it should be noted that the bounds in the rightmost
column do not take into account an important back-
ground from B → τν decays with the τ subsequently
decaying to aK orK∗ and a (anti-)neutrino, which has
been recently pointed out in [64]. This contribution is
expected to be small at SuperB (roughly 15–30% of
the SM value for B+ → K+νν̄). With data available
at SuperB it will be possible to accurately determine
the background contribution from B(B → τν) decays
and on doing so increase the precision with which we
can extract the signal. The sensitivities quoted in the
table are conservative for this reason.
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8π2 (s̄γµPL,Rb)(ν̄PLν), and the Cν
L,R are the corre-

sponding Wilson coefficients. In the SM, Cν
L ≈ −6.38

and the right-handed Wilson coefficient vanishes. In
models beyond the SM, both Cν

L and Cν
R can be

non-zero and complex; however, the two exclusive and
the inclusive decay rates as well as FL only depend
on two independent combinations of these Wilson
coefficients, which can be written as
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, (7)

implying (�, η)SM = (1, 0). This allows one to express
the observables of b → sνν̄ decays in a general NP
model as

R(B → K∗νν̄) = (1 + 1.31 η)�2, (8)
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expectations of sin2β as measured in tree decays. It is
possible to observe a deviation of 5σ or more of about
0.1 in sin2βeff from b → s transitions in the golden
modes. It is worth noting however that these conclu-
sions may change depending on the models used for
computing ∆Sf . Indeed not all sources of theoreti-
cal error are under control in these estimates and in
some case even the sign of the correction can be model
dependent. On the other hand, theoretical estimates
not explicitly data-driven also rely on experimental in-
formation to some extent and and could benefit from
the SuperB large data set. This improvement has not
be taken into account in Table V. Clearly, if SuperB
will find significant deviations in these measurements,
further theoretical and phenomenological work will be
required to pin down the SM value of ∆Sf and firmly
establish the presence of NP. In the absence a theoret-
ical leap in the understanding of non-leptonic decays,
data-driven methods are expected to play a prominent
role. In this respect, the opportunity of measuring sev-
eral modes with different theoretical uncertainties, but
possibly correlated NP contributions, is a unique ad-
vantage of SuperB.

The golden b → d process is B0 → J/ψπ0 from
an experimental perspective. Yet current theoretical
understanding indicates that the measurements of Sf

for b → d modes are theoretically limited.

B. Theoretical aspects of rare decays

1. New physics in B → K(∗)νν̄ decays

Rare B decays with a νν̄ pair in the final state are in-
teresting probes of new physics, since they allow one to
transparently study Z penguin and other electroweak
penguin effects in the absence of dipole operator and
Higgs penguin contributions, which are often more im-
portant than Z contributions in b → s�+�− decays.
Moreover, since the neutrinos escape the detector un-
measured, the B → K(∗)+Emiss channel can also con-
tain contributions from other light SM-singlet particles
substituting the neutrinos in the decay.

The inclusive decay B̄ → Xsνν̄ is the theoretically
cleanest b → sνν̄ decay due to the absence of form
factor uncertainties, but is experimentally very chal-

lenging to measure. The exclusive decay B → Kνν̄
currently provides most stringent constraints on NP
with an experimental upper bound only a factor of
three above the SM prediction. The B → K∗νν̄ decay
has the advantage that, in addition to its differential
decay rate, it in principle provides access to an addi-
tional observable via the angular distribution of the
K∗ decay products K±π∓: the K∗ longitudinal po-
larization fraction FL(q2), which is theoretically very
clean since form factor uncertainties cancel to a large
extent [63].

The SM predictions and current experimental up-
per bounds are summarized in table VI. However, for
the modes involving a charged B in the initial state,
it should be noted that the bounds in the rightmost
column do not take into account an important back-
ground from B → τν decays with the τ subsequently
decaying to aK orK∗ and a (anti-)neutrino, which has
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and the right-handed Wilson coefficient vanishes. In
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dependent. On the other hand, theoretical estimates
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penguin effects in the absence of dipole operator and
Higgs penguin contributions, which are often more im-
portant than Z contributions in b → s�+�− decays.
Moreover, since the neutrinos escape the detector un-
measured, the B → K(∗)+Emiss channel can also con-
tain contributions from other light SM-singlet particles
substituting the neutrinos in the decay.

The inclusive decay B̄ → Xsνν̄ is the theoretically
cleanest b → sνν̄ decay due to the absence of form
factor uncertainties, but is experimentally very chal-

lenging to measure. The exclusive decay B → Kνν̄
currently provides most stringent constraints on NP
with an experimental upper bound only a factor of
three above the SM prediction. The B → K∗νν̄ decay
has the advantage that, in addition to its differential
decay rate, it in principle provides access to an addi-
tional observable via the angular distribution of the
K∗ decay products K±π∓: the K∗ longitudinal po-
larization fraction FL(q2), which is theoretically very
clean since form factor uncertainties cancel to a large
extent [63].

The SM predictions and current experimental up-
per bounds are summarized in table VI. However, for
the modes involving a charged B in the initial state,
it should be noted that the bounds in the rightmost
column do not take into account an important back-
ground from B → τν decays with the τ subsequently
decaying to aK orK∗ and a (anti-)neutrino, which has
been recently pointed out in [64]. This contribution is
expected to be small at SuperB (roughly 15–30% of
the SM value for B+ → K+νν̄). With data available
at SuperB it will be possible to accurately determine
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and on doing so increase the precision with which we
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NP in b → s/d νν

2. Exclusive and inclusive b → sνν̄ decays

In this section we summarize the effective Hamiltonian for b→ sνν̄ transitions and collect
all B decays probing this quark level transition. Our focus is on the decay B → K∗νν̄

which, due to its additional polarization observable, offers a richer source of information
than the two other decays B → Kνν̄ and B → Xsνν̄. Combining all decays we end up
with four observables which are functions of the invariant mass of the neutrino-antineutrino
pair.

2.1 Effective Hamiltonian

The effective Hamiltonian for b→ sνν̄ transitions is generally given by

Heff = −4 GF√
2

VtbV
∗
ts (Cν

LOν
L + Cν

ROν
R) + h.c. , (2.1)

with the operators

Oν
L =

e2

16π2
(s̄γµPLb)(ν̄γµ(1− γ5)ν) , Oν

R =
e2

16π2
(s̄γµPRb)(ν̄γµ(1− γ5)ν) . (2.2)

In the SM, Cν
R is negligible while Cν

L = −X(xt)/ sin2 θw, where xt = m2
t /m2

W and the
function X(xt) can be found in ref. [10, 11] at the next-to-leading order in QCD.

Taking into account the latest top mass measurement from the Tevatron [12], we obtain

(Cν
L)SM = −6.38± 0.06 , (2.3)

where the error is dominated by the top mass uncertainty. The corresponding operator
is not renormalized by QCD, so the only renormalization scale dependence enters X(xt)
through the running top quark mass, which is however largely cancelled through NLO QCD
corrections. The residual scale dependence is taken into account in the error in eq. (2.3).

2.2 B → K∗νν̄

The decay B → K∗νν̄ has the virtue that the angular distribution of the K∗ decay products
allows to extract information about the polarization of the K∗, just like in B → K∗µ+µ−

decays. Since the neutrinos escape the detector unmeasured, the experimental information
that can be obtained from the process B → K∗(→ Kπ)νν̄ with an on-shell K∗ is completely
described by the double differential decay distribution in terms of the two kinematical
variables sB = q2/m2

B, where q2 is the invariant mass of the neutrino-antineutrino pair, and
θ, the angle between the K∗ flight direction in the B rest frame and the K flight direction
in the Kπ rest frame. The normalized invariant mass sB ranges from 0 to the kinematical
endpoint (1 − �mK∗)2 ≈ 0.69, where here and in the following we use �mi = mi/mB, while
θ ranges from 0 to π.

The spectrum can be expressed in terms of B → K∗ transversity amplitudes A⊥,�,0,
which are given in terms of form factors and Wilson coefficients as

A⊥(sB) = 2N
√

2λ1/2(1, �m2
K∗ , sB)(Cν

L + Cν
R)

V (sB)
(1 + �mK∗)

, (2.4)

– 3 –
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NP in b → s/d νν

• Most conservative NP scenario: Minimal Flavor Violation

• Only significant modifications of  CL , universal in b → s/d νν modes

• Correlations with s → d νν*: 

• existing measurement of K+ → π+ νν constrains  B → K(*) νν modes 
to be smaller than ~ SM x 8

• conversely direct B+ → K+ νν bound already more constraining!

Buras & Fleischer, 
hep-ph/0104238
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NP in b → s/d νν

• Parameterize dominance of Z penguin via modified bsZ coupling

• Correlations (constraints) from other b observables (Bs → l+l-, B → Xs l+l-)

• b → s/d νν cannot be enhanced more than ~ SM x 2*

G. Buchalla, et al., 
hep-ph/0006136

C. Bird, et al.,  
Phys. Rev. Lett. 93, 201803.

Y. Grossman et al., 
Nucl. Phys. B465, 369.

*or other NP contributions need to compensate B → Xs l+l-
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Figure 6: Correlations between b → sνν̄ branching ratios and BR(B → Xs�+�−). The black
curves correspond to ZR = 0 and real ZL; The shaded areas are accessible for arbitrary ZL,R; The
blue dots represent the SM. The solid and dashed vertical lines correspond to the experimental
central value and 1σ error, respectively, of BR(B → Xs�+�−).

b̄sZ coupling but a flavour violating b̄sZ � coupling. Then, instead of eq. (3.6), one has

Lb̄sZ�
eff =

GF√
2

e

π2
m2

Z�cwswV ∗
tbVts Z �µ �

Z �
L b̄γµPLs + Z �

R b̄γµPRs
�

. (3.18)

Such couplings can arise either as effective couplings induced by loop effects of particles
charged under the U(1)�, or even at tree level in the case of generation non-universal U(1)�

charges of the quarks [58]. In this setup, the analogues to eqs. (3.7)–(3.9) read

Cν
L = (Cν

L)SM − g�νV
2

Z �
L , Cν

R = −g�νV
2

Z �
R , (3.19)

C10 = CSM
10 +

g��A
2

Z �
L , C �

10 = +
g��A
2

Z �
R , (3.20)

C9 = CSM
9 − g��V

2
Z �

L , C �
9 = −g��V

2
Z �

R , (3.21)

where the couplings g�ν,�
V,A denote the vector and axial vector couplings of the Z � to neutrinos

and charged leptons, respectively. These couplings are given by the U(1)� charges of the
respective fields and are arbitrary – apart from anomaly constraints, which can however
always be fulfilled by adjusting the quark U(1)� charges and/or adding new, exotic fermions.

The contribution to the Bs mixing amplitude, on the other hand, is independent of
the g� couplings and is simply given by eq. (3.14) after the replacements ZL,R → Z �

L,R.
Therefore, in a general Z � model, by choosing small or zero U(1)� charges for the charged
leptons it is possible in principle to completely suppress the NP contributions to b→ s�+�−

as well as Bs → �+�− decays, while it is at the same time possible to obtain a strong
enhancement of b→ sνν̄ modes and/or a sizable, potentially complex, contribution to the
Bs mixing amplitude.

– 14 –
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NP in b → s/d νν

• Parameterize dominance of Z penguin via modified bsZ coupling

• Correlations (constraints) from other observables (Bs → l+l-, B → Xs l+l-)

• b → s/d νν cannot be enhanced more than ~ SM x 2*

• EFT Example: New right handed sources of flavor violation

• particular modification of Z couplings

• correlations among b → s/d νν modes

G. Buchalla, et al., 
hep-ph/0006136

Altmannshofer et al., 
0902.0160

C. Bird, et al.,  
Phys. Rev. Lett. 93, 201803.

Y. Grossman et al., 
Nucl. Phys. B465, 369.

Figure 2: Correlation between B(B → Kνν̄) and B(B → K∗νν̄) in our effective theory. The two
bands correspond to the two values of | sin(2φd

32)| in Eqs. (100), with the uncertainty given by the
errors on the SM predictions: blue (dark gray) band for | sin(2φd

32)| = 0.95, orange (light gray)
band for | sin(2φd

32)| = 0.30. The black point denotes the SM values with the corresponding error
bars.

7.6 K → πνν̄

The SM branching ratios for the two most interesting K → πνν̄ modes can be written
as [56–59]

B(K+ → π+νν̄) = κ+

��
ImXeff

λ5

�2

+

�
ReXeff

λ5
− Pc − δPc,u

�2
�
, (142)

B(KL → π0νν̄) = κL

�
ImXeff

λ5

�2

, (143)

where
Xeff = V ∗

tsVtd(XLL +XRL) (144)

effects is not necessarily a good approximation for these channels. A detailed analysis of B → K�+�− and
B → K∗�+�− in our effective theory goes beyond the purpose of the present paper and we refer to the general
model-independent analysis in Ref. [55].

29

A. Buras et al., 1007.1993
*or other NP contributions need to compensate B → Xs l+l-

(motivated by the resolution of the Sψϕ puzzle)



NP in b → s/d νν

• In MSSM very constrained

• gluino contributions constrained by B → Xs γ

• tanβ-enhanced Higgs contributions to CR constrained by Bs → μ+μ-

• up-squark - chargino loops (δRL32) can enhance/suppress Br ~ 35%        
(no effect in FL)

• In RPV MSSM still room for large enhancements? Kim, & Wang, 0904.0318

S. Bertolini, et al., 
Nucl. Phys. B353 (1991) 591–649. 

T. Goto, et al., hep-ph/9609512

A. J. Buras, et al., hep-ph/0408142

Y. Yamada, 0709.1022

Isidori & Paradisi, hep-ph/0601094

Altmannshofer et al., 
0902.0160
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Figure 7: Dominant chargino contributions to the Wilson coefficient Cν
L in the mass insertion

approximation.

negligible. One is then left with the chargino contributions to the left handed coefficient
Cν

L that are the only ones where sizable effects are still possible. Largest effects can be
generated by a Z penguin with a (δRL

u )32 mass insertion [66, 40, 67], that is not strongly
constrained by existing data [68, 69, 66, 70].

The Z penguin diagrams giving that contribution are shown in figure 7 and the corre-
sponding analytical expression in the mass insertion approximation reads¶

(Cν
L)χ̃± � − 1

s2
w

V ∗
cs

V ∗
ts

(δRL
u )32

�
mtAt

8m̃2
f1(x2)−

mtM2

4m̃2
f2(xµ, x2)

�
, (3.22)

where M2 is the Wino mass, At is the trilinear coupling of the stop and for simplicity we
assumed that the masses of the left and right handed up-type squarks have a common
value m2

Q̃
= m2

Ũ
= m̃2. Our conventions for the up squark mass is such that (M2

Ũ
)LR
33 =

−mt(At + µ∗ cot β) and (M2
Ũ
)RL
32 = (δRL

u )32mQ̃mŨ . The loop functions f1 and f2 depend
on the mass ratios x2 = M2

2 /m̃2 and xµ = µ2/m̃2 and their analytical form is given in
the appendix. Concerning the structure of eq. (3.22), we note that among the required
two SU(2)L breaking insertions in the Z penguin, one is formally provided by the helicity
and flavour changing mass insertion (δRL

u )32 and the other one by a Higgsino-Wino mixing
(diagram a) or a flavour conserving helicity flip for the stop (diagram b), respectively.

To summarize, the contributions to Cν
R in the MSSM turn out to be very small which

implies that η � 0 and that the longitudinal polarization fraction in the B → K∗νν̄

decay, FL(sB), is always SM like. However, visible effects in Cν
L can still be generated by

chargino contributions through a large (δRL
u )32 mass insertion. For the numerical analysis

we therefore choose an MSSM scenario where exactly such chargino effects are pronounced.
In particular, as these chargino contributions are not sensitive to the value of tanβ, we
choose to work in the low tanβ regime, thereby avoiding possible large Higgs effects in
Bs → µ+µ− and the corresponding constraint from this decay. We scan the relevant
MSSM parameters in the following ranges

5 < tanβ < 10 , mQ̃, mŨ , M2 < 1TeV ,

¶In our numerical analysis, we work with mass eigenstates and include the complete set of SUSY con-

tributions as given in [63].
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NP in b → s/d Emiss

• Neutrinos not detected in experiments probing b → s/d νν

• Various NP contributions can mimic experimental signature

• Failure of the individual constraints on the ε-η plane meeting at a single point

• Kinematical distributions modified - need to be taken into account when 
interpreting experimental searches

• kinematical cuts to suppress backgrounds 

• reconstruction efficiencies depend on final state kaon/pion momenta

C. Bird, et al., hep-ph/0401195.

R. Adhikari & B. Mukhopadhyaya, 
hep-ph/9411347. 

H. K. Dreiner et al., 0905.2051.

G. Hiller, hep-ph/0404220.

H. Davoudiasl and E. Ponton, 0903.3410.

T. M. Aliev, et al., 0705.4542

very light scalar dark matter
light neutralinos
light NMSSM pseudoscalar Higgs
light radions
unparticles
...



NP in b → s/d Emiss

• Example: pair of invisible massive fermions in B→K Emiss

• the resulting final state kaon momentum distributions will differ
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INVISIBLE SPIN 1/2 FERMIONS

In dealing with invisible fermions we impose EW gauge invariance on the SM field operators, while we assume the

invisible fermions are not charged under the SM gauge group and split their contributions between vector and axial

current components. For the effective interaction Hamiltonian we then obtain

H1/2 =
c
1/2
11

Λ2
(Q̄γµQ)(ψ̄γµψ) +

c̃
1/2
11

Λ2
(Q̄γµQ)(ψ̄γµγ5ψ) +

c
1/2
12

Λ2
(D̄γµD)(ψ̄γµψ) +

c̃
1/2
12

Λ2
(D̄γµD)(ψ̄γµγ5ψ)

+
c
1/2
01

Λ3
H(D̄Q)(ψ̄ψ) +

c̃
1/2
01

Λ3
H(D̄Q)(ψ̄γ5ψ) +

c
1/2
02

Λ3
H

†
(Q̄D)(ψ̄ψ) +

c̃
1/2
02

Λ3
H

†
(Q̄D)(ψ̄γ5ψ)

+
c
1/2
21

Λ3
H(D̄σµνQ)(ψ̄σµνψ) +

c̃
1/2
21

Λ3
H(D̄σµνQ)(ψ̄σµνγ5ψ)

+
c
1/2
22

Λ3
H

†
(Q̄σµνD)(ψ̄σµνψ) +

c̃
1/2
22

Λ3
H

†
(Q̄σµνD)(ψ̄σµνγ5ψ) . (1)

INVISIBLE SPIN 3/2 FERMIONS

Spin 3/2 particles are described by Rarita-Schwinger fields (ψµ). The corresponding Lagrangian kinetic term can

be written as [? ]

Lkin = −1

2
�µνρσψ̄µγ5γν∂ρψσ −

1

4
mψψ̄µ[γµ

, γν
]ψν . (2)

In addition, these fields are also subject to the following three conditions (spin 3/2 projection, Dirac equation and

Lorenz condition)

/ψ = 0 , (/∂ + mψ) ψµ
= 0 , ∂µψµ

= 0 . (3)

Spin summation of these fields is of the form

�

s

u(p)
s
µū(p)

s
ν = − (/p + mψ)

�
gµν −

pµpν

m
2
ψ

�
− 1

3

�
γµ +

pµ

mψ

�
(/p−mψ)

�
γν +

pν

mψ

�
. (4)

Next we construct effective operators for pair production of these fields, taking into account the above stated

conditions. In particular, any insertions of /∂ψµ
can always be replaced with ψµ

by using the Dirac equation, while

insertions of ∂µψµ
yield identically zero via the Lorenz condition.

We differentiate the possible operators via the Lorenz structure of the invisible sector into scalar, vector and tensor

operators. We find the following lowest dimensional distinct scalar contributions to the effective Hamiltonian

ψ̄µψµ , ψ̄µγ5ψµ , �µνρσψ̄µγ5γν∂ρψσ , . . . (5)

The first two operators are of dimension 3, while the third is already of dimension 4 and we omit it. We obtain

H
(0)
3/2 =

c
3/2
01

Λ3
H(DQ)(ψ̄µψµ) +

c
3/2
02

Λ3
H

†
(Q̄D̄)(ψ̄µψµ) +

c̃
3/2
01

Λ3
H(DQ)(ψ̄µγ5ψµ) +

c̃
3/2
02

Λ3
H

†
(Q̄D̄)(ψ̄µγ5ψµ) . (6)

Similarly, we obtain a single distinct vectorial contribution

ψ̄ργµψρ , ψ̄ργµγ5ψρ , . . . (7)

We do not consider the operator �µνρσψ̄νγ5γρψσ since it can be reduced to the other using the Chrishom identity. We

obtain

H
(1)
3/2 =

c
3/2
11

Λ2
(Q̄γµQ)(ψ̄ργµψρ) +

c
3/2
12

Λ2
(D̄γµD̄)(ψ̄ργµψρ) +

c̃
3/2
11

Λ2
(Q̄γµQ)(ψ̄ργµγ5ψρ) +

c̃
3/2
12

Λ2
(D̄γµD̄)(ψ̄ργµγ5ψρ) .(8)

Finally we consider the following lowest dimensionality tensorial structures

ψ̄µψν
, ψ̄µγ5ψ

ν
, ψ̄ρσ

µνψρ
, ψ̄ρσ

µνγ5ψ
ρ
, �µνσρψ̄σγ5ψρ , . . . (9)
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similar conclusions for two scalars in
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Summary

• b → s νν transitions interesting probes of NP

• theoretically clean study of non-standard Z penguin effects

• 4 experimentally accessible observables

• Inclusive rate of B → Xs,d νν  most theoretically clean

• Theory errors in exclusive rates dominated by form factor normalization

• reduced in rate ratios: FL, 

(b → d νν with charged  B’s dominated by LD tau contributions)

(experimentally challenging)

We have displayed the sensitivity to the form factor parameters, which are by far the
dominant sources of uncertainty. The form factor normalization f+(0) has the largest
impact, while the shape parameters are relatively less important.

The fully integrated, non-resonant B̄ → K̄l+l− branching fraction can be evaluated
in a similar way. This quantity corresponds essentially to the experimental result in
(3), which has been obtained by cutting out the large background from the two narrow
charmonium resonances and by extrapolating the measurements to the entire q2 range
to recover the total non-resonant rate. The precise correspondence between theoretical
and experimental results will depend on the details of the cuts and the extrapolation
procedure. We will treat the resonance region more carefully later when we study pre-
cision observables. For our present discussion we simply identify the integral over the
non-resonant spectrum in (8) with the measurement in (3). This appears justified as
the error from this identification is expected to be below the experimental uncertainty.
Adopting these considerations we compute

B(B− → K−l+l−) · 106 = 0.58 +0.17
−0.15 (f+(0)) +0.10

−0.09 (a0)
+0.00
−0.09 (b1)

+0.04
−0.03 (µ) (45)

In addition to the still dominant dependence on the form factor we have in this case a
non-negligible perturbative uncertainty, which we estimate in the standard way through
a variation of the scale µ between mb/2 and 2mb around the reference value of µ = mb.
The scale dependence is at a rather moderate level of ±6% with NLO accuracy, much
smaller than the error from the hadronic parameters. Within sizeable, mainly theoretical
uncertainties, the prediction (45) is in agreement with the measurement in (3).

Whereas the individual branching fractions (44) and (45) suffer from large hadronic
uncertainties, we expect their ratio to be under much better theoretical control. It
is obvious that the form factor normalization f+(0) cancels in this ratio. Moreover,
as illustrated in Fig. 2, the shape of the q2 spectrum is almost identical for the two
modes. This is because the additional q2-dependence from charm loops in B → Kl+l−,
compared to B → Kνν̄, is numerically only a small effect outside the region of the
narrow charmonium states. As a consequence, also the dependence on the form factor
shape will be greatly reduced in the ratio

R =
B(B− → K−νν̄)

B(B− → K−l+l−)
(46)

Numerically we find
R = 7.59 +0.01

−0.01 (a0)
+0.00
−0.02 (b1)

−0.48
+0.41 (µ) (47)

This prediction is independent of form factor uncertainties for all practical purposes.
It is limited essentially by the perturbative uncertainty at NLO of ±6%. Using the
experimental result in (3), the theory prediction (47), and assuming the validity of the
standard model, we obtain

B(B− → K−νν̄) = R · B(B− → K−l+l−)exp = (3.64 ± 0.47) · 10−6 (48)
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Summary

• b → s νν transitions interesting probes of NP

• measurable NP effects in b → s/d νν can be parameterized in terms of two 
real parameters, ε and η, 

• generally correlated with other observables

• b → s/d Emiss can receive contributions from particles other than neutrinos in 
final state

• strong modifications of the invariant mass spectra possible

even in MFV, NP can still saturate present direct bounds

nontrivial interpretation due to experimental cuts and 
momentum-dependent kaon reconstruction efficiencies

in more concrete scenarios much more constrained


