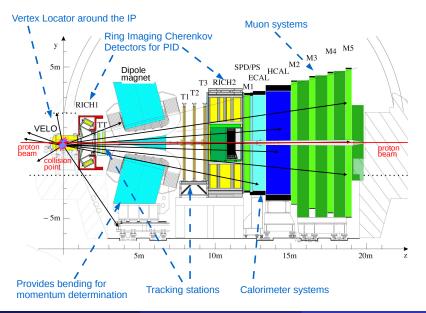
$B \rightarrow X_s \gamma$ and $B \rightarrow X_s I^+ I^-$ decays at LHCb

Fatima Soomro

Imperial College London

September 7, 2010


1 Introduction: LHCb and rare decays

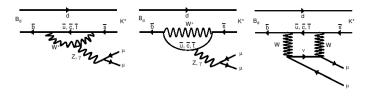
$B \to X_s \gamma$

- Introduction, measurements
- Photon polarization using $B \to f^{CP} \gamma$
- Experimental prerequisites
- Photon polarization using $B_d o K^* e^+ e^-$
- Outlook
- $B \to X_s l^+ l^-$
 - Introduction and status
 - Experimental prerequisites
 - Outlook

LHCb detector overview

Fatima Soomro (Imperial College London)

CKM 2010, Warwick

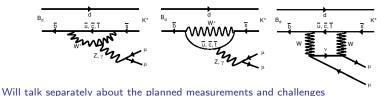

HCp

LHCb Rare decays physics

A diverse and interesting program, but this talk will focus on

 $B o X_{s} \gamma$ and $B o X_{s} I^{+} I^{-}$

- Are flavour changing neutral currents
- In the SM, are allowed through loop diagram only
- So are sensitive to NP contribution, and can test the
 - Mass scale of NP
 - Oupling strength of NP particles
 - **③** V-A structure of NP particles



LHCb Rare decays physics

A diverse and interesting program, but this talk will focus on

 $B o X_{s} \gamma$ and $B o X_{s} I^{+} I^{-}$

- Are flavour changing neutral currents
- In the SM, are allowed through loop diagram only
- So are sensitive to NP contribution, and can test the
 - Mass scale of NP
 - Oupling strength of NP particles
 - **③** V-A structure of NP particles

r<u>uc</u>p

Introduction: LHCb and rare decays

 $\bigcirc B \to X_s \gamma$

• Introduction, measurements

- Photon polarization using $B \to f^{CP} \gamma$
- Experimental prerequisites
- Photon polarization using $B_d \to K^* e^+ e^-$

Outlook

- $B \to X_s l^+ l^-$
 - Introduction and status
 - Experimental prerequisites
 - Outlook

 \star $BR_{incl}B \rightarrow X\gamma$ in agreement with theory

- $B_{incl,exp}(B \to X_s \gamma) = 3.56 \pm 0.26 \times 10^{-4}$ [1] [2]
- $B_{incl,th}(B \to X_s \gamma) = 3.15 \pm 0.23 \times 10^{-4}$ [3]

which can put limits on NP models

Also note that the BR is not sensitive to the coupling structure of NP

* Measure direct CP asymmetry

(inclusive and exclusive measurement measurements by Belle and Babar [11][10])

 \star Can also probe the structure of NP operators [5] by measuring the polarization of the photon in $B\to X_{\rm s}\gamma$

ightarrow Photon emitted in $ar{B}
ightarrow X_{s} \gamma$ is predominantly left handed because

 $\frac{F_R}{F_L} \approx \frac{m_s}{m_b}$

where F_L and F_R are amplitudes for left and right polarized photons in a b decay (\overline{B} meson)

 \rightarrow Ratio of "wrong" helicity photons in predicted to be \sim 0.4% in the SM \rightarrow Can be up to 10% in some NP models \rightarrow e.g.LR symmetric model and unconstrained MSSM, this ratio can be

large without affecting the BR

How to measure the photon polarization

Several methods proposed in literature [9]

- CP asymmetry in $B \to f^{CP} \gamma$ (f^{CP} is a CP eigenstate) Time dependent decay rate
- Angular distribution in $B \to K^*(\to K\pi)e^+e^-$ Angle between the $K\pi$ and e^+e^- plane
- Forward backward asymmetry in $\Lambda_b \to \Lambda(\to p\pi)\gamma$ Forward backward asymmetry of the proton flight direction wrt the Λ_b , in the Λ rest frame
- Angular distribution in $B \to K \pi \pi \gamma$ Only K(1400) has sensitivity, need to separate from other resonances

How to measure the photon polarization

Several methods proposed in literature [9]

- **CP** asymmetry in $B \rightarrow f^{CP}\gamma$ (f^{CP} is a CP eigenstate) Time dependent decay rate
- Angular distribution in $B \to K^*(\to K\pi)e^+e^-$

Angle between the $K\pi$ and e^+e^- plane

- Forward backward asymmetry in $\Lambda_b \to \Lambda(\to p\pi)\gamma$ Forward backward asymmetry of the proton flight direction wrt the Λ_b , in the Λ rest frame
- Angular distribution in $B \rightarrow K\pi\pi\gamma$ Only K(1400) has sensitivity, need to separate from other resonances Initially use the first two approaches at LHCb

Introduction: LHCb and rare decays

 $B \to X_s \gamma$

Introduction, measurements

• Photon polarization using $B \to f^{CP} \gamma$

- Experimental prerequisites
- Photon polarization using $B_d \rightarrow K^* e^+ e^-$

Outlook

- $B \to X_s l^+ l^-$
 - Introduction and status
 - Experimental prerequisites
 - Outlook

1. Measuring photon polarization in $B ightarrow f^{CP} \gamma$

In decays of type $B
ightarrow f^{CP} \gamma$, the time dependent decay rate

$$\begin{split} \Gamma_{\mathrm{B}(\bar{\mathrm{B}}) \to f^{\mathcal{CP}} \gamma}\left(t\right) &= |\mathrm{A}|^2 \, \mathrm{e}^{-\Gamma t} \left(\cosh \frac{\Delta \Gamma t}{2} \ - \ \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma t}{2} \\ &+ \left(-\right) \mathcal{C} \cos \Delta \mathrm{mt} \ - \left(+\right) \mathcal{S} \sin \Delta \mathrm{mt}\right) \end{split}$$

contains the parameters

$$\mathcal{S} \approx \sin 2\psi \sin \varphi_{\mathrm{s}}$$
 and $\mathcal{A}^{\Delta} \approx \sin 2\psi \cos \varphi_{\mathrm{s}}$

1. Measuring photon polarization in $B \rightarrow f^{CP} \gamma$

In decays of type $B
ightarrow f^{CP} \gamma$, the time dependent decay rate

$$\begin{split} \Gamma_{\mathrm{B}(\bar{\mathrm{B}}) \to f^{\mathcal{CP}} \gamma}\left(t\right) &= |\mathrm{A}|^2 \, \mathrm{e}^{-\Gamma t} \left(\cosh \frac{\Delta \Gamma t}{2} \ - \ \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma t}{2} \\ &+ (-) \, \mathcal{C} \cos \Delta \mathrm{mt} \ - (+) \, \mathcal{S} \sin \Delta \mathrm{mt} \right) \end{split}$$

contains the parameters (possibility of an untagged analysis due to large $\Delta\Gamma$ is B_s [15])

$$\mathcal{S} \approx \sin 2\psi \sin \varphi_{\mathrm{s}}$$
 and $\mathcal{A}^{\Delta} \approx \sin 2\psi \cos \varphi_{\mathrm{s}}$

which contain the "wrong" photon polarization fraction

$$\tan\psi\equiv\frac{\mathcal{A}\left(\bar{\mathrm{B}}_{\mathrm{s}}\rightarrow\textit{f}^{\mathcal{CP}}\gamma_{\mathrm{R}}\right)}{\mathcal{A}\left(\bar{\mathrm{B}}_{\mathrm{s}}\rightarrow\textit{f}^{\mathcal{CP}}\gamma_{\mathrm{L}}\right)}$$

Current sensitivity and LHCb prospects

Current status

Results from B factories using $B \to K^* (\to K_s^0 \pi^0) \gamma$ [8] $sin2\psi = 0.28 \pm 0.44$

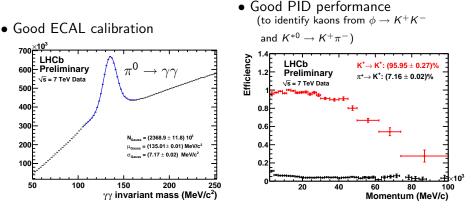
LHCb reach

At LHC*b*, we will use $B_s \rightarrow \phi \gamma$ for this measurement. In a nominal LHC*b* year, 11k events with a B/S of <0.55 expected

 \rightarrow With a tagged analysis,

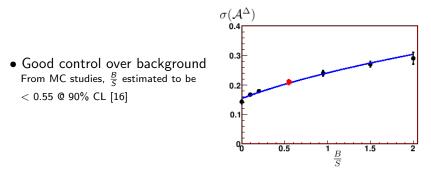
 $\sigma_{sin2\psi} \sim 0.2$

 \rightarrow And with an untagged analysis,


 $\sigma_{sin2\psi} \sim 0.22$

 \Rightarrow focus on the untagged analysis of $B_s \rightarrow \phi \gamma$, to measure \mathcal{A}^{Δ}

Experimental requirements Detector


• Trigger:dedicated trigger lines making use of the high PT photons

 \Rightarrow These results look encouraging, further improvements expected with more data

Experimental requirements Analysis

• However, key systematics are the proper time reconstruction bias and the proper time acceptance

The proper time acceptance function and any bias in its reconstruction need to be understood to a few percent level

The observable is extremely sensitive to these because:

$$\begin{split} \Gamma_{\mathrm{B}(\bar{\mathrm{B}}) \to f^{\mathcal{CP}} \gamma}\left(t\right) &= |\mathrm{A}|^2 \, \mathrm{e}^{-\Gamma t} \big(\cosh \frac{\Delta \Gamma t}{2} \ - \ \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma t}{2} \\ &+ (-) \, \mathcal{C} \cos \Delta \mathrm{mt} \ - (+) \, \mathcal{S} \sin \Delta \mathrm{mt} \big) \end{split}$$

For small \mathcal{A}^{Δ} , one can write

$$\Gamma_{\mathrm{B}(\bar{\mathrm{B}}) \to \mathit{f^{\mathcal{CP}}\gamma}}\left(\mathrm{t}\right) \approx |\mathrm{A}|^2 \, \mathrm{e}^{-\Gamma \mathrm{t}} \left(1 - \frac{\mathcal{A}^{\Delta} \Delta \Gamma \mathrm{t}}{2} + \frac{1}{2} \left(\frac{\Delta \Gamma \mathrm{t}}{2}\right)^2 + ...\right) \approx |\mathrm{A}|^2 \, \mathrm{e}^{-\Gamma_{\boldsymbol{B}_{\boldsymbol{s}}} \to \phi \gamma \, \mathrm{t}}$$

where $\Gamma_{B_s \to \phi \gamma} = \Gamma + \frac{\mathcal{A}^{\Delta} \Delta \Gamma}{2}$

The proper time acceptance function and any bias in its reconstruction need to be understood to a few percent level

The observable is extremely sensitive to these because:

$$\begin{split} \Gamma_{\mathrm{B}(\bar{\mathrm{B}}) \to f^{\mathcal{CP}} \gamma}\left(t\right) &= |\mathrm{A}|^2 \, \mathrm{e}^{-\Gamma t} \big(\cosh \frac{\Delta \Gamma t}{2} \ - \ \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma t}{2} \\ &+ (-) \, \mathcal{C} \cos \Delta \mathrm{mt} \ - (+) \, \mathcal{S} \sin \Delta \mathrm{mt} \big) \end{split}$$

For small \mathcal{A}^{Δ} , one can write

$$\Gamma_{\mathrm{B}(\bar{\mathrm{B}}) \to f^{\mathcal{CP}}\gamma}\left(t\right) \approx |\mathrm{A}|^2 \, \mathrm{e}^{-\Gamma t}\left(1 - \frac{\mathcal{A}^{\Delta} \Delta \Gamma t}{2} + \frac{1}{2} \big(\frac{\Delta \Gamma t}{2}\big)^2 + ...\right) \approx |\mathrm{A}|^2 \, \mathrm{e}^{-\Gamma_{\mathcal{B}_{s} \to \phi\gamma} t}$$

where $\Gamma_{B_s \to \phi \gamma} = \Gamma + \frac{\mathcal{A}^{\Delta} \Delta \Gamma}{2}$

The measurement of \mathcal{A}^{Δ} is actually a measurement of the difference in the life time in $B_s \to \phi \gamma$ and another channel, e.g. $B_s \to J/\psi \phi$

 \Rightarrow Show an MC study (on Monte Carlo) to understand proper time reconstruction bias

LHCb Monte Carlo

Proper time resolution model fitted with double gaussian

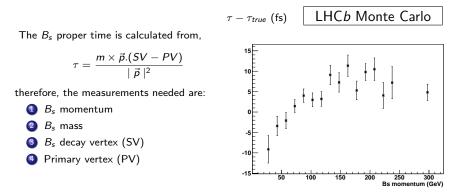
Fraction of core gaussian = 71% Mean of core gaussian = 4.2 ± 0.5 fs Width of core gaussian = 52 ± 1 fs Mean of wide gaussian = 5.4 ± 1 fs Width of wide gaussian = 109 ± 2 fs

ightarrow A 5 fs bias in proper time results in a systematic uncertainty about 30% of the statistical one

The B_s proper time is calculated from,

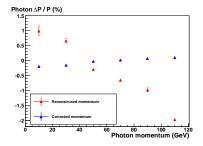
$$\tau = \frac{m \times \vec{p}.(SV - PV)}{\mid \vec{p} \mid^2}$$

therefore, the measurements needed are:



B_s mass

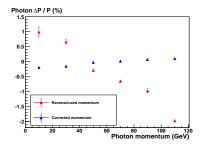
- B_s decay vertex (SV)
- Primary vertex (PV)


Sources of proper time bias

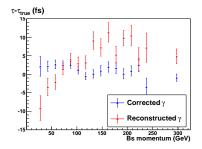
- The photon and phi momenta are correlated to the B_s momentum
- The reconstruction of the momenta and vertex (of the phi) has momentum dependance
- \rightarrow A potential bias in the photon momentum reconstruction is the biggest effect

Correction of the Photon momentum (MC study)

Constrain the B_s mass and calculate the "correct" photon momentum



 \rightarrow The correction reduces the momentum dependence of the bias by almost an order of magnitude



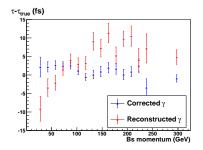
Correction of the Photon momentum (MC study)

Constrain the B_s mass and calculate the "correct" photon momentum

Using this "correct" photon to reconstruct the B_s candidate

 \rightarrow The correction reduces the momentum dependence of the bias by almost an order of magnitude

 \rightarrow The proper time reconstruction is now much flatter in the B_s momentum



 \rightarrow A bias of order 1% in photon momentum $\Rightarrow \sim 15 \text{ fs in the } B_s \text{ proper time}$ $\Rightarrow \sigma_{\mathcal{A}^{\Delta}, syst} = \sigma_{\mathcal{A}^{\Delta}, stat}$

 $\begin{array}{l} \rightarrow \text{Can be corrected to order } 0.2\% \\ \Rightarrow \sim 5 \text{ fs in the } B_s \text{ proper time} \\ \Rightarrow \sigma_{\mathcal{A}^{\Delta}, syst} = 1/3 \, \sigma_{\mathcal{A}^{\Delta}, stat} \end{array}$

The proper time reconstruction and acceptance function are expected to be understood to desirable levels using control channels $B_d \rightarrow K^* \gamma$ and $B_s \rightarrow J/\psi \phi$

Using this "correct" photon to reconstruct the B_s candidate

 \rightarrow The proper time reconstruction is now much flatter in the $B_{\rm s}$ momentum

Introduction: LHCb and rare decays

$B \to X_s \gamma$

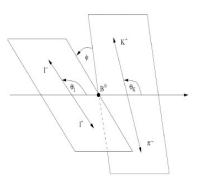
- Introduction, measurements
- Photon polarization using $B \to f^{CP} \gamma$
- Experimental prerequisites
- Photon polarization using $B_d o K^* e^+ e^-$

Outlook

- $B \to X_s l^+ l^-$
 - Introduction and status
 - Experimental prerequisites
 - Outlook

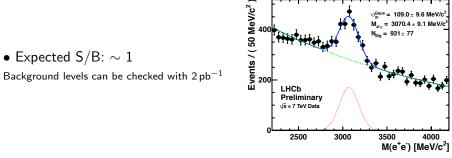
- The observable $A_T^{(2)}$ is constructed from amplitudes A_{\perp} and A_{\parallel}
- Transforming to helicity amplitudes, and for small (real) values of $\frac{A_R}{A_I}$

(where A_R and A_L , are the amplitudes for the "right handed" and "left handed" polarization of the photon)


$$A_T^{(2)} \sim -2 rac{A_R}{A_L}$$

 $\rightarrow A_T^{(2)}$ will be extracted from a 2D fit, integrating over θ_l , or a full 3D fit.

 \rightarrow It has been shown that the sensitivity on $A_T^{(2)}$ is the same for both fits


 \rightarrow Also, the analysis is not very sensitive to the angular acceptance, hence, systematic uncertainties are expected to be small [12]

Sensitivity and expected performance of detector

• Expected yield: 200-250 events per 2 fb⁻¹

From the $B_d \to K^* e^+ e^-$ analysis, for 2 fb⁻¹, expect [12]

$$\sigma_{A_T^{(2)}} \sim 0.2 \Rightarrow \sigma_{A_R \over A_L} \sim 0.1$$
 to 0.12 (statistical only)

- $\bullet\,$ Competitive measurement of photon polarization with $2\,{\rm fb}^{-1}$
- Key systematics in $B_s \to \phi \gamma$ are being understood, and studies suggest they can be controlled at desired levels \to Further input from control channels $B_s \to J/\psi \phi$ and $B_d \to K^* \gamma$
- With B_d → K^{*}e⁺e⁻ analysis, expect to get a factor 2 better statistical precision with 2 fb⁻¹. Systematic studies ongoing

With only 100 pb⁻¹, a competitive measurement of the Direct CP asymmetry in $B_d \rightarrow K^* \gamma$ can be made at LHCb [14]

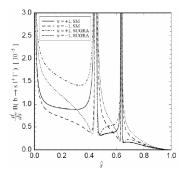
Introduction: LHCb and rare decays

$B \to X_s \gamma$

- Introduction, measurements
- Photon polarization using $B \to f^{CP} \gamma$
- Experimental prerequisites
- Photon polarization using $B_d \to K^* e^+ e^-$

Outlook

$B \to X_s l^+ l^-$


Introduction and status

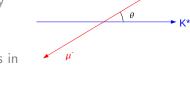
- Experimental prerequisites
- Outlook

Motivation to measure $B \rightarrow X_s l^+ l^-$

- b to s II are interesting because of the BR vs q² predictions (enhanced by factor 2 in some NP models)
 Figure from [6]
- Inclusive decays are hard to access in hadron environment
- Exclusive decays, suffer from hadronic uncertainties

Motivation to measure $B \rightarrow X_s l^+ l^-$

- b to s II are interesting because of the BR vs q^2 predictions (enhanced by factor 2 in some NP models) Figure from [6]
- Inclusive decays are hard to access in hadron environment

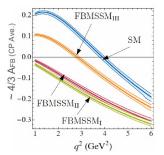


 Exclusive decays, hadronic un certainties

 \rightarrow Use observables where these uncertainties cancel, like the forward backward asymmetry A_{FB}

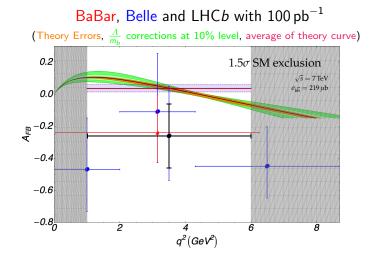
defined as the difference between the number of positive and negative leptons going in the same direction as the K* in the dilepton restframe

 \Rightarrow will talk about the measurement of A_{FB} with $B_d \rightarrow K^* \mu \mu$, at LHCb



• Measurement of the shape of the asymmetry can help to distinguish between different new physics models(Figure from [7])

• The zero crossing point (s_0) of the asymmetry corresponds to the ratio of wilson coefficients


$$s_0 = \frac{-2C_7^{Eff}}{C_9^{Eff}(s_0)}$$

• Theoretically clean measurement

Current status and LHCb prospects¹

¹assuming the central from Belle, error on LHCb point is purely statistical

CKM 2010, Warwick

Current status and LHCb prospects²

BaBar, Belle and LHCb with 2 fb^{-1} (Theory Errors, $\frac{\Lambda}{m_b}$ corrections at 10% level, average of theory curve) 0.2 5.4σ SM exclusion $\sqrt{s} = 7 \,\text{TeV}$ $\sigma_{\rm bb} = 219 \,\mu b$ 0.0 е Ч -0.4-0.6 -0.8 2 6 8 4 $q^2(GeV^2)$

²assuming the central from Belle, error on LHCb point is purely statistical

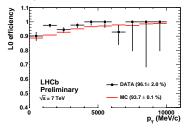
CKM 2010, Warwick

Introduction: LHCb and rare decays

$2 \quad B \to X_s \gamma$

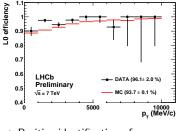
- Introduction, measurements
- Photon polarization using $B \to f^{CP} \gamma$
- Experimental prerequisites
- Photon polarization using $B_d \to K^* e^+ e^-$

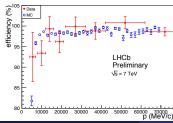
Outlook


- $B \to X_s l^+ l^-$
 - Introduction and status
 - Experimental prerequisites
 - Outlook

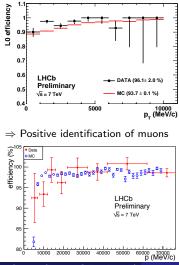
Experimental requirements Detector

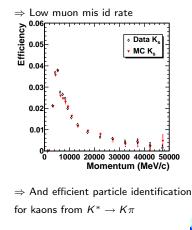
on high PT muons




Experimental requirements Detector

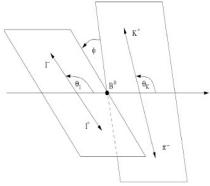
on high PT muons


 \Rightarrow Positive identification of muons

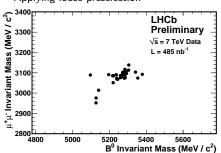


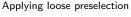
Experimental requirements Detector

on high PT muons



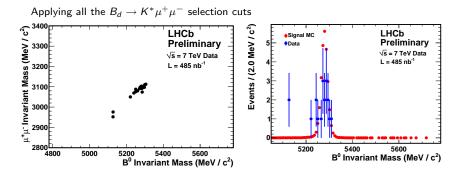
 \Rightarrow Measurement of A_{FB} is a counting experiment


 \Rightarrow With angular analysis, extract A_{FB} and other variables

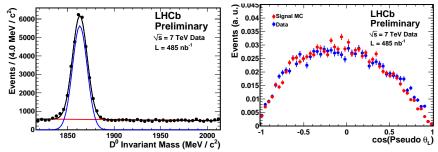


This requires correction of angular distributions for bias introduced by the detector acceptance, trigger and selection requirements [14]

Use $B_d \to K^* J/\psi$ and $D \to K \pi \pi \pi$ to understand many of these aspects.


This decay has the same final state particles as $B_d \to K^* \mu^+ \mu^-$, and is an excellent way to test the trigger and selection criteria

This decay has the same final state particles as $B_d \rightarrow K^* \mu^+ \mu^-$, and is an excellent way to test the trigger and selection criteria



Clear signal of $B_d \to K^* J/\psi$ with $B_d \to K^* \mu^+ \mu^-$ cuts

⇒The data and MC are normalized to the measured $\sigma_{b\bar{b}}$ ⇒Efficiency estimates from MC are reliable Has the same topology and is much more abundent.

Test the trigger and selection criteria, and look at angular distributions

Applying all the $B_d \rightarrow K^* \mu^+ \mu^-$ selection cuts (barring the μ ID)

 $B_d \to K^* \mu^+ \mu^-$ like angular distributions made with final state particles \Rightarrow Good agreement between data and MC

 $\Rightarrow \! \mathsf{The}$ angular biases predicted by MC are reliable

- A competitive measurement of A_{FB} with early data at LHCb
- Further improvements with the understanding of the detector and more data will enable an angular fit to extract complete information from $B_d \rightarrow K^* \mu^+ \mu^-$
- Work started with the data collected with year, to validate the selection chain for $B_d \rightarrow K^* \mu^+ \mu^-$, preliminary results look promising

LHCb is well positioned to make measurements with relatively small amounts of intergated luminosity ($\sim 100\,{\rm pb}^{-1})$

At that stage, the sensitivities of the measurements in $B \to X_s I^+ I^-$ and $B \to X_s \gamma$ are projected to be comparable to existing measurements

With data sets corresponding to 2 fb^{-1} , LHC*b* has the potential to discover NP or at least exclude SM at 5σ level

References

- [1] C.Amsler et al. Phys, Lett. B 667, 1, 2008.
- [2] [2009] The Belle Collaboration Phys. Rev. Lett. 103:241801
- [3] [2007] M.Misiak et al.
 Phys, Rev. Lett. 98, 022002
- [4] [2003] John Ellis, Keith A.Olive, Yudi Santoso and Vassilis C.Spanos Phys. Lett. B 573:162-172
- [5] [1997] D.Atwood, M.Gronau and A.Soni Phys. Rev. Lett 79, 185
- [6] [1997] Toru Goto, Yasuhiro Okada, Yasuhiro Shimizu, Minoru Tanaka Phys.Rev. D 55, 4273-4289. (Erratum-ibid. D66 (2002) 019901)
- [7] [2009] Wolfgang Altmannshofer, Patricia Ball, Aoife Bharucha, Andrzej J. Buras, David M. Straub, Michael Wick JHEP 0901:019

- [8] [2009] Heavy Flavour Averaging Group, arXiv:0808.1297v3[hep-ex]
- [9] [2004] Michael Gronau, P and CP violation in B physics Pramana 62:255-268
- [10] [2004] The Babar collaboration Phys. Rev. Lett. 93, 021804
- [11] [2004] The Belle Collaboration Phys. Rev. Lett. 93, 031803
- [12] [2009] Jacques Lefrancois, Marie-Helene Schune LHCb-PUB-2009-008
- [13] [2005] F. Kruger and J. Matias Phys. Rev. D71 (2005) 094009
- [14] [2009] The LHC*b* collaboration LHCb-PUB-2009-029
- [15] [2008] Franz Muheim and Yuehong Xie arXiv:0802.0876v1[hep-ph]

[16] [2007] Lesya Shchutska, Andrey Golutvin and Ivan Belyaev LHCb-PHYS-2007-030

Backup slides

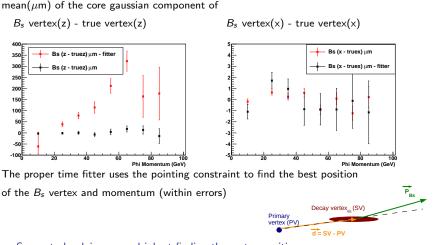
Motivation to measure $B \rightarrow X_s \gamma$

 \star $BR_{incl}B \rightarrow X\gamma$ in agreement with theory

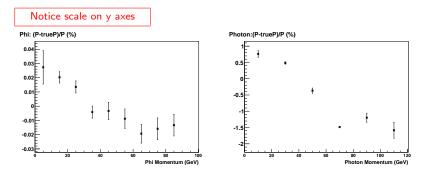
- $B_{incl,exp}(B \to X_s \gamma) = 3.56 \pm 0.26 \times 10^{-4}$ [1] [2]
- $B_{incl,th}(B \to X_s \gamma) = 3.15 \pm 0.23 \times 10^{-4}$ [3]

which can put limits on NP models

```
Exclusion areas in parameter space of a CMSSM model. constraints from b \rightarrow s\gamma, constraints from LSP, and area favoured by WMAP [4]
```

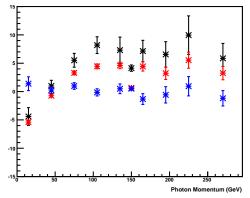


* Measure direct CP asymmetry


(inclusive and exclusive measurement measurements by Belle and Babar [11][10])

Contribution of the vertex reconstruction

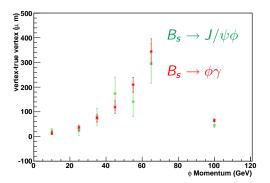
 \rightarrow Seems to be doing a good job at finding the vertex position


 \rightarrow The γ momentum exhibits a much bigger effect than the ϕ momentum Detailed study on Monte Carlo, using the MC true momenta and vertex, but using the errors from reconstruction

Bias in proper time as function of Photon momentum

Bias in the proper time ($au - au_{true}$, in fs) as a function of the photon momentum for the three

cases where


both phi and photon had "reconstructed" momenta and vertex, only the ϕ was reconstructed while photon had the "true" momentum,

only the photon was reconstructed while the ϕ had the "true" momentum and vertex

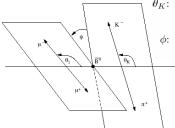
CKM 2010, Warwick

Good agreement between the ϕ vertex bias from $B_s \rightarrow \phi \gamma$ and control channel, after the events from the control channel have been selected to mimic the kinematics of the ϕ in $B_s \rightarrow \phi \gamma$

The current measurement of S, combining results from the B Factories, is

 $\mathcal{S}=-0.19\pm0.23$

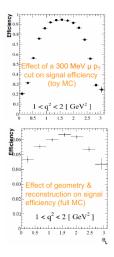
Using $sin2eta=0.678\pm0.025$ ($2etapprox arphi_{s}$) and $\mathcal{S}=sin2eta sin2\psi$

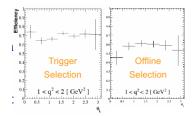

 $sin2\psi = 0.28 \pm 0.44$

 \rightarrow In a nominal LHC*b* year, $\sigma_S = 0.1$ (tagged analysis), and $\sigma_{sin2\psi} \sim 0.2$ It is also worth noting that the sensitivity of the tagged analysis depends on the size of φ_s

 \rightarrow By measuring A^{Δ} ($A^{\Delta} \approx \sin 2\psi$), we get roughly the same sensitivity to $sin2\psi$ without tagging

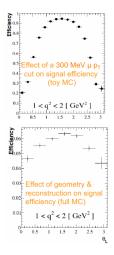
$$\sigma_{A^{\Delta}} = 0.22$$

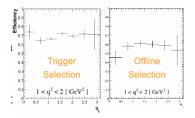



- θ_l : Angle between μ^- and \bar{B} in $\mu\mu$ rest frame
- θ_K : Angle between K^- and the \bar{B} in the \bar{K}^{*0} rest frame
 - $\phi :$ Angle between the \bar{K}^{*0} and $\mu \mu$ decay planes

$b \rightarrow sll$ Analysis issues

Biases introduced due to geometric acceptance of the detector, trigger requirements





$b \rightarrow sll$ Analysis issues

Biases introduced due to geometric acceptance of the detector, trigger requirements

Peaking background sources such as $B_d \to K^* J/\psi$ (due to mis ID of muon and pion) or $B_s \to \phi \mu \mu$ (mis id of kaon as pion) can be reduced by reversing mass hypothesis on the tracks and veto on the ϕ and B_s mass

- Increased lumi per bunch due to β^* 3.5 m instead of 10
- Higher no of pp interactions per visible event (1.5 instead of 1.2)
- CPU increases dramatically
 - ightarrow 1 in 100 visible events has a $b\overline{b}$
 - \rightarrow BF of interesting decays $< 10^{-3}$

- Velo: 20 micron IP resolution (at high PT)
- pp vertex resolution: 15 micron in x, y and 100 in z (15 tracks)

