Form factors and long-distance effects in $B \rightarrow V(P) \ell^{+} \ell^{-}$and $B \rightarrow V \gamma$

Alexander Khodjamirian

UNIVERSITÄT SIEGEN

CKM-2010, Sept. 7, 2010, Warwick, UK

$B \rightarrow V(P) \ell^{+} \ell^{-}, B \rightarrow V \gamma$ in Standard Model

- exclusive $b \rightarrow s$ FCNC decays:
$\left.B \rightarrow K^{*} \ell^{+} \ell^{-}, B \rightarrow K \ell^{+} \ell^{-}, B_{s} \rightarrow \phi \ell^{+} \ell^{-}, B_{s} \rightarrow \eta^{(}\right) \ell^{+} \ell^{-}$, $B \rightarrow K^{*} \gamma, B_{s} \rightarrow \phi \gamma$
- $b \rightarrow d$ channels:
$B \rightarrow \rho(\omega) \ell^{+} \ell^{-}, B \rightarrow \pi(\eta) \ell^{+} \ell^{-}, \quad B \rightarrow \rho \gamma, B_{s} \rightarrow \ldots$,
CKM suppressed
- exclusive decay amplitude:

$$
\begin{gathered}
A\left(B \rightarrow K^{(*)} \ell^{+} \ell^{-}\right)=\left\langle K^{(*)} \ell^{+} \ell^{-}\right| H_{\text {eff }}|B\rangle, \\
H_{\text {eff }}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1}^{10} C_{i}(\mu) O_{i}(\mu),
\end{gathered}
$$

- dominant $b \rightarrow s$ effective operators: $O_{7,9,10}$

$$
C_{7}\left(m_{b}\right) \simeq-0.3, C_{9}\left(m_{b}\right) \simeq 4.4, C_{10}\left(m_{b}\right) \simeq=-4.7
$$

$B \rightarrow P, V$ form factors

- hadronic matrix elements of $O_{7,9,10}$ factorize, e.g.,

$$
\begin{aligned}
& O_{9}=\left(\bar{s}_{L \gamma^{\mu}} b_{L}\right)\left(\bar{\ell} \gamma_{\mu} \ell\right) \Rightarrow\left\langle K^{(*)}(p)\right| \bar{s}_{\mu} b|B(p+q)\rangle \\
& \Rightarrow B \rightarrow P \text { and } B \rightarrow V \text { form factors }
\end{aligned}
$$

- form factors have to be calculated in QCD, functions of q^{2}, $0<q^{2}<\left(m_{B}-m_{K^{(*)}}\right)^{2}$ - inv. mass of lepton pair, $q^{2}=0$-radiative decays
- the remaining operators $O_{1,2, \ldots, 6,8 g}$, combined with e.m. interactions, also contribute to $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$, $O_{1,2}^{(c)} \sim(\bar{c} b)(c \bar{s})$ $C_{1}\left(m_{b}\right) \simeq 1.1, C_{2} \simeq-0.25, \quad C_{3,4,5,6}<0.03$
\Rightarrow new matrix elements, not reducible to form factors !
- use exp. data on $B \rightarrow \pi,(\rho) \ell \nu_{\ell}$ and $S U(3)_{f f}$ symmetry to obtain $B \rightarrow K^{(*)}$ form factors but! $S U(3)_{f f}$ is violated up to 20%, e.g., $f_{K} / f_{\pi} \simeq 155 \mathrm{MeV} / 130 \mathrm{MeV}, \quad f_{D K}(0) / f_{D \pi}(0) \sim 1.2 \div 1.1$
- heavy-quark symmetry $m_{b}, m_{c} \rightarrow \infty$, nontrivial relations between B and D form factors, use measured $D \rightarrow K, K^{*}$ to obtain $B \rightarrow K, K^{(*)}$
but! $1 / m_{c, b}$ corrections are not small: e.g., $f_{B} \sim f_{D} \sim 200 \mathrm{MeV}$, although HQET predicts $f_{H} \sim 1 / \sqrt{m_{Q}}$
- to reach $<20 \%$ accuracy of the form factors we need QCD calculation!

$B \rightarrow P, V$ form factors from lattice QCD

- $B \rightarrow \pi$ form factors, accessible at large $q^{2}>15 \mathrm{GeV}^{2}$: unquenched, $n_{f}=2+1, \sim 10 \%$ accuracy achieved [HPQCD, FNAL-MILC, see the talk by J.Shigemitsu]
- $B \rightarrow K$ some recent results available [QCDSF, (2009)],(quenched)
- $B \rightarrow K^{*}, \rho$, older results (≤ 2005)
calculated in quenched approximation
- will lattice QCD in future be able to calculate the $B \rightarrow V$ form factors as precise as $B \rightarrow P$? need a lattice treatment of the total width (e.g., $K^{*} \rightarrow K \pi$)

$B \rightarrow P, V$ form factors from QCD light-cone sum rules (LCSR)

see also the talk by P. Ball at WGII
Correlator of quark currents $=$ hadronic sum (disp.relation)

\{light-cone OPE, pion DA's\}

\{quark-hadron duality\}

Status and accuracy of LCSR calculations

- $q^{2} \leq 12-15 \mathrm{GeV}^{2}$ accessible, complementing the lattice
- $B \rightarrow \pi, K$ recent updates ($\overline{M S} b$-quark mass):
[G.Duplancic, AK, Mannel, B.Melic, N.Offen (2008)] ,
$B \rightarrow K$ [G.Duplancic, B.Melic (2008)] ,
- the method/input recently checked for $D \rightarrow \pi, K$
A.K.,Ch.Klein, Th.Mannel, N.Offen 0907.2842[hep-ph]
- within uncertainties ($\pm 12-15 \%$)
$B \rightarrow \pi, K$ form factors agree with
[Ball-Zwicky (2005)] (pole b-mass)
- $B_{(s)} \rightarrow \rho, \omega, K^{*}, \phi$, [Ball-Zwicky (2005)]

LCSR in "quenched" approxim.: the width of ρ, K^{*} is neglected

- new perspective: LCSR with B-meson distribution amplitudes [A.K., N. Offen, Th. Mannel '06]
need radiative corrections, better understanding of B DA's
- accuracy $<10 \%$ will hardly be accessible with LCSR

Form factors from LCSR with B-meson DA's

form factor	this work	LCSR with light-meson DA's
$f_{B \pi}^{+}(0)$	0.25 ± 0.05	[P.Ball and R.Zwicky] ([Duplancic et al]) $0.258 \pm 0.031,\left(0.26_{-0.03}^{+0.04}\right)$
$f_{B K}^{+}(0)$	0.31 ± 0.04	$0.301 \pm 0.041 \pm 0.008$
$f_{B \pi}^{T}(0)$	0.21 ± 0.04	0.253 ± 0.028
$f_{B K}^{T}(0)$	0.27 ± 0.04	$0.321 \pm 0.037 \pm 0.009$
$V^{B \rho}(0)$	0.32 ± 0.10	0.323 ± 0.029
$V^{B K^{*}}(0)$	0.39 ± 0.11	$0.411 \pm 0.033 \pm 0.031$
$A_{1}^{B \rho}(0)$	0.24 ± 0.08	0.242 ± 0.024
$A_{1}^{B K^{*}}(0)$	0.30 ± 0.08	$0.292 \pm 0.028 \pm 0.023$
$A_{2}^{B \rho}(0)$	0.21 ± 0.09	0.221 ± 0.023
$A_{2}^{B K^{*}}(0)$	0.26 ± 0.08	$0.259 \pm 0.027 \pm 0.022$
$T_{1}^{B \rho}(0)$	0.28 ± 0.09	0.267 ± 0.021
$T_{1}^{B K^{*}}(0)$	0.33 ± 0.10	$0.333 \pm 0.028 \pm 0.024$

Other non-lattice tools

- effective theories (HQET, QCD factorization, SCET), $B \rightarrow K^{*} \ell^{+} \ell^{-}$[Beneke, Feldmann, Seidel(2001)], ...
- access factorizable contributions/mechanisms in the form-factors/ decay amplitudes non-trivial relations betw. form factors
- need soft form factors and meson DA's as an input
- the issue of $1 / m_{b}$ terms
- LCSR in SCET [F. De Fazio, Th. Feldmann T.Hurth (2006)

Series parametrizations: conformal mapping

- Form factors are analytic functions of q^{2}
- e.g., $B \rightarrow \pi$ form factor $f_{B \pi}^{+}\left(q^{2}\right)$ has no singularities at $q^{2}<\left(m_{B}+m_{\pi}\right)^{2}$, except the pole at $q^{2}=m_{B^{*}}^{2}$.
- map the complex q^{2}-plane onto $|z|<1$ in the z-plane:

$$
z\left(q^{2}, t_{0}\right)=\frac{\sqrt{t_{+}-q^{2}}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-q^{2}}+\sqrt{t_{+}-t_{0}}}, \quad t_{+}=\left(m_{B}+m_{\pi}\right)^{2}, t_{0}<t_{+}
$$

[N. Meiman (1963)]; [S.Okubo (1971)], [C.G.Boyd, B.Grinstein, R.Lebed (1995)], [L.Lellouch (1996)],..., [T.Becher, R.Hill (2006)],..

- $|z| \ll 1$ in semileptonic region $0<q^{2}<\left(m_{B}-m_{\pi}\right)^{2}$ a Taylor expansion around $z=0$ describes the form factor

Series parametrization: predicting the q^{2} shape

- The last (and simplest) version of z-parametrization:
[C. Bourrely, I. Caprini, L. Lellouch (2008)]

$$
f_{B \pi}^{+}\left(q^{2}\right)=\frac{1}{1-q^{2} / m_{B^{*}}^{2}} \sum_{k=0}^{k_{\max }} a_{k}\left(z\left(q^{2}, t_{0}\right)\right)^{k}
$$

- this shape was fitted to QCD lattice $\left(q^{2}>15 \mathrm{GeV}^{2}\right)$ and $\operatorname{LCSR}\left(q^{2}=0\right)$ points to predict the $B \rightarrow \pi$ form factor
- additional perturbative QCD bounds (from the unitarity for the 2-point correlation function)
- generalization to all $B \rightarrow P, V$ form factors possible, different sub-threshold $B\left(J^{P}\right)$ resonance poles

Combined analysis
 of $B \rightarrow K$ and $B \rightarrow K^{*}$ form factors

[A.Bharucha, Th.Feldmann, M.Wick, 1004.3249[hep-ph].

- use LCSR (Ball-Zwicky (2005)) and some lattice results \oplus series parameterization
- typical uncertainties: $\pm(12-15) \%$ for $B \rightarrow P$, $\sim \pm 20 \%$ for $B \rightarrow V$ form factors
- an example: $B \rightarrow K$ form factor $f_{B K}^{+}\left(q^{2}\right) \equiv A_{V, 0}\left(q^{2}\right)$

fig. from the above paper

Charm-loops in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$

- Charm-loop effect: a combination of the $(\bar{s} c)(\bar{c} b)$ weak interaction $\left(O_{1,2}\right)$ and e.m.interaction $(\bar{c} c)(\bar{\ell} \ell)$

- charm-loops mimic FCNC, "contaminate" decay ampl.
- similar effects:
u, d, s, c, b-quark loops (quark-penguin operators O_{3-6}), u-loops from $O_{1,2}^{u}$ (CKM suppressed in $b \rightarrow s$),
- new hadronic matrix elements, not simply form factors
- at $q^{2} \rightarrow m_{J / \psi}^{2}, \ldots$ charm-loop goes on-shell:
$B \rightarrow J / \psi K \otimes J / \psi \rightarrow \ell^{+} \ell^{-}$, cuts by exp.

Charm-loop in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$

[A.K., Th. Mannel, A. Pivovarov and Yu-M. Wang, 1006.4945 [hep-ph]] $\left(q^{2} \ll 4 m_{c}^{2}\right)$

(a)

(c)

(b)

(d)

- how important are the soft gluons (low-virtuality, nonvanishing momenta) emitted from the c-quark loop ?

Estimate of the soft-gluon effect

- soft-gluon emission at $q^{2} \ll 4 m_{c}^{2}$ using light-cone OPE:
\rightarrow nonlocal operator, $\sim 1 /\left(4 m_{c}^{2}-q^{2}\right)$-suppression effective resummation of local operators,

$$
\widetilde{\mathcal{O}}_{\mu}(q)=\int d \omega I_{\mu \rho \alpha \beta}\left(q, m_{c}, \omega\right) \bar{s}_{L} \gamma^{\rho} \delta\left[\omega-\frac{\left(i n_{+} \mathcal{D}\right)}{2}\right] \widetilde{G}_{\alpha \beta} b_{L}
$$

- LCSR with B meson DAs used to calculate $\left\langle K^{(*)}\right| \bar{s} \tilde{G} b|B\rangle$, not a simple form factor
- correction to the effective coefficient of O_{9} operator, $B \rightarrow K \ell^{+} \ell^{-}$:

The local OPE limit

- $\omega \rightarrow 0$ in the nonlocal operator, no derivatives of $G_{\mu \nu}$

$$
\begin{aligned}
& \widetilde{\mathcal{O}}_{\mu}^{(0)}(q)= I_{\mu \rho \alpha \beta}(q) \bar{s}_{L} \gamma^{\rho} \widetilde{G}_{\alpha \beta} b_{L}, \\
& I_{\mu \rho \alpha \beta}\left(q, m_{c}\right)=\left(q_{\mu} q_{\alpha} g_{\rho \beta}+q_{\rho} q_{\alpha} g_{\mu \beta}-q^{2} g_{\mu \alpha} g_{\rho \beta}\right) \\
& \quad \times \frac{1}{16 \pi^{2}} \int_{0}^{1} d t \frac{t(1-t)}{m_{c}^{2}-q^{2} t(1-t)}
\end{aligned}
$$

At $q^{2}=0$, the quark-gluon operator obtained in $B \rightarrow X_{s} \gamma$ in [M. Voloshin (1997)]
in $B \rightarrow K^{*} \gamma$ [A.K.,G. Stoll,R. Rueckl,D. Wyler(1997)]

- the neccesity of resummation was discussed before
[Z. Ligeti, L. Randall and M.B. Wise,(1997);
A.K. Grant, A.G. Morgan, S. Nussinov and R.D. Peccei (1997);
J. W. Chen, G. Rupak and M. J. Savage,(1997);
G. Buchalla, G. Isidori and S.J. Rey (1997)]

Charm-loop effect for $B \rightarrow K^{*} \ell^{+} \ell^{-}$

- factorizable part determined by the three $B \rightarrow K^{*}$ form factors $V^{B K *}\left(q^{2}\right), A_{1}^{B K^{*}}\left(q^{2}\right), A_{2}^{B K^{*}}\left(q^{2}\right)$,
- three kinematical structures for the nonfactorizable part:

$$
\begin{array}{r}
\Delta C_{9}^{\left(\bar{c} c, B \rightarrow K^{*}, V\right)}\left(q^{2}\right)=\left(C_{1}+3 C_{2}\right) g\left(m_{c}^{2}, q^{2}\right) \\
-2 C_{1} \frac{32 \pi^{2}}{3} \frac{\left(m_{B}+m_{K^{*}}\right) \widetilde{A}_{V}\left(q^{2}\right)}{q^{2} V^{B K^{*}}\left(q^{2}\right)}
\end{array}
$$

- nonfactorizable part enhances the effect, $1 / q^{2}$ factor

$$
\begin{aligned}
& \Delta C_{9}^{\left(\bar{c} c, B \rightarrow K^{*}, V\right)}\left(1.0 \mathrm{GeV}^{2}\right)=0.7_{-0.4}^{+0.6} \\
& \Delta C_{9}^{\left(\bar{c} c, B \rightarrow K^{*}, A_{1}\right)}\left(1.0 \mathrm{GeV}^{2}\right)=0.8_{-0.4}^{+0.6} \\
& \Delta C_{9}^{\left(\bar{c}, B \rightarrow K^{*}, A_{2}\right)}\left(1.0 \mathrm{GeV}^{2}\right)=1.1_{-0.7}^{+1.1}
\end{aligned}
$$

Charm-loop effect in $B \rightarrow K^{*} \gamma$

- By-product of our calculation for $B \rightarrow K^{*} \ell^{+} \ell^{-}$at $q^{2}=0$
- factorizable part vanishes, nonfactorizable part yields a correction to $C_{7}^{\text {eff }}\left(m_{b}\right) \simeq-0.3$ in the two inv. amplitudes:

$$
\begin{aligned}
& C_{7}^{\text {eff }} \rightarrow C_{7}^{\text {eff }}+\left[\Delta C_{7}^{\left(\bar{c} c, B \rightarrow K^{*} \gamma\right)}\right]_{1,2}, \\
& {\left[\Delta C_{7}^{\left(\bar{c} c, B \rightarrow K^{*} \gamma\right)}\right]_{1} \simeq\left[\Delta C_{7}^{\left(\bar{c} c, B \rightarrow K^{*} \gamma\right)}\right]_{2}=\left(-1.2_{-1.6}^{+0.9}\right) \times 10^{-2},}
\end{aligned}
$$

- the previous results in the local OPE limit, LCSR with K^{*} DA:

$$
\begin{gather*}
{\left[\Delta C_{7}^{\left(\bar{c} c, B \rightarrow K^{*} \gamma\right)}\right]_{1}^{B Z}=(-0.39 \pm 0.3) \times 10^{-2}} \\
{\left[\Delta C_{7}^{\left(\bar{c} c, B \rightarrow K^{*} \gamma\right)}\right]_{2}^{B Z}=(-0.65 \pm 0.57) \times 10^{-2}} \tag{1}
\end{gather*}
$$

[P.Ball, G. W. Jones and R. Zwicky (2007)]

- our result in the local limit is closer to 3-point sum rule estimate: [A.K.,G. Stoll,R. Rueckl,D. Wyler(1997)]
- dispersion relation and data on $B \rightarrow \psi K$ to access $q^{2} \leq 4 m_{D}^{2}$, nontrivial interference between ψ levels
- influence on observables: diff. width $B \rightarrow K \ell^{+} \ell^{-}$
differential distribution in q^{2} with (solid) and without (dashed) charm-loop effect

- forward-backward asymmetry in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$
$q_{0}^{2}=2.9_{-0.3}^{+0.2} \mathrm{GeV}^{2}$
$\sim 10 \%$ larger without nonfactorizable correction, no α_{s} correction inlcuded

Concluding remarks

- $B \rightarrow P$ form factors needed for $B \rightarrow P \ell^{+} \ell^{-}$are accessible both on the lattice and with LCSR, future accuracy:
$\sim 5 \%$ (lattice, [App.A SuperB report '07]
~ 10\% (LCSR)
- $B \rightarrow V$ form factors: difficulties of "unquenching" on the lattice
- LCSR techniques combined with series parameterization may play a decisive role in providing $B \rightarrow V$ form factors in future, very optimistically, with 10-15\% accuracy
- there is also an experimental uncertainty related to the extraction of K^{*} (or ρ) from the data on $B \rightarrow K^{*}(\rho) \ell^{+} \ell^{-}$: $K \pi$ (or $\pi \pi$) nonresonant background, J^{P} analysis needed

Concluding remarks

- charm-loop: soft-gluon nonfact. effects are accessible using LC expansion and LCSR, the accuracy can further be improved, similar effects to be analysed
- are there "benefits of $B \rightarrow K^{*} \ell^{+} \ell^{-}$at low recoil" ?
[C.Bobeth, G.Hiller, D.van Dyk, 1006.5013[hep-ph]]
the region $q^{2}>m_{\psi}^{2}$,
based on the HQET at $q^{2} \gg m_{c}^{2}$ limit [B. Grinstein, D. Pirjol (2005)]
- for physical masses $q^{2}<\left(m_{B}-m_{K} *\right)^{2} \sim 4 m_{D}^{2}$, backgr. from resonant charm-loops, $1 / m_{b}$ corrections, uncertainties in form factors
- an update is desirable:
of the previous analysis of $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$
A.Ali,P.Ball, L.T. Handoko, G.Hiller (2000) including:
hard-gluon [M.Beneke,Th.Feldmann, Seidel (2001)]
and soft-gluon [this work] nonfactorizable effects

