Form factors and long-distance effects in $B \rightarrow V(P)\ell^+\ell^-$ and $B \rightarrow V\gamma$

Alexander Khodjamirian

CKM-2010, Sept. 7, 2010, Warwick, UK

Alexander Khodjamirian

Form factors and long-distance effects in $B \to V(P)\ell^+\ell^-$ and $B \to V\gamma$

 $B \rightarrow V(P) \ell^+ \ell^-, B \rightarrow V\gamma$ in Standard Model

- exclusive $b \to s$ FCNC decays: $B \to K^* \ell^+ \ell^-, B \to K \ell^+ \ell^-, B_s \to \phi \ell^+ \ell^-, B_s \to \eta^{(\prime)} \ell^+ \ell^-, B_s \to K^* \gamma, B_s \to \phi \gamma$
- $b \to d$ channels: $B \to \rho(\omega)\ell^+\ell^-, B \to \pi(\eta)\ell^+\ell^-, B \to \rho\gamma, B_s \to ...,$ CKM suppressed
- exclusive decay amplitude:

$${\cal A}({\cal B}
ightarrow {\cal K}^{(*)} \ell^+ \ell^-) = \langle {\cal K}^{(*)} \ell^+ \ell^- \mid {\cal H}_{
m eff} \mid {\cal B}
angle \, ,$$

$$H_{eff} = -rac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu) \,,$$

• dominant $b \rightarrow s$ effective operators: $O_{7,9,10}$ $C_7(m_b) \simeq -0.3$, $C_9(m_b) \simeq 4.4$, $C_{10}(m_b) \simeq -4.7$

$B \rightarrow P, V$ form factors

hadronic matrix elements of O_{7,9,10} factorize, e.g.,

 $O_9 = (\bar{s}_L \gamma^\mu b_L)(\bar{\ell}\gamma_\mu \ell) \Rightarrow \langle K^{(*)}(\rho) | \bar{s}\gamma_\mu b | B(\rho + q) \rangle$ $\Rightarrow B \to P \text{ and } B \to V \text{ form factors}$

- form factors have to be calculated in QCD, functions of q^2 , $0 < q^2 < (m_B - m_{K^{(*)}})^2$ - inv. mass of lepton pair, $q^2 = 0$ -radiative decays
- the remaining operators $O_{1,2,...,6,8g}$, combined with e.m. interactions, also contribute to $B \rightarrow K^{(*)}\ell^+\ell^-$, $O_{1,2}^{(c)} \sim (\bar{c}b)(c\bar{s})$ $C_1(m_b) \simeq 1.1, C_2 \simeq -0.25, C_{3,4,5,6} < 0.03$ \Rightarrow new matrix elements, not reducible to form factors !

$B \rightarrow P, V$ form factors, flavour symmetries

- use exp. data on $B \to \pi$, $(\rho)\ell\nu_{\ell}$ and $SU(3)_{fl}$ symmetry to obtain $B \to K^{(*)}$ form factors but! $SU(3)_{fl}$ is violated up to 20%, e.g., $f_{K}/f_{\pi} \simeq 155 \text{ MeV}/130 \text{ MeV}, f_{DK}(0)/f_{D\pi}(0) \sim 1.2 \div 1.1$
- heavy-quark symmetry $m_b, m_c \to \infty$, nontrivial relations between *B* and *D* form factors, use measured $D \to K, K^*$ to obtain $B \to K, K^{(*)}$

but! $1/m_{c,b}$ corrections are not small: e.g., $f_B \sim f_D \sim 200$ MeV, although HQET predicts $f_H \sim 1/\sqrt{m_Q}$

 to reach < 20% accuracy of the form factors we need QCD calculation !

$B \rightarrow P, V$ form factors from lattice QCD

- $B \rightarrow \pi$ form factors, accessible at large $q^2 > 15 \text{ GeV}^2$: unquenched, $n_f = 2 + 1$, ~ 10% accuracy achieved [HPQCD, FNAL-MILC, see the talk by J.Shigemitsu]
- $B \rightarrow K$ some recent results available [QCDSF, (2009)],(quenched)
- B → K^{*}, ρ, older results (≤ 2005) calculated in quenched approximation
- will lattice QCD in future be able to calculate the B → V form factors as precise as B → P ? need a lattice treatment of the total width (e.g., K^{*} → Kπ)

$B \rightarrow P, V$ form factors from QCD light-cone sum rules (LCSR)

see also the talk by P. Ball at WGII

Correlator of quark currents = *hadronic sum (disp.relation)* J $\Rightarrow F(q^2, (p+q)^2) =$ В $\sum_{B_i} \rightarrow duality(s_0^B)$ $f_{B}f_{B_{\pi}}^{+}(q^{2})$

{light-cone OPE, pion DA's}

{quark-hadron duality}

Alexander Khodjamirian

Status and accuracy of LCSR calculations

- $q^2 \le 12 15 \text{ GeV}^2$ accessible, complementing the lattice
- $B \rightarrow \pi, K$ recent updates (\overline{MS} b-quark mass):

 $[G.Duplancic,\,AK,\,Mannel,\,B.Melic,\,N.Offen~(2008)]$,

 $B \rightarrow K$ [G.Duplancic, B.Melic (2008)] ,

- the method/input recently checked for $D \rightarrow \pi, K$ A.K.,Ch.Klein, Th.Mannel, N.Offen 0907.2842[hep-ph]
- within uncertainties (\pm 12 15%) $B \rightarrow \pi, K$ form factors agree with [Ball-Zwicky (2005)] (pole *b*-mass)
- $B_{(s)} \rightarrow \rho, \omega, K^*, \phi$, [Ball-Zwicky (2005)] LCSR in "quenched" approxim.: the width of ρ, K^* is neglected
- new perspective: LCSR with *B*-meson distribution amplitudes [A.K., N. Offen, Th. Mannel '06] need radiative corrections, better understanding of *B* DA's
- accuracy < 10% will hardly be accessible with LCSR

Form factors from LCSR with B-meson DA's

form factor	this work	LCSR with light-meson DA's
		[P.Ball and R.Zwicky] ([Duplancic et al])
$f^+_{B\pi}(0)$	0.25±0.05	$0.258 \pm 0.031, (0.26^{+0.04}_{-0.03})$
$f_{BK}^{+}(0)$	0.31±0.04	$0.301 {\pm} 0.041 {\pm} 0.008$
$f_{B\pi}^T(0)$	0.21±0.04	0.253±0.028
$f_{BK}^T(0)$	0.27±0.04	0.321±0.037±0.009
$V^{B ho}(0)$	0.32±0.10	0.323±0.029
<i>V^{BK*}</i> (0)	0.39±0.11	0.411±0.033±0.031
$A_1^{B ho}(0)$	0.24±0.08	0.242±0.024
$A_1^{BK^*}(0)$	0.30±0.08	0.292±0.028±0.023
$A_{2}^{B ho}(0)$	0.21±0.09	0.221±0.023
$A_{2}^{BK^{*}}(0)$	0.26±0.08	0.259±0.027±0.022
$T_{1}^{B ho}(0)$	0.28±0.09	0.267±0.021
$T_1^{BK^*}(0)$	0.33±0.10	0.333±0.028±0.024

Other non-lattice tools

- effective theories (HQET, QCD factorization, SCET),
 B → K^{*}ℓ⁺ℓ⁻ [Beneke, Feldmann, Seidel(2001)], ...
- access factorizable contributions/mechanisms in the form-factors/ decay amplitudes non-trivial relations betw. form factors
- need soft form factors and meson DA's as an input
- the issue of $1/m_b$ terms
- LCSR in SCET [F. De Fazio, Th. Feldmann T.Hurth (2006)

Series parametrizations: conformal mapping

- Form factors are analytic functions of q²
- e.g., $B \to \pi$ form factor $f_{B\pi}^+(q^2)$ has no singularities at $q^2 < (m_B + m_\pi)^2$, except the pole at $q^2 = m_{B^*}^2$.
- map the complex q^2 -plane onto |z| < 1 in the z-plane:

$$Z(q^2, t_0) = rac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}, \ t_+ = (m_B + m_\pi)^2, t_0 < t_+$$

[N. Meiman (1963)]; [S.Okubo (1971)], [C.G.Boyd, B.Grinstein, R.Lebed (1995)],
 [L.Lellouch (1996)],..., [T.Becher, R.Hill (2006)],...

 |z| ≪ 1 in semileptonic region 0 < q² < (m_B − m_π)² a Taylor expansion around z = 0 describes the form factor

10/21

Series parametrization: predicting the q^2 shape

• The last (and simplest) version of *z*-parametrization: [C. Bourrely, I. Caprini, L. Lellouch (2008)]

 $f_{B\pi}^+(q^2) = rac{1}{1-q^2/m_{B^*}^2} \sum_{k=0}^{k_{max}} a_k \Big(z(q^2,t_0) \Big)^k$

- this shape was fitted to QCD lattice ($q^2 > 15 \text{ GeV}^2$) and LCSR ($q^2 = 0$) points to predict the $B \rightarrow \pi$ form factor
- additional perturbative QCD bounds (from the unitarity for the 2-point correlation function)
- generalization to all $B \rightarrow P, V$ form factors possible, different sub-threshold $B(J^P)$ resonance poles

Combined analysis

of $B \to K$ and $B \to K^*$ form factors

[A.Bharucha, Th.Feldmann, M.Wick, 1004.3249[hep-ph].

- use LCSR (Ball-Zwicky (2005)) and some lattice results ⊕ series parameterization
- typical uncertainties: $\pm (12 15)\%$ for $B \rightarrow P$, $\sim \pm 20\%$ for $B \rightarrow V$ form factors
- an example: $B \to K$ form factor $f^+_{BK}(q^2) \equiv A_{V,0}(q^2)$

Alexander Khodjamirian

Charm-loops in $B \to K^{(*)} \ell^+ \ell^-$

 Charm-loop effect: a combination of the (sc)(cb) weak interaction (O_{1,2}) and e.m.interaction (cc)(ℓℓ)

- charm-loops mimic FCNC, "contaminate" decay ampl.
- similar effects:

u, d, s, c, b-quark loops (quark-penguin operators O_{3-6}), u-loops from $O_{1,2}^u$ (CKM suppressed in $b \rightarrow s$),

- new hadronic matrix elements, not simply form factors
- at $q^2 \rightarrow m_{J/\psi}^2$, ... charm-loop goes on-shell:

 $B o J/\psi K \stackrel{\sim}{\otimes} J/\psi o \ell^+ \ell^-$, cuts by exp.

Charm-loop in $B \to K^{(*)} \ell^+ \ell^-$

[A.K., Th. Mannel, A. Pivovarov and Yu-M. Wang, 1006.4945 [hep-ph]] $(q^2 \ll 4m_c^2)$

► factorizable c-quark loop $C_9 \rightarrow C_9 + (C_1 + 3C_2)g(m_c^2, q^2)$

▶ perturbative gluons \rightarrow (nonfactorizable) corrections being factorized in $O(\alpha_s)$ and added to C_9

[M. Beneke, T. Feldmann, D. Seidel (2001)]

► how important are the soft gluons (low-virtuality, nonvanishing momenta) emitted from the *c*-quark loop ?

Alexander Khodjamirian

Form factors and long-distance effects in $B \to V(P)\ell^+\ell^-$ and $B \to V\gamma$

(d)

Estimate of the soft-gluon effect

soft-gluon emission at q² ≪ 4m²_c using light-cone OPE:
 ▶ nonlocal operator, ~ 1/(4m²_c - q²)-suppression effective resummation of local operators,

$$\widetilde{\mathcal{O}}_{\mu}(\boldsymbol{q}) = \int \boldsymbol{d}\omega \ \boldsymbol{I}_{\mu
holphaeta}(\boldsymbol{q}, \boldsymbol{m_c}, \omega) \bar{\boldsymbol{s}}_L \gamma^{
ho} \delta[\omega - rac{(in_+\mathcal{D})}{2}] \widetilde{\boldsymbol{G}}_{lphaeta} \boldsymbol{b}_L \ ,$$

• LCSR with *B* meson DAs used to calculate $\langle K^{(*)} | \bar{s}\tilde{G}b | B \rangle$, not a simple form factor

• correction to the effective coefficient of O_9 operator, $B \rightarrow K \ell^+ \ell^-$:

Alexander Khodjamirian

Form factors and long-distance effects in $B \to V(P)\ell^+\ell^-$ and $B \to V\gamma$

15/21

The local OPE limit

• $\omega \rightarrow$ 0 in the nonlocal operator, no derivatives of $G_{\mu\nu}$

 $\widetilde{\mathcal{O}}^{(0)}_{\mu}(\boldsymbol{q}) = \boldsymbol{I}_{\mu
holphaeta}(\boldsymbol{q}) \bar{\boldsymbol{s}}_L \gamma^{
ho} \widetilde{\boldsymbol{G}}_{lphaeta} \boldsymbol{b}_L \; ,$

$$egin{aligned} I_{\mu
holphaeta}(q,m_c) &= (q_\mu q_lpha g_{
hoeta} + q_
ho q_lpha g_{\mueta} - q^2 g_{\mulpha} g_{
hoeta}) \ & imes rac{1}{16\pi^2} \int_0^1 dt \; rac{t(1-t)}{m_c^2 - q^2 t(1-t)} \end{aligned}$$

At $q^2 = 0$, the quark-gluon operator obtained in $B \to X_s \gamma$ in [M.Voloshin (1997)] in $B \to K^* \gamma$ [A.K.,G. Stoll,R. Rueckl,D. Wyler(1997)]

 the neccesity of resummation was discussed before [Z. Ligeti, L. Randall and M.B. Wise,(1997); A.K. Grant, A.G. Morgan, S. Nussinov and R.D. Peccei (1997); J. W. Chen, G. Rupak and M. J. Savage,(1997); G. Buchalla, G. Isidori and S.J. Rey (1997)]

Charm-loop effect for $B \to K^* \ell^+ \ell^-$

- factorizable part determined by the three $B \to K^*$ form factors $V^{BK*}(q^2)$, $A_1^{BK*}(q^2)$, $A_2^{BK*}(q^2)$,
- three kinematical structures for the nonfactorizable part:

$$\Delta C_9^{(ar{c}c,B
ightarrow K^*,V)}(q^2) = (C_1 + 3C_2) \, g(m_c^2,q^2) \ - 2C_1 rac{32\pi^2}{3} rac{(m_B + m_{K^*})\widetilde{A}_V(q^2)}{q^2 \, V^{BK^*}(q^2)} \, ,$$

• nonfactorizable part enhances the effect, $1/q^2$ factor

Charm-loop effect in $B \rightarrow K^* \gamma$

- By-product of our calculation for $B \to K^* \ell^+ \ell^-$ at $q^2 = 0$
- factorizable part vanishes, nonfactorizable part yields a correction to $C_7^{eff}(m_b) \simeq -0.3$ in the two inv. amplitudes:

$$\begin{split} & \boldsymbol{C}_7^{\text{eff}} \rightarrow \boldsymbol{C}_7^{\text{eff}} + [\Delta \boldsymbol{C}_7^{(\bar{c}c,B \rightarrow K^*\gamma)}]_{1,2} \,, \\ & \left[\Delta \boldsymbol{C}_7^{(\bar{c}c,B \rightarrow K^*\gamma)}\right]_1 \simeq \left[\Delta \boldsymbol{C}_7^{(\bar{c}c,B \rightarrow K^*\gamma)}\right]_2 = (-1.2^{+0.9}_{-1.6}) \times 10^{-2} \,, \end{split}$$

 the previous results in the local OPE limit, LCSR with K* DA:

$$\begin{split} & [\Delta C_7^{(\bar{c}c,B\to K^*\gamma)}]_1^{BZ} = (-0.39\pm0.3)\times10^{-2}\,, \\ & [\Delta C_7^{(\bar{c}c,B\to K^*\gamma)}]_2^{BZ} = (-0.65\pm0.57)\times10^{-2}\,. \end{split}$$

[P.Ball, G. W. Jones and R. Zwicky (2007)]

 our result in the local limit is closer to 3-point sum rule estimate: [A.K.,G. Stoll,R. Rueckl,D. Wyler(1997)]

Alexander Khodjamirian

- dispersion relation and data on B → ψK to access q² ≤ 4m²_D, nontrivial interference between ψ levels
- influence on observables: diff. width $B \rightarrow K \ell^+ \ell^-$

differential distribution in q^2 with (solid) and without (dashed) charm-loop effect

• forward-backward asymmetry in $B \rightarrow K^{(*)} \ell^+ \ell^-$

 $q_0^2 = 2.9^{+0.2}_{-0.3} {
m GeV}^2$ ~ 10% larger without nonfactorizable correction, no α_s correction inlcuded

Alexander Khodjamirian

Form factors and long-distance effects in $B \to V(P)\ell^+\ell^-$ and $B \to V\gamma$

Concluding remarks

- B → P form factors needed for B → Pℓ+ℓ⁻ are accessible both on the lattice and with LCSR, future accuracy:
 ~ 5% (lattice, [App.A SuperB report '07]
 ~ 10% (LCSR)
- *B* → *V* form factors: difficulties of "unquenching" on the lattice
- LCSR techniques combined with series parameterization may play a decisive role in providing $B \rightarrow V$ form factors in future, very optimistically, with 10-15% accuracy
- there is also an experimental uncertainty related to the extraction of K^{*} (or ρ) from the data on B → K^{*}(ρ)ℓ⁺ℓ⁻: Kπ (or ππ) nonresonant background, J^P analysis needed

Concluding remarks

- charm-loop: soft-gluon nonfact. effects are accessible using LC expansion and LCSR, the accuracy can further be improved, similar effects to be analysed
- are there "benefits of $B \to K^* \ell^+ \ell^-$ at low recoil" ? [C.Bobeth, G.Hiller, D.van Dyk, 1006.5013[hep-ph]] the region $q^2 > m_{\psi}^2$, based on the HQET at $q^2 \gg m_c^2$ limit [B.Grinstein, D. Pirjol (2005)]
- for physical masses $q^2 < (m_B m_K*)^2 \sim 4m_D^2$, backgr. from resonant charm-loops, $1/m_b$ corrections, uncertainties in form factors
- an update is desirable: of the previous analysis of B → K^(*)ℓ⁺ℓ⁻
 A.Ali,P.Ball, L.T. Handoko, G.Hiller (2000) including: hard-gluon [M.Beneke,Th.Feldmann, Seidel (2001)] and soft-gluon [this work] nonfactorizable effects