$$B \rightarrow K^* (\rightarrow K\pi) I^+ I^-$$
 Theory:
A symmetry point of view

Joaquim Matias Universitat Autònoma de Barcelona

In collaboration: U. Egede, W. Reece (LHCb, Imperial), T. Hurth (CERN), M. Ramon (Barcelona) JHEP 0811:032, 2008 and arxiv:1005.0571.

September 6, 2010

Table of contents

1 Description of the Method for $B \to K^*(\to K\pi)I^+I^-$

- 2 Symmetries of the distribution
 - Counting symmetries
 - From infinitesimal to continuous symmetry
 - Explicit Solution and New non-trivial relation
- 3 Construction of Observables: $A_T^{(i)}$ i=2,3,4,5
 - Understanding A_T^2 : O_7' and O_{10}'
 - A new example: A_T^5
 - A_T^3 and A_T^4 : Longitudinal sensitivity

Motivation

Few processes contain a richer phenomenology than the $b \rightarrow s$ semileptonic exclusive decay $B \rightarrow K^* l^+ l^-$:

Observables:

- Forward-Backward asymmetry A_{FB},
- Isospin asymmetry A₁,
- K^* spin/helicity amplitude observables of the 4-body decay: $A_T^{(i)}$ and more

Main goal: Identify signals of specific NP models in the flavor sector to complement direct research.

Condition: Construct the best (less QCD uncertainties) observables. How?

Description of the Method for $B \to K^*(\to K\pi)I^+I^-$

- **Construction** of a quantity using spin or helicity amplitudes as the milestones.
 - Maximize sensitivity to certain type of New Physics
 - **Minimize** dependence on hadronic uncertainties (soft form factors).
- Identification of all symmetries of the distribution.
- Check that the quantity **fulfills** all the symmetries \Rightarrow Observables.

Description of the Method for $B \to K^*(\to K\pi)I^+I^-$

- **Construction** of a quantity using spin or helicity amplitudes as the milestones.
 - Maximize sensitivity to certain type of New Physics
 - **Minimize** dependence on hadronic uncertainties (soft form factors).
- Identification of all symmetries of the distribution.
- Check that the quantity **fulfills** all the symmetries \Rightarrow Observables.
- **Express** the observable in terms of the coefficients of the distribution using symmetries and explicit solution.

Description of the Method for $B \to K^*(\to K\pi)I^+I^-$

- **Construction** of a quantity using spin or helicity amplitudes as the milestones.
 - Maximize sensitivity to certain type of New Physics
 - **Minimize** dependence on hadronic uncertainties (soft form factors).
- Identification of all symmetries of the distribution.
- Check that the quantity **fulfills** all the symmetries \Rightarrow Observables.
- **Express** the observable in terms of the coefficients of the distribution using symmetries and explicit solution.
- Find hidden correlations (dependencies) between the coefficients of the distribution.
 - Stability of fit and extra experimental checks.

Description of the Method for $B \to K^*(\to K\pi)I^+I^-$

- **Construction** of a quantity using spin or helicity amplitudes as the milestones.
 - Maximize sensitivity to certain type of New Physics
 - **Minimize** dependence on hadronic uncertainties (soft form factors).
- Identification of all symmetries of the distribution.
- Check that the quantity **fulfills** all the symmetries \Rightarrow Observables.
- **Express** the observable in terms of the coefficients of the distribution using symmetries and explicit solution.
- Find hidden correlations (dependencies) between the coefficients of the distribution.
 - Stability of fit and extra experimental checks.

Differential decay distributions

The decay $\bar{\mathbf{B}}_{d} \to \bar{\mathbf{K}}^{*0} (\to \mathbf{K}^{-} \pi^{+}) \mathbf{I}^{+} \mathbf{I}^{-}$ with the \mathcal{K}^{*0} on the mass shell is described by *s* and three angles $\theta_{\mathbf{I}}, \theta_{\mathbf{K}}$ and ϕ

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_I\,d\cos\theta_K\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_I,\theta_K,\phi)$$

- $q^2 = s$ square of the lepton-pair invariant mass.
- θ_l angle between $\vec{p_{l^+}}$ in l^+l^- rest frame and dilepton's direction in rest frame of \bar{B}_d
- θ_K angle between p_{K^-} in the \bar{K}^{*0} rest frame and direction of the \bar{K}^{*0} in rest frame of \bar{B}_d
- ϕ angle between the planes defined by the two leptons and the $K-\pi$ planes.

Differential decay distributions

The decay $\bar{\mathbf{B}}_{d} \to \bar{\mathbf{K}}^{*0} (\to \mathbf{K}^{-} \pi^{+}) \mathbf{I}^{+} \mathbf{I}^{-}$ with the \mathcal{K}^{*0} on the mass shell is described by s and three angles $\theta_{\mathbf{l}}, \theta_{\mathbf{K}}$ and ϕ

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_I\,d\cos\theta_K\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_I,\theta_K,\phi)$$

• $q^2 = s$ square of the lepton-pair invariant mass.

- θ_l angle between $\vec{p_{l^+}}$ in l^+l^- rest frame and dilepton's direction in rest frame of \bar{B}_d
- θ_K angle between p_{K^-} in the \bar{K}^{*0} rest frame and direction of the \bar{K}^{*0} in rest frame of \bar{B}_d
- ϕ angle between the planes defined by the two leptons and the $K-\pi$ planes.

 $J(q^2, \theta_I, \theta_K, \phi) =$

 $J_{1s}\sin^2\theta_K + J_{1c}\cos^2\theta_K + (J_{2s}\sin^2\theta_K + J_{2c}\cos^2\theta_K)\cos2\theta_l + J_3\sin^2\theta_K\sin^2\theta_l\cos2\phi + J_4\sin2\theta_K\sin2\theta_l\cos\phi + J_5\sin2\theta_K\sin\theta_l\cos\phi + (J_{6s}\sin^2\theta_K + J_{6c}\cos^2\theta_K)\cos\theta_l$

 $+J_7 \sin 2\theta_K \sin \theta_I \sin \phi + J_8 \sin 2\theta_K \sin 2\theta_I \sin \phi + J_9 \sin^2 \theta_K \sin^2 \theta_I \sin 2\phi \,.$

$$\begin{split} J_{1s} &= \frac{(2+\beta_{\ell}^{2})}{4} \left[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + (L \to R) \right] + \frac{4m_{\ell}^{2}}{q^{2}} \operatorname{Re} \left(A_{\perp}^{L} A_{\perp}^{R*} + A_{\parallel}^{L} A_{\parallel}^{R*} \right), \\ J_{1c} &= |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} + \frac{4m_{\ell}^{2}}{q^{2}} \left[|A_{t}|^{2} + 2\operatorname{Re}(A_{0}^{L} A_{0}^{R*}) \right] + \beta_{\ell}^{2} |A_{S}|^{2}, \\ J_{2s} &= \frac{\beta_{\ell}^{2}}{4} \left[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + (L \to R) \right], \quad J_{2c} = -\beta_{\ell}^{2} \left[|A_{0}^{L}|^{2} + (L \to R) \right], \\ J_{3} &= \frac{1}{2} \beta_{\ell}^{2} \left[|A_{\perp}^{L}|^{2} - |A_{\parallel}^{L}|^{2} + (L \to R) \right], \quad J_{4} = \frac{1}{\sqrt{2}} \beta_{\ell}^{2} \left[\operatorname{Re}(A_{0}^{L} A_{\parallel}^{L*}) + (L \to R) \right], \\ J_{5} &= \sqrt{2} \beta_{\ell} \left[\operatorname{Re}(A_{0}^{L} A_{\perp}^{L*}) - (L \to R) - \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}(A_{\parallel}^{L} A_{S}^{*} + A_{\parallel}^{R} A_{S}^{*}) \right], \\ J_{6s} &= 2\beta_{\ell} \left[\operatorname{Re}(A_{\parallel}^{L} A_{\perp}^{L*}) - (L \to R) \right], \quad J_{6c} &= 4\beta_{\ell} \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}\left[A_{0}^{L} A_{S}^{*} + (L \to R)\right], \\ J_{7} &= \sqrt{2} \beta_{\ell} \left[\operatorname{Im}(A_{0}^{L} A_{\parallel}^{L*}) - (L \to R) + \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Im}(A_{\perp}^{L} A_{S}^{*} + A_{\perp}^{R} A_{S}^{*}) \right], \\ J_{8} &= \frac{1}{\sqrt{2}} \beta_{\ell}^{2} \left[\operatorname{Im}(A_{0}^{L} A_{\perp}^{L*}) + (L \to R) \right], \quad J_{9} &= \beta_{\ell}^{2} \left[\operatorname{Im}(A_{\parallel}^{L*} A_{\perp}^{L}) + (L \to R) \right] \end{split}$$

SCALARS: We have 8 complex amplitudes $(A_{\perp,||,0,(L,R)S,t})$ and 12 experimental inputs **NO SCALARS:** We have 7 complex amplitudes $(A_{\perp,||,0,(L,R)},t)$ and 11 experimental inputs

Symmetries of the distribution

Experimental $(J_i) \leftrightarrow$ theoretical (A_i) degrees of freedom

 $n_{C}-n_{d}=2n_{A}-n_{s}$

- **n**_C : # coefficients of differential distribution: *J_i*
- n_d : # relations between J_i
- n_A : # spin amplitudes
- **n**_s : # symmetries of the distribution

Case: Massless leptons with no scalars: ML-NS

What is this third relation and which are those symmetries?

Counting symmetries From infinitesimal to continuous symmetry Explicit Solution and New non-trivial relation

Counting symmetries

Infinitesimal symmetry transformation of the distribution

$$\mathbf{A}' = \mathbf{A} + \delta \mathbf{S}$$
 .

$$\vec{A} = \left(\mathsf{Re}(A_{\perp}^{L}), \mathsf{Im}(A_{\perp}^{L}), \mathsf{Re}(A_{\parallel}^{L}), \mathsf{Im}(A_{\parallel}^{L}), \mathsf{Re}(A_{0}^{L}), \mathsf{Im}(A_{0}^{L}), \mathsf{Re}(A_{0}^{R}), \mathsf{Im}(A_{0}^{L}), \mathsf{Re}(A_{\parallel}^{R}), \mathsf{Re}(A_{\parallel}^{R}), \mathsf{Re}(A_{0}^{R}), \mathsf{Im}(A_{0}^{R}) \right)$$

 ${\boldsymbol{\mathsf{S}}}$ represents a symmetry of the distribution if and only if

$$\forall i \in (J_{1s}...J_9) : \vec{
abla}(J_i) \perp \mathbf{S}$$
.

n independent infinitesimal symmetries \leftrightarrow **n** linearly independent vectors **S**_j with j = 1, ...n.

$$\Rightarrow$$
 In the masless case ${f n}={f 4}$

 $B \to K^* (\to K\pi) I^+ I^-$ Theory: A symmetry point of view

From infinitesimal to continuous symmetry.

The differential distribution is invariant under n = 4 independent symmetry transformations of the amplitudes:

• 1. An independent phase transformation of L-amplitudes

$$A_{\perp L}^{'} = e^{i\phi_{L}}A_{\perp L}, \qquad A_{\parallel L}^{'} = e^{i\phi_{L}}A_{\parallel L}, \qquad A_{0L}^{'} = e^{i\phi_{L}}A_{0L},$$

• 2. An independent phase transformation of the R-amplitudes,

$$A_{\perp R}^{'} = e^{i\phi_{R}}A_{\perp R}, \qquad A_{\parallel R}^{'} = e^{i\phi_{R}}A_{\parallel R}, \qquad A_{0R}^{'} = e^{i\phi_{R}}A_{0R},$$

• 3. A first continuous $L \leftrightarrow R$ rotation (I)

$$\begin{aligned} \dot{A_{\perp L}} &= +\cos\theta A_{\perp L} + \sin\theta A_{\perp R}^* \quad \dot{A_{\perp R}} = -\sin\theta A_{\perp L}^* + \cos\theta A_{\perp R} \\ \dot{A_{\parallel L}} &= +\cos\theta A_{\parallel L} - \sin\theta A_{\parallel R}^* \quad \dot{A_{\parallel R}} = +\sin\theta A_{\parallel L}^* + \cos\theta A_{\parallel R} \\ \dot{A_{0L}} &= +\cos\theta A_{0L} - \sin\theta A_{0R}^* \quad \dot{A_{0R}} = +\sin\theta A_{0L}^* + \cos\theta A_{0R} \end{aligned}$$

Description of the Method for $B \to K^* (\to K\pi) I^+ I^-$ Symmetries of the distribution Construction of Observables: $A_T^{(1)} := 2,3,4,5$ Counting symmetries From infinitesimal to continuous symmetry Explicit Solution and New non-trivial relation

• 4. A second continuous $L \leftrightarrow R$ transformation (II)

$$\begin{aligned} A_{\perp L}^{'} &= +\cosh\bar{\theta}A_{\perp L} + \sinh\bar{\theta}A_{\perp R}^{*} \quad A_{\perp R}^{'} = -\sinh\bar{\theta}A_{\perp L}^{*} + \cosh\bar{\theta}A_{\perp R} \\ A_{\parallel L}^{'} &= +\cosh\bar{\theta}A_{\parallel L} - \sinh\bar{\theta}A_{\parallel R}^{*} \quad A_{\parallel R}^{'} = +\sinh\bar{\theta}A_{\parallel L}^{*} + \cosh\bar{\theta}A_{\parallel R} \\ A_{0L}^{'} &= +\cosh\bar{\theta}A_{0L} - \sinh\bar{\theta}A_{0R}^{*} \quad A_{0R}^{'} = +\sinh\bar{\theta}A_{0L}^{*} + \cosh\bar{\theta}A_{0R} \\ \bar{\theta} = \mathbf{i}\theta' \end{aligned}$$

Any quantity constructed out of A has to fulfill all symmetries of the distribution

Consequence: The quantity $A_T^{(1)} = -2 \frac{\operatorname{Re}(A_{\parallel}A_{\perp}^*)}{|A_{\perp}|^2 + |A_{\parallel}|^2}$ is not invariant under 3 and 4 \Rightarrow it cannot be extracted from angular distribution.

From infinitesimal to continuous symmetry

A bit more on symmetries

Define

 $n_1 = (A_{\parallel}^L, A_{\parallel}^{R^*})$ $n_2 = (A_{\perp}^L, -A_{\perp}^{R^*})$ or $n_3 = (A_0^L, A_0^{R^*})$

Spin amplitudes

$m_1 = (H_{\perp 1}^L, H_{-1}^{R^*})$ $m_2 = (H_{-1}^L, H_{\perp 1}^{R^*})$ $m_3 = (H_0^L, H_0^{R^*})$

Helicity amplitudes

All physical information of the distribution encoded in 3 moduli +3 relative angles (complex) - 1 constrain (third relation).

$$|n_1|^2 = \frac{2}{3}J_{1s} - J_3, \qquad |n_2|^2 = \frac{2}{3}J_{1s} + J_3, \qquad |n_3|^2 = J_{1c}$$

$$n_1 \cdot n_2 = \frac{J_{6s}}{2} - iJ_9, \qquad n_1 \cdot n_3 = \sqrt{2}J_4 - i\frac{J_7}{\sqrt{2}}, \qquad n_2 \cdot n_3 = \frac{J_5}{\sqrt{2}} - i\sqrt{2}J_8$$

Interpretation of the symmetry: moduli and complex scalar products kept invariant.

What do we learn/gain out of those symmetries?

- Identify the conditions to construct observables out of spin amplitudes.
- **Solve** the system of *A*'s in terms of *J*'s.
- **Stability and convergence of the fit** by identifying all hidden correlations inside the distribution.
- Identify a **non-linear and non-trivial correlation** (third relation) between the coefficients of the angular distribution.
- Moreover, this is a more general view of angular distributions **reinterpreted** in terms of moduli and angle between certain complex vectors.

Explicit solution and New non-trivial relation

We can solve the system of A's in terms of J's:

- Global phase symmetry L (1) $\Rightarrow \phi_L$ such that $\text{Im}A_{\parallel}^L = 0$
- Global phase symmetry R (2) $\Rightarrow \phi_R$ such that $\text{Im}A^R_{\parallel} = 0$ (simplicity)
- Continuous $L \leftrightarrow R$ rotation (3) $\Rightarrow \theta$ such that $\operatorname{Re} A_{\parallel}^{R} = 0$

This implies $n_1 = \left(0, A_{\parallel}^R\right)$ with $\mathrm{Im}A_{\parallel}^R = 0$. The system is then easily solved

Description of the Method for $B \to K^* (\to K\pi) l^+ l^-$ Symmetries of the distribution Construction of Observables: $A_{i}^{(J)}$ i=2,3,4,5 Counting symmetries From infinitesimal to continuous symmetry Explicit Solution and New non-trivial relation

Explicit solution and New non-trivial relation

We can solve the system of A's in terms of J's:

- Global phase symmetry L (1) $\Rightarrow \phi_L$ such that $\text{Im}A_{\parallel}^L = 0$
- Global phase symmetry R (2) $\Rightarrow \phi_R$ such that $\text{Im}A_{\parallel}^R = 0$ (simplicity)
- Continuous $L \leftrightarrow R$ rotation (3) $\Rightarrow \theta$ such that $\operatorname{Re} A_{\parallel}^{R} = 0$

This implies $n_1 = \left(0, A_{\parallel}^R\right)$ with $\mathrm{Im}A_{\parallel}^R = 0$. The system is then easily solved

Amp.

LEFT

RIGHT

$$\begin{array}{ll} A_{\perp} & \left[|n_{2}|^{2} - \frac{|(n_{1}.n_{2})|^{2}}{|n_{1}|^{2}} \right]^{\frac{1}{2}} e^{i\phi_{\perp}^{\mathsf{L}}} = \left[\frac{\frac{4}{9} J_{1s}^{2} - J_{3}^{2} - \frac{1}{4} J_{6s}^{2} - J_{0}^{2}}{\frac{2}{3} J_{1s} - J_{3}} \right]^{\frac{1}{2}} e^{i\phi_{\perp}^{\mathsf{L}}} & - \frac{n_{1}.n_{2}}{\sqrt{|n_{1}|^{2}}} = -\frac{(J_{6s} - 2iJ_{9})}{2\sqrt{\frac{2}{3}} J_{1s} - J_{3}}, \\ A_{\parallel} & 0 & \sqrt{|n_{1}|^{2}} = \sqrt{\frac{2}{3} J_{1s} - J_{3}} \\ A_{0} & \left[|n_{3}|^{2} - \frac{|(n_{1}.n_{3})|^{2}}{|n_{1}|^{2}} \right]^{\frac{1}{2}} e^{i\phi_{0}^{\mathsf{L}}} = \left[\frac{J_{1c}(\frac{2}{3} J_{1s} - J_{3}) - 2J_{4}^{2} - \frac{1}{2} J_{1}^{2}}{\frac{2}{3} J_{1s} - J_{3}} \right]^{\frac{1}{2}} e^{i\phi_{0}^{\mathsf{L}}} & \frac{n_{1}.n_{3}}{\sqrt{|n_{1}|^{2}}} = \frac{2J_{4} - iJ_{7}}{\sqrt{\frac{4}{3}} J_{1s} - J_{3}} \end{array}$$

Counting symmetries From infinitesimal to continuous symmetry Explicit Solution and New non-trivial relation

BUT, there is a last equation

$$e^{i(\phi_{\perp}^{L}-\phi_{0}^{L})} = \frac{(n_{2}\cdot n_{3})|n_{1}|^{2} - (n_{2}\cdot n_{1})(n_{1}\cdot n_{3})}{\left(\left[|n_{1}|^{2}|n_{2}|^{2} - |(n_{2}\cdot n_{1})|^{2}\right)(|n_{1}|^{2}|n_{3}|^{2} - |(n_{3}\cdot n_{1})|^{2})\right]^{1/2}} \\ = \frac{J_{5}\left(\frac{2}{3}J_{1s} - J_{3}\right) - J_{4}J_{6s} - J_{7}J_{9} - i\left(\frac{4}{3}J_{1s}J_{8} - 2J_{3}J_{8} + 2J_{4}J_{9} - \frac{1}{2}J_{6s}J_{7}\right)}{\left[2\left(\frac{4}{9}J_{1s}^{2} - J_{3}^{2} - \frac{1}{4}J_{6s}^{2} - J_{9}^{2}\right)\left(J_{1c}\left(\frac{2}{3}J_{1s} - J_{3}\right) - 2J_{4}^{2} - \frac{1}{2}J_{7}^{2}\right)\right]^{1/2}}.$$

Remarks:

a) Condition of the L.H.S. being a phase \Rightarrow the non-trivial new relation:

$$\begin{split} J_{1c} = -J_{2c} &= 6 \frac{(2J_{1s}+3J_3) \left(4J_4^2+J_7^2\right) + (2J_{1s}-3J_3) \left(J_5^2+4J_8^2\right)}{16J_{1s}^2 - 9 \left(4J_3^2+J_{6s}^2+4J_9^2\right)} \\ &- 36 \frac{J_{6s}(J_4J_5+J_7J_8) + J_9(J_5J_7-4J_4J_8)}{16J_{1s}^2 - 9 \left(4J_3^2+J_{6s}^2+4J_9^2\right)} \equiv f \end{split}$$

True in massless leptons case without scalars. In massless leptons with scalars $(J_{1c} \neq -J_{2c})$ fulfilled for $-J_{2c}$ and not fulfilled for J_{1c} . Similar expression (but with β) for massive leptons with no scalars. Not fulfilled for massive leptons with scalars. Large deviations in $J_{1c} = f \Rightarrow$ scalars. Large deviations in $-J_{2c} = f \Rightarrow$ experimental problem.

b) 4th symmetry manifest in the freedom to chose ϕ_{\perp}^{L} or $\phi_{0}^{L} = 0$

Joaquim Matias Universitat Autònoma de Barcelona

 $B \to K^* (\to K\pi) l^+ l^-$ Theory: A symmetry point of view

More general cases

The discussion of the differential symmetries can be generalised to:

- a) Massless leptons with scalars: $n_{\text{C}}=11, n_{\text{d}}=2, n_{\text{A}}=7, n_{\text{s}}=5$
 - Amplitudes ML-NS + scalar amplitude A_S : Seven amplitudes.
 - Four explicit symmetries and

$$A_{S}^{'}=e^{i\phi_{S}}A_{S}$$

The phase of A_S cannot be determined.

- b) Massive leptons without scalars: $n_C = 11, n_d = 1, n_A = 7, n_s = 4$
 - Amplitudes ML-NS + A_t : Seven amplitudes
 - Symmetries:
 - One global phase transformation $\phi_L = \phi_R$.
 - Two continuous LR symmetries are broken.
 - A new symmetry concerning the phase of A_t given as:

$$A_t^{'} = e^{i\phi_t}A_t$$

Four symmetries of differential distribution required.

 $B \to K^* (\to K\pi) I^+ I^-$ Theory: A symmetry point of view

Description of the Method for $B \to K^*(\to K\pi)^{j+1/r}$ Symmetries of the distribution Construction of Observables: $A_{s}^{(j)} := 2,3,4,5$ Explicit Solution and New non-trivial relation

c) Massive leptons with scalars: $n_C = 12, n_d = 0, n_A = 8, n_s = 4$

- Amplitudes: ML-NS $+A_s+A_t$: Eight amplitudes.
- Coefficients of the distribution 12: ML-NS $+J_{6c}$.
- Symmetries:
 - The global phase transformation, $\phi_L = \phi_R$.
 - The phase transformation of A_t in b) is valid.

In this case, there is NO dependency between J's, and four symmetries of the differential form required.

Case	Coefficients	Dependencies	Amplitudes	Symmetries
$m_l = 0, A_S = 0$	11	3	6	4 (4)
$m_l = 0, A_S <> 0$	11	2	7	5 (5)
$m_l > 0, \ A_S = 0$	11	1	7	4 (2)
$m_l > 0, A_S <> 0$	12	0	8	4 (2)
Remind: $n_c - n_d = 2n_A - n_s$				

Understanding A_T^2 : O_T' and O_{10}' A new example: A_T^5 A_T^3 and A_T^4 : Longitudinal sensitivity

Construction of Observables: $A_T^{(i)}$ i=2,3,4,5

Theory framework: NLO QCDF including Λ/m_b corrections.

Spin amplitudes $A_{\perp L,R}$, $A_{\parallel L,R}$, $A_{0L,R}$ are functions:

- $B \to K^*$ Form factors: $A_{0,1,2}(s), V(s), T_{1,2,3}(s)$.
- Wilson Coefficients: $\mathcal{C}_7^{(\mathrm{eff})}, \mathcal{C}_7^{'(\mathrm{eff})}, \mathcal{C}_9^{(\mathrm{eff})}, \mathcal{C}_{10}$

$$\begin{split} \mathbf{A}_{\perp \mathbf{L},\mathbf{R}} &= N\sqrt{2}\lambda^{1/2} \bigg[(\mathcal{C}_{9}^{(\text{eff})} \mp \mathcal{C}_{10}) \frac{V(q^{2})}{m_{B} + m_{K}^{*}} + \frac{2m_{b}}{q^{2}} (\mathcal{C}_{7}^{(\text{eff})} + \mathcal{C}_{7}^{'(\text{eff})}) T_{1}(q^{2}) \bigg] \\ \mathbf{A}_{\parallel \mathbf{L},\mathbf{R}} &= -N\sqrt{2} (m_{B}^{2} - m_{K^{*}}^{2}) \bigg[(\mathcal{C}_{9}^{(\text{eff})} \mp \mathcal{C}_{10}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} (\mathcal{C}_{7}^{(\text{eff})} - \mathcal{C}_{7}^{'(\text{eff})}) T_{2}(q^{2}) \bigg], \\ \mathbf{A}_{\mathbf{0}\mathbf{L},\mathbf{R}} &= -\frac{N}{2m_{K^{*}}\sqrt{q^{2}}} \times \bigg[(\mathcal{C}_{9}^{(\text{eff})} \mp \mathcal{C}_{10}) \bigg\{ (m_{B}^{2} - m_{K^{*}}^{2} - q^{2}) (m_{B} + m_{K^{*}}) A_{1}(q^{2}) - \\ &-\lambda \frac{A_{2}(q^{2})}{m_{B} + m_{K^{*}}} \bigg\} + 2m_{b} (\mathcal{C}_{7}^{(\text{eff})} - \mathcal{C}_{7}^{'(\text{eff})}) \bigg\{ (m_{B}^{2} + 3m_{K^{*}}^{2} - q^{2}) T_{2}(q^{2}) - \\ &- \frac{\lambda}{m_{B}^{2} - m_{K^{*}}^{2}} T_{3}(q^{2}) \bigg\} \bigg], \end{split}$$

 $B \to K^* (\to K\pi) l^+ l^-$ Theory: A symmetry point of view

HOW to deal with the form factors? Two alternatives:

• Framework of QCDF at LO+ α_s -NLO+ Λ/m_b corrections.

Egede et al '08 and '10

• Mix QCD LCSR FF (LO) + α_s -QCDF NLO (neglect Λ/m_b)

Altmannshofer et al. '08

Description of the Method for $B \to K^*(\to K\pi)^{l+l-1}$ Symmetries of the distribution A new example: A_T^2 : O_T^2 and O_{10}' Construction of Observables: A_T' in =2,3,4,5 A_T^3 and A_T^4 : Longitudinal sensitivity

HOW to deal with the form factors? Two alternatives:

• Framework of QCDF at LO+ α_s -NLO+ Λ/m_b corrections.

Egede et al '08 and '10

• Mix QCD LCSR FF (LO) + α_s -QCDF NLO (neglect Λ/m_b) Altmannshofer et al. '08 Description of the Method for $B \to K^*(\to K\pi)^{l+l-1}$ Symmetries of the distribution Construction of Observables: $A_T^{l} = 2,3,4,5$ $A_T^3 = ad A_T^2$: Longitudinal sensitivity

HOW to deal with the form factors? Two alternatives:

- Framework of QCDF at LO+ α_s -NLO+ Λ/m_b corrections. Egede et al '08 and '10
- Mix QCD LCSR FF (LO) + α_s -QCDF NLO (neglect Λ/m_b). Altmannshofer et al. '08

All FF (V, A_i, T_i) in the limit $m_B \to \infty$ and $E_K^* \to \infty \Rightarrow \xi_{\perp}(\mathbf{E}_K^*), \xi_{\parallel}(\mathbf{E}_K^*)$

$$\begin{aligned} A_{1}(s) &= \frac{2E_{K^{*}}}{m_{B} + m_{K^{*}}} \xi_{\perp}(\mathsf{E}_{\mathsf{K}^{*}}), & A_{2}(s) &= \frac{m_{B}}{m_{B} - m_{K^{*}}} \Big[\xi_{\perp}(\mathsf{E}_{\mathsf{K}^{*}}) - \xi_{\parallel}(\mathsf{E}_{\mathsf{K}^{*}}) \Big], \\ A_{0}(s) &= \frac{E_{K^{*}}}{m_{K^{*}}} \xi_{\parallel}(\mathsf{E}_{\mathsf{K}^{*}}), & V(s) &= \frac{m_{B} + m_{K^{*}}}{m_{B}} \xi_{\perp}(\mathsf{E}_{\mathsf{K}^{*}}), \\ T_{1}(s) &= \xi_{\perp}(\mathsf{E}_{\mathsf{K}^{*}}), & T_{2}(s) &= \frac{2E_{K^{*}}}{m_{B}} \xi_{\perp}(\mathsf{E}_{\mathsf{K}^{*}}), & T_{3}(s) &= \xi_{\perp}(\mathsf{E}_{\mathsf{K}^{*}}) - \xi_{\parallel}(\mathsf{E}_{\mathsf{K}^{*}}). \end{aligned}$$

 $B \to K^* (\to K\pi) I^+ I^-$ Theory: A symmetry point of view

Description of the Method for $B \to K^* (\to K\pi)^{l+l-1}$ Symmetries of the distribution Construction of Observables: $A_T^{l} = 2,3,4,5$ A_T^{l} and A_T^{l} : Longitudinal sensitivity

In this limit spin amplitudes reduce to a very simple form:

$$\begin{aligned} \mathbf{A}_{\perp \mathsf{L},\mathsf{R}} &= \sqrt{2} N m_B (1-\hat{s}) \bigg[(\mathcal{C}_9^{(\text{eff})} \mp \mathcal{C}_{10}) + \frac{2 \hat{m}_b}{\hat{s}} (\mathcal{C}_7^{(\text{eff})} + \mathcal{C}_7^{'(\text{eff})}) \bigg] \xi_{\perp} (E_{K^*}), \\ \mathbf{A}_{\parallel \mathsf{L},\mathsf{R}} &= -\sqrt{2} N m_B (1-\hat{s}) \bigg[(\mathcal{C}_9^{(\text{eff})} \mp \mathcal{C}_{10}) + \frac{2 \hat{m}_b}{\hat{s}} (\mathcal{C}_7^{(\text{eff})} - \mathcal{C}_7^{'(\text{eff})}) \bigg] \xi_{\perp} (E_{K^*}), \end{aligned}$$

$$\mathbf{A}_{0\mathsf{L},\mathsf{R}} = -\frac{Nm_B}{2\hat{m}_{K^*}\sqrt{\hat{s}}}(1-\hat{s})^2 \bigg[(\mathcal{C}_9^{(\text{eff})} \mp \mathcal{C}_{10}) + 2\hat{m}_b (\mathcal{C}_7^{(\text{eff})} - \mathcal{C}_7^{'(\text{eff})}) \bigg] \xi_{\parallel}(E_{K^*}),$$

- Corrections to FF relations:
 - order α_s in QCDF at NLO (factor. and non-factor.)
 - Λ/m_b breaking contributions: order 5 and 10%.

Description of the Method for $B \rightarrow K^* (\rightarrow K\pi) I^+ I^-$ Symmetries of the distribution Construction of Observables: $A_T^{(J)} \stackrel{i=2,3,4,5}{i=2,3,4,5}$ Understanding A_T^2 : O_T' and O_{10}' A new example: A_T^5 A_T^3 and A_T^4 : Longitudinal sensitivity

EXAMPLE Transverse Asymmetries: A_T^2

Definition

Kruger, J.M. '05

$$A_T^2 = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2} = -2\frac{\mathrm{Re}H_{+}^*H_{-}}{|H_{+}|^2 + |H_{-}|^2}$$

• Physics Sensitivity: Deviation from SM left-handed structure: $A_T^2\Big|_{SM} \sim 0$.

 Cleanliness: Soft form factor (ξ_⊥(0)) dependence cancel exactly at LO and very mild dependence at NLO.

• Domain: Low-Region $1 \leq q^2 \leq 6~{
m GeV}^2$ (High region, see G. Hiller et al.)

Understanding A_T^2

In the large E_K^* and m_B limit (only C_7') $A_7^2 \sim 4C_7^{\prime(\text{eff})} \frac{m_b M_B}{s} \frac{\Delta_- + \Delta_+^*}{2C_{10}^2 + |\Delta_-|^2 + |\Delta_+|^2}$ • Enhance sensitivity to $C_7^{\prime(\text{eff})}$ (modulus+sign) at low s ($1 < s < 2 \text{ GeV}^2$) and 1/s-slope:

$$\underline{A_{FB}} = \frac{3}{2} \frac{\text{Re}(A_{\parallel L}A_{\perp L}^*) - \text{Re}(A_{\parallel R}A_{\perp R}^*)}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2} \text{ versus } \underline{A_T^2} = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2}$$

Only FF protection at q_0^2 q_0^2 at LO (and NLO)

Joaquim Matias Universitat Autònoma de Barcelona

Understanding A_T^2 : O_7' and O_{10}'

 $B \to K^* (\to K\pi) I^+ I^-$ Theory: A symmetry point of view

Understanding A_T^2

n the large
$$E_K^*$$
 and m_B limit (only C_7')

$$A_7^2 \sim 4C_7'^{(\text{eff})} \frac{m_b M_B}{s} \frac{\Delta_- + \Delta_+^*}{2C_{10}^2 + |\Delta_-|^2 + |\Delta_+|^2} \qquad \Delta_{\pm} = C_9^{\text{eff}} + 2 \frac{m_b M_B}{s} (C_7^{(\text{eff})} \pm C_7'^{(\text{eff})})$$

$$BUT$$

$$\Delta_+ + \Delta_-^* = 2C_9^{\text{eff}} + 4 \frac{m_b M_B}{s} (C_7^{(\text{eff})})$$
• Enhance sensitivity to $C_7'^{(\text{eff})}$ (modulus+sign) at low s ($1 < s < 2 \text{ GeV}^2$) and 1/s-slope:

$$\underline{A_{FB}} = \frac{3}{2} \frac{\text{Re}(A_{\parallel L} A_{\perp L}^*) - \text{Re}(A_{\parallel R} A_{\perp R}^*)}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2} \text{ versus } \underline{A_T^2} = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2}$$

Only FF protection at q_0^2 q_0^2 at LO + **Absence of zero**

Joaquim Matias Universitat Autònoma de Barcelona

FF protection from $1 < q^2 < 6 \,\mathrm{GeV}^2$ SAME q_0^2 at LO+ **Absence of zero**

Understanding A_T^2 : O_7' and O_{10}' A new example: A_T^5

 $B \to K^* (\to K\pi) l^+ l^-$ Theory: A symmetry point of view

Understanding A_T^2 : O_T' and O_{10}' A new example: A_T^5 A_T^3 and A_T^4 : Longitudinal sensitivity

Understanding A_T^2

• A_T^2 : CP violating phase (O'_7) sensitivity BETTER than CP violating observables

$$\underline{A_{FB}} = \frac{3}{2} \frac{\text{Re}(A_{\parallel L} A_{\perp L}^*) - \text{Re}(A_{\parallel R} A_{\perp R}^*)}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2} \text{ versus } \underline{A_T^2} = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2}$$

 A_{FB} : Mild sensitivity to C'_7 mod+phase A^2_T : Strong sensitivity to C'_7 mod+phase

$$\operatorname{Num}(A_{FB}) \sim \frac{2m_b M_B}{q^2} C_7^{eff} + C_9 + \frac{2m_b M_B}{q^2} |C_7^{NP}| \cos \phi_7^{NP}$$

Description of the Method for $B \to K^* (\to K\pi)^{f-1}$ Symmetries of the distribution Construction of Observables: $A_T^{-1} = 2,3,4,5$ A_T^{-2} and A_T^{-1} : Longitudinal sensitivity

How solid are these predictions under FF changes?

Understanding A_T^2 : O_T' and O_{10}' A new example: A_T^3 A_T^3 and A_T^4 : Longitudinal sensitivity

Other sensitivities of A_T^2 : O'_{10}

 A_T^2 may serve also as an excellent test of O_{10}' if ONLY switched on. In the limit $m_b\to\infty, E_K^*\to\infty$

$$A_T^2 = \frac{2C_{10}C_{10}\cos\phi_{10}'}{C_{10}^2 + |C_{10}'|^2 + (2m_bM_BC_T/q^2 + C_9)^2}$$

• A_T^2 shows a linear dependence on C'_{10} like for $C_7^{eff'}$

- But the *q*²-dependence is different:
 - It does not show up a ZERO
 - Maximal around the standard minima of the A_{FB}.

A combined analysis with $A_T^{(3,4)}$ and A_T^5 allow to disentangle different WC.

 $B \to K^* (\to K\pi) I^+ I^-$ Theory: A symmetry point of view

$\begin{array}{l} \text{Understanding } A_T^2; \ O_T' \ \text{and} \ O_{10}' \\ \textbf{A new example:} \ A_T^5 \\ A_T^3 \ \text{and} \ A_T^4: \ \text{Longitudinal sensitivity} \end{array}$

A new example: A_T^5

Definition:

$$A_{T}^{(5)} = \frac{|A_{\parallel}^{R*}A_{\perp}^{L} + A_{\parallel}^{L}A_{\perp}^{R*}|}{|A_{\parallel}|^{2} + |A_{\perp}|^{2}}$$

a) It probes spin amplitudes A_{\perp} and A_{\parallel} differently from A_T^2 .

b) No angular coefficient mixes L/R with \perp /\parallel simultaneously.

$$A_{T}^{(5)}\Big|_{SM} = \frac{\left|-C_{10}^{2} + (2m_{b}M_{B}C_{7}^{eff}/q^{2} + C_{9}^{eff})^{2}\right|}{2\left[C_{10}^{2} + (2m_{b}M_{B}C_{7}^{eff}/q^{2} + C_{9}^{eff})^{2}\right]},$$

Minimum at LO of $A_T^5 \Rightarrow$ NEW relation: $C_{10}^2 = (2m_b M_B C_7^{eff} / q_1^2 + C_9^{eff})^2$

Maximum at LO of $A_7^5 \Rightarrow$ by **OLD** (A_{FB} -zero) relation: $-C_9^{eff} = 2m_b M_B C_7^{eff}/q_0^2$

d) Expresion in terms of J's (using explicit solution):

$$A_{T}^{(5)}\Big|_{m_{\ell}=0} = \frac{\sqrt{16J_{1}^{s\,2} - 9J_{6}^{s\,2} - 36(J_{3}^{2} + J_{9}^{2})}}{8J_{1}^{s}}.$$

Joaquim Matias Universitat Autònoma de Barcelona

 $B \to K^* (\to K\pi) I^+ I^-$ Theory: A symmetry point of view

A_T^5 sensitivities

 C'_7 sensitivity weaker, BUT dependence on C_9 , C_{10} and C'_{10} is transparent. At large recoil in presence of O'_{10} , O_7 , O_9 , O_{10}

$$A_{T}^{(5)}\Big|_{10'} = \frac{\left|-C_{10}^{2} + |C_{10}'|^{2} + \left(2m_{b}M_{B}C_{7}^{\text{eff}}/q^{2} + C_{9}^{\text{eff}}\right)^{2}\right|}{2\left[C_{10}^{2} + |C_{10}'|^{2} + \left(2m_{b}M_{B}C_{7}^{\text{eff}}/q^{2} + C_{9}^{\text{eff}}\right)^{2}\right]}$$

- a) **Maximum (LO)** in SM when $2m_b M_B C_7^{eff}/q_0^2 + C_9^{eff} = 0$ and $C'_{10} = 0$ then $A_7^5 \Big|_{max} = \frac{1}{2}$ (True for NLO also).
- b) Maximum moves also by NP contributions from C_7^{eff} or C_9^{eff} like A_{FB} .
- c) Minimum (LO) moves by NP contribution from C'_{10} . 0.6

$$|C_{10}'|^2 = C_{10}^2 - (2m_b M_B C_7^{eff}/q^2 + C_9^{eff})^2$$

d) If only O_{10}^\prime turn on and $C_{10}^\prime < C_{10}$

Distance between

SM maximum and NP (O'_{10}) maximum:

$$|C_{10}^{\prime NP}|^2/(C_{10}^2+|C_{10}^{\prime NP}|^2)$$

Joaquim Matias Universitat Autònoma de Barcelona

 $B \to K^* (\to K\pi) l^+ l^-$ Theory: A symmetry point of view

Transverse/Longitudinal Asymmetries: A_T^3 and A_T^4 .

Open longitudinal spin amplitude A₀ sensitivity in a protected way.

$$A_{T}^{3} = \frac{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}{\sqrt{|A_{0}|^{2}|A_{\perp}|^{2}}} \qquad \text{and} \qquad A_{T}^{4} = \frac{|A_{0L}A_{\perp L}^{*} - A_{0R}^{*}A_{\perp R}|}{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}$$

- Invariant under massless symmetries and high experimental resolution.
- Constructed to cancel both $\xi_{\perp}(0)$ and $\xi_{\parallel}(0)$ dependence at LO.
- Offer different sensitivity to $C_7^{'(\text{eff})}$, C_9^{eff} and C_{10} :

• A_T^3 at LO its minimum determines a relation: $C_{10}^2 = -(C_9^{eff} + 2\frac{m_b}{M_B}(C_7^{eff} - C_7^{eff'}))(C_9^{eff} + 2\frac{m_bM_B}{q^2}(C_7^{eff} - C_7^{eff'}))$

 $B \to K^* (\to K\pi) I^+ I^-$ Theory: A symmetry point of view

Joaquim Matias Universitat Autònoma de Barcelona

Transverse/Longitudinal Asymmetries: A_T^3 and A_T^4 .

Open longitudinal spin amplitude A₀ sensitivity in a protected way.

$$A_{T}^{3} = \frac{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}{\sqrt{|A_{0}|^{2}|A_{\perp}|^{2}}} \qquad \text{and} \qquad A_{T}^{4} = \frac{|A_{0L}A_{\perp L}^{*} - A_{0R}^{*}A_{\perp R}|}{|A_{0L}A_{\parallel L}^{*} + A_{0R}^{*}A_{\parallel R}|}$$

- Invariant under massless symmetries and high experimental resolution.
- Constructed to cancel both ξ_⊥(0) and ξ_{||}(0) dependence at LO.
- Offer different sensitivity to $C_7^{'(eff)}$, C_9^{eff} and C_{10} :

• A_T^3 at LO its minimum determines a relation: $C_{10}^2 = -(C_9^{eff} + 2\frac{m_b}{M_B}(C_7^{eff} - C_7^{eff'}))(C_9^{eff} + 2\frac{m_bM_B}{q^2}(C_7^{eff} - C_7^{eff'})))$ • A_T^4 at LO its minimum determines a relation: $C_9^{eff} = -\frac{m_b}{M_B}(C_7^{eff} - C_7^{eff'}) - \frac{m_bM_B}{q^2}(C_7^{eff} + C_7^{eff'})$ • A_T^4 its maximum is related to the minimum of A_T^3

Joaquim Matias Universitat Autònoma de Barcelona $B \to K^* (\to K\pi) l^+ l^-$ Theory: A symmetry point of view

Description of the Method for $B \rightarrow K^* (\rightarrow K\pi) l^+ l^-$ Symmetries of the distribution Construction of Observables: $A_T^{(\prime)}$ i=2,3,4,5

Understanding A_T^2 : O_T' and O_{10}' A new example: A_T^5 A_T^3 and A_T^4 : Longitudinal sensitivity

• Large-gluino scenario (a,b) with $\delta > 0$ clear at low-s region for A_T^3 and large-s for A_T^4

• Low-gluino scenario (c,d) with $\delta < 0$ clear at low-s region for A_T^4

Egede, Reece, Hurth, J.M, Ramon '08 update+Experimental sensitivity with 10 fb⁻¹

Description of the Method for $B \to K^* (\to K\pi) l^+ l^-$ Symmetries of the distribution Construction of Observables: $A_T^{(0)}$ i=2,3,4,5

Understanding A_T^2 : O_T' and O_{10}' A new example: A_T^5 A_T^3 and A_T^4 : Longitudinal sensitivity

Egede, Reece, Hurth, J.M, Ramon '10 update

Description of the Method for $B \to K^*(\to K\pi)^{l+l-1}$ Symmetries of the distribution Construction of Observables: $A_T^{l} = 2,3,4,5$ A_T^2 and A_T^2 : C_T and C_{10}^{l}

How solid are these predictions under FF changes?

Understanding A_T^2 : O_T' and O_{10}' A new example: A_T^5 A_T^3 and A_T^4 : Longitudinal sensitivity

Conclusions

- We have completed the method to construct QCD-protected observables A_T^i based on the exclusive 4-body B-meson decay $\bar{B}_d \to \bar{K}^{*0} l^+ l^-$ in the low dilepton mass region.
- We have identify the symmetries of the angular distribution and explore its consequences:
 - The possibility to fully solve the system
 - The construction of non-trivial observables
 - The emergence of non-trivial relations between the coefficients of the distribution.

Conclusions

• We have completed the method to construct QCD-protected observables A_T^i based on the exclusive 4-body B-meson decay $\bar{B}_d \to \bar{K}^{*0} I^+ I^-$ in the low dilepton mass region.

Understanding $A_{T_{10}}^2$: O_7' and O_{10}' A new example: A_{T}^5

 A_T^3 and A_T^4 : Longitudinal sensitivity

- We have identify the symmetries of the angular distribution and explore its consequences:
 - The possibility to fully solve the system
 - The construction of non-trivial observables
 - The emergence of non-trivial relations between the coefficients of the distribution.
- We have explored the NP sensitivities of A_T^2 , A_T^3 , A_T^4 and the new A_T^5 .
 - Their combined analysis together with A_{FB} may help in disentangling NP contributions to each Wilson coefficient.
 - A_T^2 emerges as an improved version of A_{FB} .

Understanding A_T^2 : O_T' and O_{10}' A new example: A_T^5 A_T^3 and A_T^4 : Longitudinal sensitivity

Conclusions

- We have completed the method to construct QCD-protected observables A_T^i based on the exclusive 4-body B-meson decay $\bar{B}_d \to \bar{K}^{*0} l^+ l^-$ in the low dilepton mass region.
- We have identify the symmetries of the angular distribution and explore its consequences:
 - The possibility to fully solve the system
 - The construction of non-trivial observables
 - The emergence of non-trivial relations between the coefficients of the distribution.
- We have explored the NP sensitivities of A_T^2 , A_T^3 , A_T^4 and the new A_T^5 .
 - Their combined analysis together with A_{FB} may help in disentangling NP contributions to each Wilson coefficient.
 - A_T^2 emerges as an improved version of A_{FB} .
- The experimental prospects of CP-violating observables are rather limited. Indeed the Aⁱ_T may offer a better sensitivity to large CP phases.

Understanding A_T^2 : O'_7 and O'_{10} A new example: A_T^5 A_T^3 and A_T^4 : Longitudinal sensitivity

Conclusions

- We have completed the method to construct QCD-protected observables A_T^i based on the exclusive 4-body B-meson decay $\bar{B}_d \to \bar{K}^{*0} l^+ l^-$ in the low dilepton mass region.
- We have identify the symmetries of the angular distribution and explore its consequences:
 - The possibility to fully solve the system
 - The construction of non-trivial observables
 - The emergence of non-trivial relations between the coefficients of the distribution.
- We have explored the NP sensitivities of A_T^2 , A_T^3 , A_T^4 and the new A_T^5 .
 - Their combined analysis together with A_{FB} may help in disentangling NP contributions to each Wilson coefficient.
 - A_T^2 emerges as an improved version of A_{FB} .
- The experimental prospects of CP-violating observables are rather limited. Indeed the Aⁱ_τ may offer a better sensitivity to large CP phases.

BACK-UP slides

 $B \to K^* (\to K\pi) I^+ I^-$ Theory: A symmetry point of view

Ensemble method to compute Λ/m_b

• Parametrize each K^{*} spin amplitude:

$$A_i' = A_i(1 + C_i e^{i\theta_i}),$$

where C_i is the relative amplitude and θ_i the relative strong phase.

• The effective Hamiltonian which controls the decay has three terms,

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{(u)\mathrm{SM}} + \mathcal{H}_{\mathrm{eff}}^{(t)\mathrm{SM}} + \mathcal{H}_{\mathrm{eff}}^{(t)\mathrm{NP}}.$$

SM CP violating / SM decay / NP contributions. Consequently:

$$egin{aligned} \mathcal{A}' &= \left[\left(\mathcal{A}_{ ext{SM}}(\lambda_u
eq 0) - \mathcal{A}_{ ext{SM}}(\lambda_u = 0)
ight) imes (1 + C_1 e^{i heta_1})
ight] + \ & \left[\mathcal{A}_{ ext{SM}}(\lambda_u = 0) imes (1 + C_2 e^{i heta_2})
ight] + \ & \left[\left(\mathcal{A}_{ ext{Full}}(\lambda_u
eq 0) - \mathcal{A}_{ ext{SM}}(\lambda_u
eq 0)
ight) imes (1 + C_3 e^{i heta_3})
ight]. \end{aligned}$$

Description of the Method for $B \to K^*(\to K\pi)^{l^+}l^-$ Symmetries of the distribution Construction of Observables: $A_T^{j^-}$ i=2,3,4,5 $A_T^{j^-}$ and $A_T^{j^-}$: Longitudinal sensitivity

An estimate of the theoretical uncertainty arising from the unknown Λ/m_b corrections is made using a randomly selected ensemble.

- For each member of the ensemble take values in the ranges $C_i \in [-0.1, 0.1]$ and $\theta_i \in [-\pi, \pi]$ using a random uniform distribution. Conditions
 - Assume each theory parameter C_i is uncorrelated.
 - True value of these parameters can be anywhere in a $\pm 10\%$ band with equal probability.
- To estimate the contribution to the theoretical uncertainties from Λ/m_b corrections for a particular observable, each element in the ensemble was used to calculate the value of that observable at a fixed value of q².
- Question: What the typical (66% of the time true value of the observable falls in the band) uncertainty coming from Λ_{QCD}/m_b is?
- This answer the question "how often a theory correction on the SM looks like NP" once a measurement is done.