Direct Measurements of V_{tb} and a little bit on V_{ts} and V_{td}

Wolfgang Wagner Bergische Universität Wuppertal CKM-Workshop, Warwick, 10.09.2010

Measurements involve on-shell top quarks produced at a hadron collider.

Top-Quark Decay

Single-Top Production

1) Top-Antitop-Quark Production

Top Pair Decay Channels

lepton (e, μ) + jets channel = "golden channel"

- + large branching fraction (30%)
- + manageable backgrounds
- + allows full event reconstruction

e.g. counting experiment with secondary vertex reconstruction, includes cut on $H_T > 230 \text{ GeV}$

using neural network b-tagging algorithm

method: Phys. Rev. Lett. 100 (2008) 192003

W. Wagner, Measurement of V_{th} ...

Top-Quark Branching Ratio

decay via weak interaction to a real W boson (\rightarrow special) standard model prediction:

$$\mathsf{BR}(t \to W^+ + b) \simeq 100\%$$

decays t \rightarrow d + W⁺ and t \rightarrow s + W⁺ strongly CKM suppressed 0.0048 < | V_{td} | < 0.014 and 0.037 < | V_{ts} | < 0.043 (using CKM unitarity)

Identifying b-quark jets (b-tagging) we separate experimentally the Wb final state from W.

$$R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2}$$

Adressed questions:

Is |V_{tb}| >> |V_{ts}|, |V_{td}| as predicted?

- Is there room for an additional (fourth generation) t \rightarrow W + q_x decay ?

W. Wagner, Measurement of V_{tb} ...

simultaneous measurement of R and σ (ttbar)

\rightarrow split data set in disjoint subsets: N (jets) × lepton type × N (b tags)

Projections on R_b

Two important uncertainties:

statistical	+ 0.067	-0.065
b-tagging efficiency	+0.059	-0.047
total @ 0.9 fb ⁻¹	+0.092	-0.083

 by updating from 0.9 fb⁻¹ to 8 fb⁻¹ (available now) reach: +0.067 / -0.056 (syst. already dominant; no improvements on syst. uncertainty assumed)

• by updating to 16 fb⁻¹ (run until 2014) reach:+0.065 / -0.054 \Rightarrow possible reach $|V_{ts}|^2 + |V_{td}|^2 < 0.19 \cdot |V_{tb}|^2$

LHC

- first top candidates seen by ATLAS and CMS
- recorded luminosity now L_{int} > 3 pb⁻¹
- at the end of 2011 with L_{int} = 1 fb-1 one expects ≈ 8000 ttbar reconstructed events in the lepton+jets channel
- need to control b-tagging systematics, for example special working point, etc.
 3% uncertainty may be achievable

2) Single Top-Quark Production

Experimental Signature:

charged lepton + missing E_{τ} + 2 or 3 energetic jets

Theoretical cross section predictions at \sqrt{s} = 1.96 TeV

 $\sigma_{t} = 1.98 \pm 0.25 \text{ pb}$ $\sigma_{s} = 0.88 \pm 0.11 \text{ pb}$

B.W. Harris et al. Phys. Rev. D 66, 054024 (2002), Z. Sullivan, Phys. Rev. D 70, 114012 (2004) compatible results: Campbell/Ellis/Tramontano, Phys. Rev. D 70, 094012 (2004), N. Kidonakis, Phys.Rev. D 74, 114012 (2006)

W. Wagner, Measurement of V_{th} ...

Finding the Needle in the Haystack

Main Backgrounds

top-antitop-pairs

00000

proton

antiproton

Need optimized discrimination between signal and background.

N.

W. Wagner, Measurement of V_{tb} ...

Neural Network Analysis

Idea:

combine many variables into one more powerful discriminant

important variables:

 $Q \cdot \eta$, reconstructed top quark mass, top quark polarisation angle, Jet E_T and η , NN b tagger output, W boson η , ...

|V_{tb}| Determination

- Using cross section result measure $|V_{tb}|$
- Assume Standard Model (V-A) coupling and |V_{tb}| >> |V_{ts}|, |V_{td}| (from BR(t →Wb) measurements)

$$|V_{tb,meas}|^{2} = \frac{\sigma_{meas}}{\sigma_{SM}} \cdot |V_{tb,SM}|^{2}$$

$$q \qquad q' \qquad q' \qquad q \qquad t$$

$$g_{usessessesses} \qquad \overline{b} \qquad \overline{q'} \qquad \overline{q'} \qquad \overline{b}$$

$$V_{tb}$$

 $|V_{tb}|\text{=}0.88\pm0.07~\text{(stat+syst)}\pm0.07~\text{(theory)}$

CDF and DØ Collaborations: arXiv: 0908.2171 [hep-ex]

W. Wagner, Measurement of $V_{tb} \hdots$

Projections on |V_{tb}|

- Observation analyses use 2.3 and 3.2 fb-1 of data.
- DØ is preparing an analysis with 5.4 fb⁻¹.
- Analyses use Bayesian approach → difficult to separate statistical and systematic uncertainties.
- Systematic uncertainties on signal detection efficiency will be limiting factor: JES, ISR/FSR, PDF, b-tagging and lepton ID efficiency approx. at 10% level
- Theory cross section: $\Delta \sigma_{\text{theo}} = 14\%$
- $\Delta |V_{tb}| = \frac{1}{2} \Delta \sigma \implies \Delta |V_{tb}| = 5\%$ (exp.) + 7% (theo.)

Preparations for single top at the LHC

- t-channel is by far dominating: σ (@ 7 TeV) \approx 60 pb
- Preparing studies are available:
 - ATLAS: ATL-PHYS-PUB-2010-003
 - CMS: CMS-PAS-TOP-09-005
- Several 100 pb⁻¹ are needed. Control of systematic uncertaintes is key.

LHC

Beyond |V_{tb}|

- Need samples of simulated events for all combinations to compute efficiencies.
- Priority at the LHC: "rediscover" single top-quarks.
- Limits on $|V_{ts}|$ and $|V_{td}|$ at the 10% level may be possible in the long run.

W. Wagner, Measurement of V_{tb} ...

Summary

- Top-Quark physics at hadron colliders contributes to our knowledge on the CKM element V_{tb}, and a bit on V_{ts} and V_{td}.
- Studying top-quark decay in top-antitop events probes the SM prediction $|V_{tb}| >> |V_{ts}| + |V_{td}|$.
- Single top-quark production measures $|V_{tb}|$ (currently using the assumption above). status: $|V_{tb}|$ = 0.88 ± 0.07 (stat+syst) ± 0.07 (theory)
- Systematic uncertainties start to limit measurements already now, even at the Tevatron.

 \Rightarrow need excellent understanding of b-tagging, jet energy scale, lepton ID, etc.

 Priority at the LHC: "rediscovery" of single top-quarks. In a second step more involved analyses will emerge.

