Measurement of CPV with $B^0 \rightarrow (c\overline{c})K^0$ and $B_s \rightarrow J/\psi h^0$ decays

CKM 2010, 6-10 September, Warwick Jin Li

Seoul National University

Contents

- $sin(2\phi_1)$ measurements from $b \rightarrow c\overline{c}s$ processes.
- $\Upsilon(5S)$ at Belle $\Upsilon(5S) \rightarrow B_s^* \overline{B}_s^* (\rightarrow J/\psi h^0)$

Measurement method in B-factories

Experimental considerations in Δt distribution

Vertex fit

IP (interaction point) tube constraint fit for B decay vertices

X-Y Size: $\sigma_x \sim 100 \mu m$, $\sigma_y \sim 5 \mu m \oplus B$ -flight smearing

Flavor Tagging

$B \rightarrow J/\psi K^0$ modes

 $K_{\rm L}$ reconstruction

Theoretically clean
 Clear experimental signatures
 Relatively large BF

$$\lambda_{J/\psi K^0_{S,L}} = \mp e^{-2i\phi_1}$$

$$A_{J/\psi K_{S,L}^0}^{CP}(t) = \operatorname{Im}(\lambda_{J/\psi K_{S,L}^0})\sin(\Delta m t) = \pm \sin 2\phi_1 \sin(\Delta m t)$$

•Only detect direction by KLM (ECL).

Ƴ(4s)

•Calculate KL energy using M_B constraint.

•Use p_B^* (B momentum in CMS) to fit.

B->J/ψ K⁰ events in B-factories

Precise measurement

Coming soon : Final Belle sample

	J Ι ψ K _S ⁰	J Ι φ Κ _L 0	ψ (2<i>S</i>)K_S⁰	$\chi_{c1}K_{S}^{0}$	<i>N_{BB}</i> (х 10 ⁶)
Signal yield ('10)	12727±115	10087±154	1981±46	943±33	770
Purity ('10) [%]	97	63	93	89	112
Signal yield ('06)	7484±87	6512 ± 123	_	—	525
Purity ('06) [%]	97	59	—	—	535

New tracking software helps to increase signal yield.

9

$sin2\phi_1$ combined

ϕ_1 measurement

Belle's large $\Upsilon(5S)$ data sample

KEKB &Belle runs very smoothly at $\Upsilon(5S)$ resonance

Keep the same boost $\beta\gamma$ =0.425 as in Υ (4S) case

•E(e⁺): 3.500 GeV→3.595 GeV

•E(e⁻): 7.996 GeV→8.211 GeV

2005: 1.86 fb⁻¹ 2006: 21.7 fb⁻¹ 2008: 27.2 fb⁻¹ 2009: 70.8 fb⁻¹ Total: 121 fb⁻¹

CLEO 2003: 0.42 fb⁻¹

Luminosity record: 2.11×10³⁴ cm⁻²sec⁻¹ (Jun, 2009) Integrated Lum. record: 1.48fb⁻¹/day, 8.01fb⁻¹/week

$\Upsilon(5S)$ and B_s

 $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B} (B = B_u^+, B_d^0)$

Υ(5S): Analogous to Υ(4S), but with more modes $e^+e^- \rightarrow \overline{bb}(\Upsilon(5S)) \rightarrow B^{(*)}\overline{B}^{(*)}$, BB, BBππ, $B_s^{(*)}\overline{B}_s^{(*)}$, $\Upsilon(1S)$ ππ, ...

B_s production mechanism

Results from 23.6 fb⁻¹ (1.39 M $B_{s}^{(*)}B_{s}^{(*)}$ pairs)

$B_s \rightarrow CP$ eigenstate decay

- •Pure CP-eigenstate $B_s \rightarrow J/\psi(\eta(i), f_0)$, K⁺K⁻ enable direct measurement of mixing and CPV parameters ($\Delta\Gamma_s$, β_s) via lifetime distribution. - Dunietz, Fleischer, Nierste, PRD 63,114015
- • $\Delta\Gamma/\Gamma$ is accessible without the need of tagging Bs mesons.

•Unlike J/ $\psi\Phi$, no need to disentangle CP eigenstates using angular distribution. •Neutral detection is clean in e⁺e⁻ environment. •Quantum-correlated B_s pairs make it possible to measure just using single CP eigenstate to obtain $\Delta\Gamma$.

B_s Time distribution (1)

Master Equation for untagged quantum correlated B_s decay time difference Δt

$$\Gamma(B(t) \to f) = \frac{\Gamma(B \to f)}{2} e^{-|\Delta t|\Gamma} \left\{ (1 + |\lambda|^2) \cosh \frac{\Delta \Gamma \Delta t}{2} + 2\operatorname{Re}(\lambda) \sinh \frac{\Delta \Gamma \Delta t}{2} \right\}$$

$$\lambda = \frac{q\overline{A}_f}{pA_f} = \eta_f e^{-i\phi} \qquad \phi = -2\beta_s = -2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$

$$\left|\left\langle f_{CP+} \mid B_{s}^{0} \right\rangle\right|^{2} = \begin{cases} e^{-\left(\Gamma + \frac{\Delta\Gamma\cos\phi}{2}\right)\Delta t} \approx e^{-\Gamma_{H}\Delta t} & \Delta t < 0\\ e^{-\left(\Gamma - \frac{\Delta\Gamma\cos\phi}{2}\right)\Delta t} \approx e^{-\Gamma_{L}\Delta t} & \Delta t > 0 \end{cases}$$

B_s Time distribution (2)

Toy MC study

$$\left|\left\langle f_{CP+} \mid B_{s}^{0} \right\rangle\right|^{2} = \begin{cases} e^{-\Gamma_{H}\Delta t} & \Delta t < 0\\ e^{-\Gamma_{L}\Delta t} & \Delta t > 0 \end{cases}$$

~ 300 fb⁻¹ Υ (5S) data, using pure CP J/ ψ (η , η ', f_0),DsDs (40 events in 23.6 fb⁻¹)

	$\partial(\Delta 1/1) \times 100$					
	$N_{ m sig}=500$	$N_{ m sig}=1000$	$N_{ m sig}=2000$	$N_{ m sig} = 5000$		
S/B = 0.40	7.45 ± 0.17	5.25 ± 0.12	$3.80\ \pm 0.09$	2.42 ± 0.05		
	(7.42 ± 0.17)	(5.21 ± 0.12)	(3.69 ± 0.08)	(2.29 ± 0.05)		
S/B = 1.0	6.88 ± 0.15	4.91 ± 0.11	3.38 ± 0.08	2.18 ± 0.05		
	(6.89 ± 0.15)	(4.66 ± 0.10)	(3.53 ± 0.08)	(2.17 ± 0.05)		
S/B = 2.0	6.62 ± 0.15	4.70 ± 0.11	3.24 ± 0.07	2.09 ± 0.05		
	(6.63 ± 0.15)	(4.62 ± 0.10)	(3.30 ± 0.07)	(2.04 ± 0.05)		

S(AT(T)) > 100

17

$B_s \rightarrow J/\psi f_0(980)$

• Extrapolation from $B_s \rightarrow J/\psi \Phi$

 $\frac{\mathcal{B}(B_s^0 \to J/\psi f_0)\mathcal{B}(f_0 \to \pi^+\pi^-)}{\mathcal{B}(B_s^0 \to J/\psi \phi)\mathcal{B}(\phi \to \pi^+\pi^-)} \approx 0.2 - 0.3$ $= 0.42 \pm 0.11$

Stone et al., PRD79, 074024 (2009)

CLEO D_s + -> $f_0 e^+ v$,

 $CDF: B(B_{s} \rightarrow J/\psi\Phi; \Phi \rightarrow K^{+}K^{-}) = (6.4\pm2.0)\times10^{-4}$ $\Rightarrow B(B_{s} \rightarrow J/\psi f_{0}; f_{0} \rightarrow \pi^{+}\pi^{-}) = (1.3-2.7)\times10^{-4}$

• Theory (QCD @ LO) B(B_s \rightarrow J/ ψ f₀;f₀ \rightarrow $\pi^{+}\pi^{-}$)=(3.4±2.4)×10⁻⁴ · (50⁺⁷₋₉)% QCD(LO), BES, PRD80,

= (1.6±0.3)×10⁻⁴

QCD(LO), BES, PRD80, PRD81,074001 (2010) 052009 (2009) $- (1.6\pm0.2) \times 10^{-4}$

Strategy to fit

In Mbc signal region:

 We choose a reduced ΔE region (avoid B⁰,B⁺ band) : -0.1 GeV< ΔE<0.20 GeV.

•To get rid of correlations, and reduce yields in $B_s \rightarrow J/\psi \phi$, $J/\psi \eta$.

•To reduce correlations in $B_s \rightarrow J/\psi \eta'$.

•To remove J/ ψ K_S, J/ ψ p⁰,J/ ψ π⁺π⁻ BG.

Fit region

-0.1 GeV< \triangle E<0.20 GeV, m(π + π -)<1.8 GeV,

•The final background categories in fitting:

•Bs→J/ψ η'.

- •Non-resonant Bs \rightarrow J/ $\psi \pi^+ \pi^-$.
- •J/ ψ K⁺, J/ ψ π ⁺.

•Other J/ Ψ X BG (does not peak in Δ E and m(π + π -), no correlation) •Continuum BG.

$B_s \rightarrow J/\psi f_0(980)$ Results

2D fit to ΔE and m($\pi^+\pi^-$)

 $\mathcal{B}(B_s^0 \to J / \psi f_0) \mathcal{B}(f_0 \to \pi^+ \pi^-) < 1.63 \times 10^{-4} (90\% \text{ CL})$

update with 5 times more data (121 fb⁻¹) on going

Summary

- $sin(2\phi_1)$ measurements from $b \rightarrow c\overline{c}s$ processes soon to be updated.
- Expect hundreds of clean signals for $B_s \rightarrow J/\psi h^0(\eta('), f_0)...$ from full 121 fb⁻¹ Belle data with improved tracking.

More open modes for ${\sf B}_{\sf s}$ decays

Expect more results from full 121 fb⁻¹ data.

BACKUP

Charmless: $B_s \rightarrow K^+K^-$, $K^0\overline{K^0}$

In addition to being CP eigenstates:

By relating to $B0 \rightarrow \pi^+\pi^-$ by SU(3) symmetry and U-spin symmetry:

•BF and CP asymmetries sensitive to New Physics.- London et al., PRD 70, 031502 (2004) •Sensitive to Φ_3/γ of CKM angle.

- Fleischer, PLB 459, 306 (1999)

$$\mathcal{B}(B^0_s \to K^+ K^-)$$

$$=(3.8^{+1.0}_{-0.9}\pm0.7)\times10^{-5}$$

CDF: (3.3±0.6±0.7)×10⁻⁵ (PRL97, 211802)

C.C.Peng et al., arXiv:1006.5115

$$\mathcal{B}(B_s^0 \to K^0 \overline{K}^0) < 6.6 \times 10^{-5}$$

B_s CKM favored (b \rightarrow c) decay

 $\rm B_{s}$ decays are poorly known.

•Provide absolute BF as reference point.

•Measure B_s and B_s^* properties (m(B_s^*), m(B_s)).

•Measure $\Upsilon(5S) \rightarrow B_s^{(*)}B_s^{(*)}$ properties:

 $f(B_s^{(*)}B_s^{(*)}) = \Gamma(B_s^{(*)}B_s^{(*)}) / \Gamma(B_s \text{ total}), B_s \text{ angular distribution.}$

Previous $B_s \rightarrow D_s^-\pi^+$ study:

•
$$\mathcal{B}(B_s \to D_s \pi^-) = (3.67^{+0.35}_{-0.33} \pm 0.65) \times 10^{-3}$$

R.Louvot et al, PRL102,021801 (2009)

Now: More results from $B_s \rightarrow D_s^{*-}\pi^+$, $D_s^{*(-)}\rho^+$ D_s^* , ρ are difficult in hadron colliders (neural detection).

Observation of $B_s \rightarrow D_s^- \rho^+$

$$\begin{split} \mathcal{B}(\mathsf{B}^0_{\mathsf{s}} \to \mathsf{D}^{*-}_{\mathsf{s}} \rho^+) &= \left(11.8^{+2.2}_{-2.0}(\mathrm{stat.}) \pm 1.7(\mathrm{syst.}) \pm 1.8(\mathsf{f}_{\mathsf{s}})\right) \times 10^{-3} \\ \\ \mathbf{f}_{\mathsf{L}} &= \mathbf{1.05}^{+0.08}_{-0.10} - 0.04 \\ \end{split} \quad \text{or} \quad f_{\mathsf{L}} \in [0.93, 1.00] \text{ at } 68\% \text{ C.L.} \end{split}$$

Y(5S): large branching fraction to Y(1/2S) $\pi\pi$

Υ (5S) decay to B⁰ and B⁺

34

Decompose 3,4 body B^(*)В^(*)п,ВВпп rec. Reconstruct additional Π^+ rec. We have missing 4-momentum of the B r(5S) system other than detected B and π В $\Delta E^{ m miss}, M_{bc}^{ m miss}$ Obtain miss. $M_{bc} > 5.35 \ GeV/c: 17.5 \pm \frac{1.8}{1.6} \pm 1.3 \%$ Sum of 5 B modes 35 BBπ **Β*Β**π 0.4 Data MC 30 **Β*Β**π Events / 8 MeV $BB \pi^+$ (0.0 ± 1.2 ± 0.3) % **B*B***π 0.3 $B^{*}\overline{B}\pi^{+}$ $(7.3 \pm \frac{2.3}{2.1} \pm 0.8)$ % 0.2 $B^*B^*\pi^+$ (1.0 ± ^{1.4} ± 0.4) % 0.1 5 Residual $(9.2 \pm \frac{3.0}{2.8} \pm 1.0)$ % 0.1 0.1 -0.1 0 -0.1 $\Delta E^{\text{mis}} + M_{\text{bc}}^{\text{mis}} - 5.28$ (GeV) $\Delta E^{mis} + M_{bc}^{mis} - 5.28$ (GeV)

Only B candidates from signal region M_{bc}^{rec}>5.37 MeV/c² are used

Summary & Outlook

•Bs decays have been studied.

•CP eigenstates: $B \rightarrow J/\psi \eta$ (first observation), $J/\psi \eta$ ' (evidence).

•CKM-favoured: $B_s \rightarrow D_s^{*-}\pi^+$, $D_s^{-}\rho^+$, $D_s^{*-}\rho^+$ (first observations).

•B⁺ and B⁰ production at $\Upsilon(5S)$ resonance: Surprising new result

•Large branching fraction of 3 and 4 body decays of $\Upsilon(5S)$ observed.

•Other modes being studied:

•Anothor pure CP eigenstate: $B_s \rightarrow J/\psi f_0(\pi \pi)$.

•Data set increase ~5 times, with new tracking:

•All the previous results will be updated.

•More channels to be observed. (e.g.: $B_s \rightarrow D_s^{(*)}D_s^{(*)}$, K^0K^0)