CPV in Charm Mixing Belle, BaBar and Tevatron

Brian Meadows

Representing the BaBar Collaboration

CKM 2010 *U. Warwick, England, Sept* 6-10, 2010

CKM 2010, U. Warwick, England, 09/08/2010

Outline

- Mixing (particle anti-particle oscillations).
- Brief review of evidence for mixing
- A New result
- Prospects for observing CPV in mixing

Outline

- Mixing (particle anti-particle oscillations).
- Brief review of evidence for mixing
- A New result
- Prospects for observing CPV in mixing

Mixing Parameters

• Flavour oscillations in the neutral D system arise from the propagation of two mass eigenstates D_1 and D_2 that comprise the flavour states

$$irac{\partial}{\partial t}\left(egin{array}{c} |D^0>\ |ar{D}^0> \end{array}
ight) = \left(\mathcal{M} - rac{i}{2}\mathcal{G}
ight) egin{array}{c} |D^0>\ |ar{D}^0> \end{array}$$

 $egin{array}{rcl} |D_1>&=&p|D^0\!\!>\!+q|ar{D}^0\!\!>&&|D_1(t)\!\!>&=&|D_1\!\!>e^{-i(\Gamma_1/2+im_1)t}\ |D_2\!\!>&=&p|D^0\!\!>\!-q|ar{D}^0\!\!>&&|D_2(t)\!\!>&=&|D_2\!\!>e^{-i(\Gamma_2/2+im_2)t} \end{array}$

Eigenvalues are $m_{1,2}+i\Gamma_{1,2}/2$ with means: $M=(m_1+m_2)/2$ $\Gamma=(\Gamma_1+\Gamma_2)/2$

• It is usual to define four mixing parameters:

CKM 2010, U. Warwick, England, 09/08/2010

Brian Meadows

decay

Mixing in Standard Model is Very Small

Off-diagonal mass matrix element – two leading terms:

 $\Delta C=2$ (short-range) (contributes mostly to x)

Down-type quarks in loop:

- b : CKM-suppressed ($|V_{ub}V_{cb}|^2$)
- *d*, *s* : GIM-suppressed

 $x \propto (m_s^2\!\!-\!\!m_d^2)/m_c^2\!\sim\!10^{-5}$

(almost 2 orders of magnitude less than current sensitivity) Hadronic intermediate states (long-range)

Difficult to compute (need to know all the magnitudes and phases, ...) Most computations predict *x* and *y* in the range $10^{-3}-10^{-2}$ and |x| < |y|Recent predictions: $|x| \le 1\%$, $|y| \le 1\%$ *(consistent with current observation)*

 $x_{D'}$ y_D at 1% consistent with SM, BUT *CPV* at 10⁻³ levels would be signal for NP

CKM 2010, U. Warwick, England, 09/08/2010

Mixing Measurements

□ All current measurements, so far, exploit interference between direct decays $D^0 \rightarrow f$ and decays through mixing:

- Interference term is approximately linear in small quantities x_D , y_D BUT λ_i and δ_i are, generally, unknown
- So can usually only measure the rotated quantities $x'_{D} = x_{D} \cos \delta_{i} + y_{D} \sin \delta_{i}$ DQG $y'_{D} = y_{D} \cos \delta_{i} - x_{D} \sin \delta_{i}$ unless measurements of δ_{i} from charm threshold are available.

Outline

- Mixing (particle anti-particle oscillations).
- Brief review of evidence for mixing
- A New result
- Prospects for observing CPV in mixing

Wrong Sign (WS) Decays $D^{0} \rightarrow K^{+}\pi^{-}$

• Since $|\lambda_{\bar{f}}| >> 1$, all three terms are comparable

■ For "right-sign" (*RS*) decays $D^0 \rightarrow K^- \pi^+$ though, $|\lambda_f| <<1$, so 2^{nd} two terms are negligible and R_{RS} is approximately exponential. $R_{RS} \approx e^{-\Gamma t} |\mathcal{A}_f|^2$

Evidence for Mixing in $D^0 \rightarrow K^+\pi^-$

Mixing seen by Babar and CDF in time-dependence of the R_{WS}/R_{RS} ratio

Belle result was the most sensitive, BUT evidence for mixing not significant !

Mixing and CPV Parameters for $D^0 \rightarrow K^+\pi^-$

				Fit results/10 ⁻³		
	Fit type	Parameter	BaBar ^a	CDFb	Belle ^c	
	No CPV or mixing	RD	3.53 ± 0.09	_	3.77 ± 0.01	
		R _D	3.03 ± 0.19	3.04 ± 0.55	3.64 ± 0.17	
	No CPV	x' ²	-0.22 ± 0.37	-0.12 ± 0.35	$0.18^{+0.21}_{-0.23}$	
		y'	9.7 ± 5.4	8.5 ± 7.6	0.6 ^{+4.0} -3.9	
		R _D	3.03 ± 0.19	-	_	
		аD	-21 ± 54	-	23 ± 47	
		a _M	_	-	670 ± 1200	
	CPV allowed	x' ²⁺	-0.24 ± 0.52	-	< 0.72	
me for		x' ² -	-0.20 ± 0.50	_	_	Consistent
and \overline{D}^0		y'+	9.8 ± 7.8	-	-28 < y' < 21	with zero
		y'-	9.6 ± 7.5	-	_	1
	$R_D = \lambda_f^2$	(Ratio o	of DCS to	CF decays))		
	$a_D = (R)$	$(\bar{r}_{D}-R_{ar{D}})/$	$V(R_D+R_{ar D})$)		
	$R_{\scriptscriptstyle M} = (x_{\scriptscriptstyle I}^2$	$(2^2 + y_D^2)/2$				
	$a_M = (R$	$_{\scriptscriptstyle M}-R_{\bar{\scriptscriptstyle M}})/$	$/(R_{\scriptscriptstyle M}+R_{\scriptscriptstyle ar M})$)		
√ 2010, U.	Warwick, England	, 09/08/2010)		Briar	n Meadows 🛛 🔰

 D^0

Lifetime Ratio Measurements

- □ In the absence of *CPV*,
 - *D*₁ is *CP*-even and *D*₂ is *CP*-odd
 - Measurement of lifetimes τ for D⁰ decays to CP-even and CP-odd final states lead to a measurement of y !

• Allowing for CPV, measure the D^0 and \overline{D}^0 asymmetry

$$A_{ au} = rac{ au^{-}(ar{D}^{0}
ightarrow h^{+}h^{-}) - au^{+}(D^{0}
ightarrow h^{+}h^{-})}{ au^{-}(ar{D}^{0}
ightarrow h^{+}h^{-}) + au^{+}(D^{0}
ightarrow h^{+}h^{-})} = rac{1}{2} A_{M} y \cos \phi_{M}
ightarrow x \sin \phi_{M}$$

PRD 69,114021 (Falk, Grossman, Ligeti, Nir & Petrov)

CKM 2010, U. Warwick, England, 09/08/2010

Brian Meadows

Lifetime Ratio (Untagged D⁰'s)

Phys.Rev.D80:071103,2009 - 384 fb⁻¹

- These are dis-joint samples of $K\pi$ and KK decays untagged much larger
- For each $K\pi$ and KK pair, selection & reconstruction systematics ~cancel.

(for comparison)

Recent result

HFAG World Average for *y*_{CP}

A. Schwartz, et al. (updated, EPS 2009)

CKM 2010, U. Warwick, England, 09/08/2010

Brian Meadows

Time-Dependent Amplitude Analysis of $D^0 \rightarrow K^+ \pi^- \pi^0$ Phys.Rev.Lett.103:211801,2009 – 384 fb⁻¹ Mixing $D^0 \rightarrow \overline{D}^0 \quad \overline{\mathcal{A}}_{\overline{f}}(CF)$ Similar to $D^{0} \rightarrow K^{+}\pi^{-}$ EXCEPT: f is now point in the Dalitz Plot $\mathcal{A}_{ar{f}}(DCS)$ $m_{K^{+}\pi^{-}}^{2}$ [GeV²/c⁴] • Again, for $|x|, |y| \ll 1$, decay rate R_{WS} is : $R_{_{WS}}=e^{-\Gamma t}|\mathcal{A}_{ar{f}}|^2\left[1\!+\!\lambda_{ar{f}}(y\cos\delta\!-\!x\sin\delta)|\lambda_{ar{f}}|(\Gamma t)\!+\!rac{x^2\!+\!y^2}{4}|\lambda_{ar{f}}|^2(\Gamma t)^2 ight]$ Models for WS $(\mathcal{A}_{\vec{f}})$ and RS $(\bar{\mathcal{A}}_{\vec{f}})$ decay amplitudes define $|\lambda_{\vec{f}}|$ and $\delta_{\vec{f}}$ BUT $\delta = \operatorname{Arg} \{ \mathcal{A}_{\bar{f}} / \bar{\mathcal{A}}_{\bar{f}} \} = \delta_{K\pi\pi} + \delta_{\bar{f}} \}$ Comes from the model. Unknown constant Depends on position in Dalitz Plot

□ So the interference term permits measurement of

 $x'' = x \cos \delta_{\kappa \pi \pi} + y \sin \delta_{\kappa \pi \pi}$ AND $y'' = y \cos \delta_{\kappa \pi \pi} - x \sin \delta_{\kappa \pi \pi}$

Evidence for Mixing - (WS) Tagged $D^0 \rightarrow K^+ \pi^- \pi^0$

Outline

- Mixing (particle anti-particle oscillations).
- Brief review of evidence for mixing
- A New result
- Prospects for observing CPV in mixing

Amplitude Analysis of $D^0(t) \rightarrow K_S h + h$ -

- □ Similar to $D^0 \rightarrow K^+\pi^-\pi^0$ BUT final states are self-conjugate (sum of odd and even CP-eigenstates):
 - "Unknown" overall strong phase " $\delta_{K\pi\pi}$ " is zero
 - So x_D and y_D can be determined directly
- Dalitz plot described by decay amplitude $\mathcal{A}_{f}(s_{-}, s_{+})$

□ If there is no direct CPV, then

 $ar{\mathcal{A}}_f(s_-,s_+) = \mathcal{A}_{ar{f}}(s_-,s_+) = \mathcal{A}_f(s_+,s_-)$

Can also determine |q/p| and arg{q/p}.

Method pioneered by CLEO: Phys.Rev.D72:012001,2005

Used with 60x data by Belle: Phys.Rev.Lett.99:131803,2007

Amplitude Analysis of $D^{0}(t) \rightarrow K_{S}h^{+}h^{-}$

Phys.Rev.Lett.105:081803 (2010) – 468.5 fb⁻¹

- Mean decay time differs by Δt depends upon position in Dalitz plot
- Sensitivity to x_D and y_D also depends on density of points
 - Product $\Delta t N^{\frac{1}{2}}$ is maximum in <u>WS K</u>^{*} and in <u>p</u> bands

NEW

Large and pure samples from $D^* \rightarrow D^0 \pi^+$ decays fit to combined $K_s \pi \pi$ and $K_s KK$ samples give most precise measurement to date

Comparison with Previous Analyses

Experiment	Sample	Result
CLEO 2.5	9 fb ⁻¹	$egin{aligned} & x = & (\ 1.9^{+3.2}_{-3.3} \pm 0.4 \pm 0.4 \pm 0.4) \ y = (-1.4 \pm 2.4 \pm 0.8 \pm 0.4) \ \% \end{aligned}$
BELLE (Allowing CPV)	540 fb ⁻¹ Signal: 534 <i>K</i> Purity: 95%	$egin{array}{rll} x=&(0.81\pm0.30^{+0.10}_{-0.07})^{+0.09}_{-0.16})\%\ y=&(0.37\pm0.25^{+0.07}_{-0.13})^{+0.07}_{-0.08})\%\ q/p =0.86^{+0.30}_{-0.29}_{-0.03}\pm0.08\ { m arg}\{q/p\}=(-14^{+16}_{-18}_{-3}_{-3}_{-4})^{\circ} \end{array}$
BaBar	486.5 fb ⁻¹ Signal: 540 <i>K</i> Purity: 98.5%	$egin{aligned} &x = (0.16 \pm 0.23 \pm 0.12 \pm 0.08) \% \ &y = (0.57 \pm 0.20 \pm 0.13 \pm 0.07) \% \ &x^+ = (0.00 \pm 0.33) \% \ &y^+ = (0.55 \pm 0.27) \% \ &x^+ = (0.33 \pm 0.33) \% \ &y^+ = (0.59 \pm 0.28) \% \end{aligned}$

Third error is irreducible model (A_f) uncertainty (IMU): ~10⁻³ in x_D and y_D ~8% in |q/p| and ~3⁰ in arg{q/p}.

HFAG Mixing Summary

The HFAG collaboration combine 30 "mixing observables" to extract the 8 underlying mixing parameters and their χ^2 contours:

Outline

- Mixing (particle anti-particle oscillations).
- Brief review of evidence for mixing
- A New result
- Prospects for observing CPV in mixing

Prospects for Observing CPV in Mixing

- The experimental challenge is shifted to observing CPV AND to investigating whether it is in mixing, decay or both.
- Best strategy may be to improve precision in $x_D \& y_D$ say to $\sim 1 \times 10^{-4}$
 - $D^0 \overline{D}^0$ asymmetries ~ $|q/p|^2 1$
- Dependence on decay mode would indicate direct CPV?
- Several possibilities for this exist. Most likely are:
 - LHCb (or CDF, Atlas, CMS ?)
 - Super B factories

LHC performance not yet established

Machines do not yet exist !

- A rather safe estimate for performance can be made by using Babar as basis to project to integrated luminosity of 75 ab⁻¹ at Y(4S) anticipated for SuperB (Similarly for Belle and Super KEKB)
- We can also speculate on what "SuperD¹" [500 fb⁻¹ at ψ(3770)] might accomplish

¹See SuperB white paper: <u>http://arxiv.org/abs/1008.1541</u>)

BaBar Mixing Measurements

Project BaBar Average to 75ab⁻¹@Y(4S):

Uncertainties shrink: but are limited by the IMU (biggest effect on x_D) Strong phase measurements from $\psi(3770)$ can greatly reduce this.

DD Threshold Measurements

- □ Data from $\psi(3770) \rightarrow D\overline{D}$ at charm threshold provide measurement of strong phases such as $\delta_{K\pi}$.
- They <u>also</u> provide measured values of λ in Dalitz plot bins¹
 These can be used to significantly reduce uncertainties from the Dalitz plot model used in the golden channel analyses.
- As basis for projection, we take uncertainties from CLEO-c: N. Lowrey et al, PRD80, 031105 (2009), 0903.4853
- Our assumption is that <u>new data</u> from threshold will reduce the uncertainties in model uncertainty IMU:
 - BES III:IMU x 1/3 (Factor 3 improvement)
 - SuperD 500 fb⁻¹ @ DD threshold: IMU x 1/10 (Factor 10 improvement)

¹Bondar, Poluektov & Vorobiev, Phys. Rev. D82, 034033 (2010)

CKM 2010, U. Warwick, England, 09/08/2010

Value of Strong Phase Measurements

Two improvements in mixing precision come from threshold data:

Uncertainty in XD improves more than that of YDCKM 2010, U. Warwick, England, 09/08/2010Brian Meadows

CPV Parameters $|q_D/p_D|$, $\phi_M = Arg\{q/p\}$

Several strategies:

Global χ^2 Fit to all modes: **«18** « 9 Current World Averages (HFAG): (HFAG - direct CPV allowed) Asymmetries a_z : <All modes> ± 1.8 \boldsymbol{x} D^{0} - \overline{D}^{0} parameter asymmetries: +1.1<All modes> ¥ $a_{z} = (z_{+}-z_{-})/(z_{+}+z_{-}) \sim |q|^{2}-|p|^{2}$ $K^+K^ \pm 3.8$ y_{CP} $K^+\pi^ \pm 4.9$ u'where z is x, y, x', y', x", y", x'² $x^{\prime 2}$ $K^+\pi^ \pm 4.9$ x'' $K^{+}\pi^{-}\pi^{0}$ +5.4 $K^{+}\pi^{-}\pi^{0}$ u'' ± 5.0 Model for \mathcal{A}_f $K_s h^+ h^-$ +8.4+3.3Time-dependent amplitude $K_s h^+ h^-$ **BES III DP** model ± 3.7 ± 1.9 analysis of Golden channels $K_s h^+ h^-$ SuperB DP model ± 1.4 ± 2.7 Semi-leptonic asymmetry 75 ab⁻¹ at $\Upsilon(4S)$ XLVe ± 10 500 fb⁻¹ at $\psi(3770)$ $K\pi$ - $K\pi$ $a_{SL} = \frac{1 - |q/p|^4}{1 - |q/p|^4}$ +10500 fb⁻¹ at $\psi(3770)$ $X\ell\nu_\ell$??

> Improve present precision by order of magnitude Also improve distinction between decay modes ~ 5%

CKM 2010, U. Warwick, England, 09/08/2010

Brian Meadows

 $\sigma(\phi_M)^{o}$

 $\sigma(|q/p|)$

x 100

Decay

mode

What About LHCb (10 fb⁻¹)?

Decay Mode	$\begin{array}{c} BABAR\\ (480 \ \text{fb}^{-1}) \end{array}$	$\frac{\text{SuperB/Belle}}{(75 \text{ ab}^{-1})}$	+ LHCB (10 fb^{-1})
K^+K^- (D*-tag): N (Events) Δy_{CP} (stat)	88×10^{3} $\pm 3.5 \times 10^{-3}$	$ \begin{array}{c c} 13.7 \times 10^{6} \\ 0.28 \times 10^{-3} \end{array} $	
K^+K^- (no tag): N (Events) Δy_{CP} (stat)	$330 imes 10^{3} \ \pm 2.3 imes 10^{-3}$	51.4×10^{6} 0.19×10^{-3}	LHC
$K^+\pi^-$ (WS): N (Events) $\Delta y'$ (stat) $\Delta x'^2$ (stat)	5.1×10^{3} $\pm 4.4 \times 10^{-3}$ $\pm 3.0 \times 10^{-4}$	$\begin{array}{c} 0.79 \times 10^{6} \\ 0.31 \times 10^{-3} \\ 0.21 \times 10^{-4} \end{array}$	Guy

G. Wilkinson P. M. Spradlin CERN-Ihcb-2007-049.
 P. M. Spradlin (2007), Arxiv: 0711.1661.

LHCb is running now (and doing well) Wait for next talk by Marco Gersabeck

Summary

- There is strong evidence for mixing in the D⁰ meson system in four types of analyses:
 - Measurements of y_{CP} agree well with one another.
 - Measurements of x_D and y_D , rotated by unknown strong phases, have been made for "WS" hadronic decays to $K^+\pi^-$ and to $K^+\pi^-\pi^0$.
 - Measurement of x_D and y_D , from CP self-conjugate $K_sh^+h^-$ decays BUT there is no evidence for CPV in mixing.
- More B factory mixing measurements are yet to come, as are results from BES III and LHCb.
 - Measurements of strong phases from BES III ψ (3770) data are eagerly anticipated.
- If Super B factories can produce luminosities ~ 75 ab⁻¹, it may be possible to see CPV as a few percent in |q/p| ≠ 1 and |_M| ≥ 5⁰.

Backup Here

CKM 2010, U. Warwick, England, 09/08/2010

Brian Meadows

Time-Integrated CPV from TeVatron

Work in progress – Mark Mattson, ICHEP 2010

Experiment	N (D ⁰ →π ⁺ π ⁻)	A _{CP} (D ⁰ →π ⁺ π ⁻) (%)
CDF(0.123/fb)	7.3K	$1.0 \pm 1.3(\text{stat}) \pm 0.6 \text{ (syst)}$
CDF(4.8/fb)	273K	$xxx \pm 0.19$ (stat) $\pm xxx$ (syst)
Babar (386/fb)	64K	-0.24 ± 0.52 (stat) ± 0.22 (syst)
Belle(540/fb)	51K	$+0.43 \pm 0.52$ (stat) ± 0.12 (syst)
Experiment	N (D ⁰ →K+K·)	A _{CP} (D⁰→K+K-) (%)
CDF(0.123/fb)	7.3K	1.0 ± 1.3 (stat) ± 0.6 (syst)
CDF(4.8/fb)	781K	$xxx \pm 0.11$ (stat) $\pm xxx$ (syst)
Babar (386/fb)	129K	$0. \pm 0.34$ (stat) ± 0.13 (syst)
Belle(540/fb)	120K	-0.43 ± 0.30 (stat) ± 0.11 (syst)

Techniques pioneered by Babar, extended and used by Belle, virtually eliminate major systematic effects: • F-B production asymmetry • Use odd moments

- Charge efficiency
 asymmetry
 - Use data to calibrate,
 - NOT Monte Carlo

Now used by CDF.

Systematic uncertainty is expected to be O(0.1%), comparable to statistical uncertainty.

Interesting \rightarrow interestinger ...

CKM 2010, U. Warwick, England, 09/08/2010

New Time-Integrated CPV Results from Belle

PRL 1	04,181602 2010)	Summ	ary-cont.
Decay Mode	$A_{\infty P}$ (%) (Belle)	A_{CP} (%)(other)	A_{CP} (%) (SM from K_S^0)
$D^+ ightarrow K^0_S \pi^+$	$-0.71 \pm 0.19 \pm 0.20$	$-1.3 \pm 0.7 \pm 0.3$	-0.332
$D^+ \to K^0_S K^+$	$-0.16 \pm 0.58 \pm 0.25$	$-0.2 \pm 1.5 \pm 0.9$	-0.332
$D_s^+ \to K_S^0 \pi^+$	$+5.45 \pm 2.50 \pm 0.33$	$+16.3 \pm 7.3 \pm 0.3$	+0.332
$D_s^+ \to K_S^0 K^+$	$+0.12 \pm 0.36 \pm 0.22$	$+4.7 \pm 1.8 \pm 0.9$	-0.332
$D^0 \to K^0_S \pi^0$	$-0.28 \pm 0.19 \pm 0.10$	$+0.1\pm1.3$	-0.332
$D^0 \to K^0_S \eta$	$+0.54 \pm 0.51 \pm 0.13$	N.A.	-0.332
$D^0 \to K^0_S \eta'$	$+0.90 \pm 0.67 \pm 0.15$	N.A.	-0.332
$\bullet A_{CP}^{D^+ \to \phi \pi^+} - A_{CP}^{D_s^- \to \phi \pi^+}$	= (+0.62 ± 0.30 ± 0.15)%	{PDG: $A_{CP}^{D^+ \to \phi \pi^+} = (-0.1 \pm$	1.5)%}
		Preliminary	y
		results	

New Physics and Mixing

Several extensions to the SM have been considered that can increase the value of { including:

[A recent survey: Phys. Rev. D76, 095009 (2007), arXiv:0705.3650]

- Generally agreed that signals for new physics are:
 - EITHER | { |>> | y |
 - OR <u>Any evidence for CPV</u>

Phase in $\Delta C = 1$ transitions tiny: $V_{cs} \sim 1 - \lambda^2/2 - i\eta A^2 \lambda^4$ Wolfenstein $\rightarrow 0.97 - 6 \times 10^{-4} i$ representation

Mixing Measurements at BaBar and Belle

- Good vertex resolution allows measurement of time-dependence of *D*⁰ decays.
- Can eliminate distortion from *B* decays by cutting low momentum *D*⁰'s
- Excellent particle ID (Dirc and dE/dx) allows clean K/π separation

- □ D^{0} 's from $D^{*+} \rightarrow D^{0}\pi^{+}$ decays:
 - Tag flavor of D⁰ by the sign of the "slow pion" in D* decays
 - Allow clean rejection of backgrounds
- **BUT** untagged events can be used too !

CKM 2010, U. Warwick, England, 09/08/2010

Mixing Measurements at CDF

- Use 2-track displaced vertex trigger
- Must contend with D^0 from B decay
- Can eliminate distortion from *B* decays by cutting out events with large impact parameter.

- Doubly mis-ID'd WS events require a RS mass cut
- D^{0} 's from $D^{*+} \rightarrow D^{0}\pi^{+}$ decays: Untagged events are not used

Lifetime Ratio (*D**-tagged Samples)

Phys.Rev.D78:011105,2008 384 fb⁻¹

TD Amplitude Analysis of $D^0 \rightarrow K_{\rm S} h^+ h^-$

Phys.Rev.Lett.105:081803 (2010) – 468 fb⁻¹

CKM 2010, U. Warwick, England, 09/08/2010

Brian Meadows

Recent result

 \circ

BaBar

- Main purpose: Study CP violation in asymmetric $e^+e^ \Upsilon$ (4S) $B\overline{B}$
- Experiment far exceeded the design goals
 - Luminosity order of magnitude larger
 - Many more measurements and discoveries.

CKM 2010, U. Warwick, England, 09/08/2010

