$B o \pi e \nu$ from QCD Sum Rules on the Light-Cone

IPPP, Durham, England

CKM 2010, Warwick, Sep 7 2010

What is $B \to \pi e \nu$ good for?

- left sensitive to $|V_{ub}|$
- compared to inclusive channel:
 - $lue{}$ good experimental accuracy (largely reduced $b \rightarrow c$ background)
 - hadronic parameters: just one: form factor $f_+(q^2)$, q^2 = invariant lepton mass (no heavy quark expansion or other theo approximations)
- form factor to be calculated by non-perturbative methods, e.g. lattice (see previous talk) or QCD sum rules on the light-cone or quark models or else

Definition of form factor:

$$\langle \pi(p_{\pi})|\bar{u}\gamma_{\mu}b|B(p_{B})\rangle = f_{+}(q^{2})(p_{B}+p_{\pi})_{\mu} + f_{-}(q^{2})(p_{B}-p_{\pi})_{\mu}$$

with $q=p_B-p_\pi$ and $0 \le q^2 \le (m_B-m_\pi)^2=26.4\,\mathrm{GeV}^2$. f_- enters decay rate as $m_e^2 f_-^2$ and is hence irrelevant.

QCD Sum Rules in a Nutshell I

Basic quantity: correlation function:

$$\Pi_{\mu} \equiv i \int d^4 y e^{iqy} \langle \pi(p) | T[\bar{u}\gamma_{\mu}b](y) [m_b \bar{b}i\gamma_5 d](0) | 0 \rangle \stackrel{\text{LCE}}{=} \sum_n T_H^{(n)} \otimes \phi_{\pi}^{(n)}$$

- $\phi_{\pi}^{(n)}$: π distribution amplitudes (DAs): non-perturbative
- $T_H^{(n)}$: perturbative amplitudes
- n: twist
- LCE: light-cone expansion
- ullet B meson described by PS current + plus analytic continuation (in p_B^2):

$$\Pi_{\mu}=2p_{\mu}\left(\boxed{f_{+}(q^2)}
ight)rac{m_B^2f_B}{m_B^2-p_B^2}+ ext{higher-mass poles and cuts}
ight)+\dots$$

QCD Sum Rules in a Nutshell II

Features of LCSRs:

- $lue{}$ LCE effectively in $1/m_b
 ightarrow$ need to include higher-twist terms
- - calculate $O(\alpha_s)$, known for T2 (π (Khodjamirian et al. 97, Ball et al. 97), ρ (Ball/Braun 98)) T3 (π (Ball/Zwicky 2001))
 - → factorization OK, i.e. no "end-point" singularities upon convolution
- info on non-pert. transition amplitudes from conformal expansion, pion transition form factor $\gamma + \gamma^* \to \pi$, lattice and QCD sum rules
 - could do with some improvement! (QCDSF/UKQCD 2006 quote 50% error on a_2^π [most important non-pert. parameter of ϕ_π])
- use standard SR techniques to suppress contribution of higher-mass states to correlation function: Borel-transformation, continuum model
 - ullet introduce irreducible systematic uncertainty $\sim 10\%$

Milestone Publications

Khodjamirian & Bagan et al. 1997: twist-2 to $O(\alpha_s)$

Ball/Zwicky 2004: 2-particle twist-3 to $O(\alpha_s)$,

use of b pole mass

Khodjamirian et al. 2006: alternative LCSR with B instead of π DA

Duplancic et al. 2008: 2-particle twist-3 to $O(\alpha_s)$,

use of $\overline{\mathrm{MS}}\ b$ mass

$$f_{+}(q^2) \text{ or } f_{+}(0)$$
?

Calculation of full q^2 dependence not feasible by any known method:

- lattice best for "large" q^2 (small $q^2 \leftrightarrow$ large pion energy, can't be simulated directly on lattice \rightarrow "moving NRQCD" may help)
- LCSR best for "small" q^2 (LCE breaks down for large $q^2 \leftrightarrow$ small pion energy)

Experiment can help:

- 1. $d\Gamma/dq^2$ measured in several bins in q^2
- 2. parametrisation of q^2 dependence of form factor in terms of, for instance, z-expansion (Boyd/Grinstein/Lebed 1995)
- $ightharpoonup \operatorname{\mathsf{model-independent}}$ experimental result for $|V_{ub}|f_+(0)|$

(normalisation point arbitrary; $q^2 = 0$ best for LCSR)

First done in Ball 2006 using BaBar 2006 data: $|V_{ub}|f_{+}(0)| = (9.1 \pm 0.7) \times 10^{-4}$.

A few Details (Ball 2006)

BaBar data 2006 in 12 bins in q^2 together with best-fit results based on 5 different parametrisations of $f_+(q^2)$

best-fit shape of form factor from data, using 5 different parametrisations

The Issue of f_B

The LCSR yields value for $f_B f_+(q^2)$. What value of f_B to use?

- 1. Lattice: difficult to average various results (and errors). Most recent result quoted at Lattice 10: $f_B=212(6)(6)\,{\rm MeV}$. (FNAL/MILC)
- 2. QCD sum rule results known to $O(\alpha_s^2)$: $\begin{cases} \text{ Jamin/Lange 2001:} & 210(19) \text{ MeV} \\ \text{ Steinhauser 2001:} & 206(20) \text{ MeV} \end{cases}$

Value very sensitive to m_b , large radiative corrections.

LCSR only known to $O(\alpha_s)$. Expect some cancellation of radiative corrections in ratio $(f_B f_+(q^2))/f_B$, so use f_B as determined from QCD sum rule to the same $O(\alpha_s)$ accuracy (and using the same QCD sum rule parameters):

$$f_B(1 \text{ loop}) = 170 \text{ MeV}$$
 (for central input parameters)

How realistic is this expectation?

A new Calculation: $f_+(0)$ to $O(lpha_s^2eta_0)$ (Ball/Bharucha 2010)

Complete $O(\alpha_s^2)$ pretty difficult (two scales, one dimensionless parameter).

Meaningful subset of diagrams: two-loop diagrams with internal fermion loop: $\propto N_f \rightarrow -\frac{3}{2} \beta_0$, aka BLM approximation.

Complication: both UV and IR divergencies (to be absorbed into pion DA).

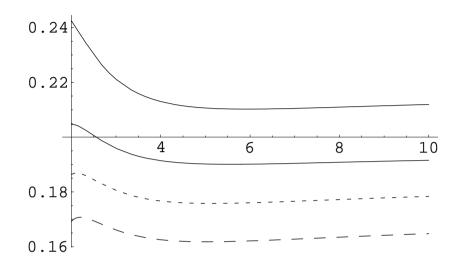
 Calculate all (five) diagrams, renormalise UV divergencies by counterterms

- Calculate all (five) diagrams, renormalise UV divergencies by counterterms
- Remaining divergencies are IR, sum and convolute with pion DA

- Calculate all (five) diagrams, renormalise UV divergencies by counterterms
- Remaining divergencies are IR, sum and convolute with pion DA
- Reconstruct non-local renormalisation of ϕ_{π} from 2-loop evolution-kernel (Mikhailov/Radyushkin 1985), convolute with tree-level correlation function Π

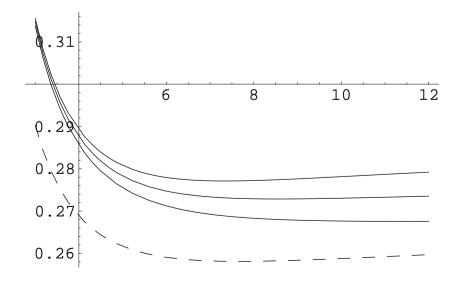
- Calculate all (five) diagrams, renormalise UV divergencies by counterterms
- Remaining divergencies are IR, sum and convolute with pion DA
- Reconstruct non-local renormalisation of ϕ_{π} from 2-loop evolution-kernel (Mikhailov/Radyushkin 1985), convolute with tree-level correlation function Π
- Sum of (2)+(3) = 0! IR divergencies cancel.

- Calculate all (five) diagrams, renormalise UV divergencies by counterterms
- Remaining divergencies are IR, sum and convolute with pion DA
- Reconstruct non-local renormalisation of ϕ_{π} from 2-loop evolution-kernel (Mikhailov/Radyushkin 1985), convolute with tree-level correlation function Π
- \bullet Sum of (2)+(3) = 0! IR divergencies cancel.
- ullet Convolute renormalised diagrams with asymptotic DA (resulting in beauties like L_4 and generalised Nielsen polylogs)


- Calculate all (five) diagrams, renormalise UV divergencies by counterterms
- Remaining divergencies are IR, sum and convolute with pion DA
- Reconstruct non-local renormalisation of ϕ_{π} from 2-loop evolution-kernel (Mikhailov/Radyushkin 1985), convolute with tree-level correlation function Π
- \bullet Sum of (2)+(3) = 0! IR divergencies cancel.
- ullet Convolute renormalised diagrams with asymptotic DA (resulting in beauties like L_4 and generalised Nielsen polylogs)
- Add extra term generated by the change of the asymptotic DA between scale μ and reference scale (!) (taken to be 1 GeV)

- Calculate all (five) diagrams, renormalise UV divergencies by counterterms
- Remaining divergencies are IR, sum and convolute with pion DA
- Reconstruct non-local renormalisation of ϕ_{π} from 2-loop evolution-kernel (Mikhailov/Radyushkin 1985), convolute with tree-level correlation function Π
- \bullet Sum of (2)+(3) = 0! IR divergencies cancel.
- ullet Convolute renormalised diagrams with asymptotic DA (resulting in beauties like L_4 and generalised Nielsen polylogs)
- Add extra term generated by the change of the asymptotic DA between scale μ and reference scale (!) (taken to be 1 GeV)
- $lue{}$ Take imaginary part in p_B^2

- Calculate all (five) diagrams, renormalise UV divergencies by counterterms
- Remaining divergencies are IR, sum and convolute with pion DA
- Reconstruct non-local renormalisation of ϕ_{π} from 2-loop evolution-kernel (Mikhailov/Radyushkin 1985), convolute with tree-level correlation function Π
- \bullet Sum of (2)+(3) = 0! IR divergencies cancel.
- ullet Convolute renormalised diagrams with asymptotic DA (resulting in beauties like L_4 and generalised Nielsen polylogs)
- Add extra term generated by the change of the asymptotic DA between scale μ and reference scale (!) (taken to be 1 GeV)
- $lue{}$ Take imaginary part in p_B^2
- Additional check: μ dependence of Π vanishes (as required by zero anomalous dimension)


- Calculate all (five) diagrams, renormalise UV divergencies by counterterms
- Remaining divergencies are IR, sum and convolute with pion DA
- Reconstruct non-local renormalisation of ϕ_{π} from 2-loop evolution-kernel (Mikhailov/Radyushkin 1985), convolute with tree-level correlation function Π
- Sum of (2)+(3) = 0! IR divergencies cancel.
- ullet Convolute renormalised diagrams with asymptotic DA (resulting in beauties like L_4 and generalised Nielsen polylogs)
- Add extra term generated by the change of the asymptotic DA between scale μ and reference scale (!) (taken to be 1 GeV)
- $lue{}$ Take imaginary part in p_B^2
- Additional check: μ dependence of Π vanishes (as required by zero anomalous dimension)
- One of the most involved calcs I have ever done...

Results (preliminary)

 f_B for $m_b = 4.8\,\mathrm{GeV}$, in 1L, BLM and 2L approximation. Also 2L for $m_b =$ 4.73 GeV.

Recall: central lattice value is \sim 210 MeV.

dashes: $f_{+}(0)$ calculated with the same hadronic parameters as in BZ 04 $(m_b = 4.8 \,\text{GeV}, \ a_2(2.2 \,\text{GeV}) = 0.08,$ $a_4(2.2\,{\rm GeV}) = -0.01$). Solid lines: ditto with new contributions added.

Central values:
$$f_{+}(0) = 0.258 \rightarrow 0.272(+5\%)$$

New Experimental Results: BaBar & Belle 2010

BaBar 1005.3288: 349 fb⁻¹

- $B(B \to \pi \ell \nu) = (1.41 \pm 0.05 \pm 0.07) \times 10^{-4}$
- $|V_{ub}f_+(0)|=(10.52\pm0.42)\times10^{-4}$, using BK parametrisation (one parameter for shape); P = 14.8%
- fit of spectrum and MILC lattice data: $|V_{ub}| = (2.95 \pm 0.31) \times 10^{-3}$
- $f_{+}(0) = 0.36 \pm 0.04$??????

Belle ICHEP 2010 (talk by Ha): 605 fb^{-1}

- $B(B \to \pi \ell \nu) = (1.49 \pm 0.04 \pm 0.07) \times 10^{-4}$
- $|V_{ub}f_{+}(0)| = (9.24 \pm 0.28) \times 10^{-4}$, using BK parametrisation; P = 62%
- fit of spectrum and MILC lattice data: $|V_{ub}| = (3.43 \pm 0.33) \times 10^{-3}$
- fit of spectrum and Ball/Zwicky LCSR: $(3.64 \pm 0.11 (\exp)^{+0.60}_{-0.40} (th)) \times 10^{-3}$

 $lue{}$ LCSR calculations for $B \to \pi$ form factor f_+ are in mature state

- LCSR calculations for $B \to \pi$ form factor f_+ are in mature state
- new calculation of $O(\alpha_s^2\beta_0)$ corrections to twist-2 contribution indicates f_+ does not receive large radiative corrections, in contrast to both correlation function Π and f_B

- LCSR calculations for $B \to \pi$ form factor f_+ are in mature state
- new calculation of $O(\alpha_s^2\beta_0)$ corrections to twist-2 contribution indicates f_+ does not receive large radiative corrections, in contrast to both correlation function Π and f_B
- experimental determination of shape of $f_+(q^2)$ makes life easier for theorists: just need to fix normalisation

- LCSR calculations for $B \to \pi$ form factor f_+ are in mature state
- new calculation of $O(\alpha_s^2\beta_0)$ corrections to twist-2 contribution indicates f_+ does not receive large radiative corrections, in contrast to both correlation function Π and f_B
- ullet experimental determination of shape of $f_+(q^2)$ makes life easier for theorists: just need to fix normalisation
- data on shape available from BaBar 2006 (12 bins in q^2), BaBar 2010 (6 bins), Belle 2010 (13 bins)

- LCSR calculations for $B \to \pi$ form factor f_+ are in mature state
- new calculation of $O(\alpha_s^2\beta_0)$ corrections to twist-2 contribution indicates f_+ does not receive large radiative corrections, in contrast to both correlation function Π and f_B
- ullet experimental determination of shape of $f_+(q^2)$ makes life easier for theorists: just need to fix normalisation
- data on shape available from BaBar 2006 (12 bins in q^2), BaBar 2010 (6 bins), Belle 2010 (13 bins)
- tension between BaBar 2006/Belle 2010 and BaBar 2010: fits of all known parametrisations of f_+ to the latter result in large χ^2 , in contrast to the former

- LCSR calculations for $B \to \pi$ form factor f_+ are in mature state
- new calculation of $O(\alpha_s^2\beta_0)$ corrections to twist-2 contribution indicates f_+ does not receive large radiative corrections, in contrast to both correlation function Π and f_B
- ullet experimental determination of shape of $f_+(q^2)$ makes life easier for theorists: just need to fix normalisation
- data on shape available from BaBar 2006 (12 bins in q^2), BaBar 2010 (6 bins), Belle 2010 (13 bins)
- tension between BaBar 2006/Belle 2010 and BaBar 2010: fits of all known parametrisations of f_+ to the latter result in large χ^2 , in contrast to the former
- in any case, all exclusive analyses yield $|V_{ub}| < 4.0 \times 10^{-3}$, in agreement with CKM fits

- LCSR calculations for $B \to \pi$ form factor f_+ are in mature state
- new calculation of $O(\alpha_s^2\beta_0)$ corrections to twist-2 contribution indicates f_+ does not receive large radiative corrections, in contrast to both correlation function Π and f_B
- ullet experimental determination of shape of $f_+(q^2)$ makes life easier for theorists: just need to fix normalisation
- data on shape available from BaBar 2006 (12 bins in q^2), BaBar 2010 (6 bins), Belle 2010 (13 bins)
- tension between BaBar 2006/Belle 2010 and BaBar 2010: fits of all known parametrisations of f_+ to the latter result in large χ^2 , in contrast to the former
- in any case, all exclusive analyses yield $|V_{ub}| < 4.0 \times 10^{-3}$, in agreement with CKM fits
- looking forward to more analyses from BaBar & Belle!