

Determination of γ from $B \rightarrow K^* \pi$ decays and related modes

Eugenia Maria Teresa Puccio

The BaBar Collaboration

9th September 2010 CKM Workshop 2010 1

Overview

- Motivation
- Experimental issues
- Recent results in $K^+\pi^-\pi^0$ and $K_S\pi^+\pi^-$
- Issues with interpretation
 - Phase conventions
 - EW penguin contributions
- Conclusion

Measuring γ in $B \rightarrow K^* \pi$ decays

At tree level B→K*π sensitive to γ:

$$e^{-2i\gamma} = \frac{A(K^{*-}\pi^{+}) + \sqrt{2}A(\overline{K}^{*0}\pi^{0})}{A(K^{*+}\pi^{-}) + \sqrt{2}A(K^{*0}\pi^{0})}$$
 Need to measure magnitude and phases of amplitudes

- In B→Kππ can measure interference pattern in Dalitz plot (DP) from B→K*π and B→Kρ to determine:
 - Magnitude of amplitudes,
 - Relative phases between amplitudes.

 $K_{\rm S}\pi^+\pi^-$ and $K^+\pi^-\pi^0$ DP structure

Relative phases determined at interference regions

 Overlap region of resonances small

- Effect on event density is subtle
- Crucial to understand backgrounds and efficiencies in interference regions.

Signal and background separation $J/\psi K_{\rm s}$

Phys. Rev. D80, 112001 & Phys. Rev. D79, 072004

Main background contribution from continuum events

 A Neural Network is used to reject most of the continuum

Main B backgrounds in remaining events from D-π+, J/ψK_s and $\psi(2S)K_s$

Projection plots for m_{ES} and ΔE after vetoes and event selection

 ${\rm m}_{{\rm K}_{\rm S}^0\pi}^2({\rm GeV}^2/{\rm c}^4)$

Determining γ from *K*ππ DPs

- Main method involves $K^+\pi^-\pi^0$ and $K_S\pi^+\pi^-$ DPs
 - Ciuchini et al., Phys. Rev. D74, 051301 (2006)
 - Gronau et al., Phys. Rev. D75, 014002 (2007)
 - Gronau et al., Phys. Rev. D77, 057504 & D78, 017505 (2008)
 - Gronau et al., Phys. Rev. D81, 094011 (2010)
- Other methods use $K_S\pi^+\pi^0$, $K^+\pi^+\pi^-$ & $K_S\pi^+\pi^-$, and B_S decays to $K^+\pi^-\pi^0$ & $K_S\pi^+\pi^-$
 - Ciuchini et al., Phys. Rev. D74, 051301 (2006)
 - Bediaga et al., Phys. Rev. D76, 073011 (2007)
 - Ciuchini et al., Phys. Lett. B645, 201 (2007)

Method for determining γ from $K\pi \pi$

- Method from Ciuchini et al. and Gronau et al.
- Form isospin triangles from K*π modes:
 - □ From B⁰→ $K^+\pi^-\pi^0$
 - □ From $B^0 \rightarrow K_S \pi^+ \pi^-$
- Resultant amplitude and phase:

$$3A_{\underline{3}} = A(B^0 \to K^{*+}\pi^-) + \sqrt{2}A(B^0 \to K^{*0}\pi^0)$$

$$\Phi_{\frac{3}{2}}^{\frac{1}{2}} = \frac{1}{2} \left(\phi - \overline{\phi} - \Delta \phi_{K^*\pi} \right) \approx \gamma \text{ up to correction from EW penguins}$$

$K^{*0}\pi^0$ and $K^{*+}\pi^-$ phase difference

$K^{*+}\pi^{-}$ and $K^{*-}\pi^{+}$ phase difference

$$\Delta \phi_{K^*\pi} = \phi_{K^{*-}\pi^+} - \phi_{K^{*+}\pi^-}$$

- Measure K*π phases relative to each other due to mixing
 - Additional phase of -2β needs to be accounted for.

K*π Amplitudes and penguins

$$A_{\frac{3}{2}} = \frac{1}{\sqrt{2}} A(B^0 \to K^{*+}\pi^-) + A(B^0 \to K^{*0}\pi^0)$$
Tree component expected to

- Tree component expected to be small compared to dominant QCD penguin in K*π amplitudes
- QCD penguin contributions cancel in the sum of $A_{K^*\pi}$
 - A_{3/2} is QCD penguins free (not
 EWP penguin free)

10

Results from time dependent $B^0 \to K_s \pi^+ \pi^-$

- BaBar result from 383 million BB events gives:
 - $\Delta \phi = (58.3 \pm 32.7 \pm 4.6 \pm 8.1)^{\circ}$

- Belle results from 657 million BB:
 - $\Delta \phi = (-0.7 \pm {}^{24}_{23} \pm 11 \pm 18)^{\circ}$
 - $\Delta \phi = (+14.6 \pm {}^{19}_{20} \pm 11 \pm 18)^{\circ}$ (errors are stat, syst, model)
- Difference between solutions is interference between K₀*±(1430) and NR
- This phase difference includes the $B^0 \overline{B}{}^0$ mixing phase (-2 β)

J.Dalseno et al., Phys. Rev. D79, 072004

Preliminary results from $B^0 \to K^+\pi^-\pi^0$

- Results taken from A. Wagner, PhD Thesis, BaBar graduate student, SLAC-R-942
- From BaBar data of 454 million BB events gives:

 $\Delta \Phi_{3/2} = (-7^{+15}_{-18} \pm 15)^{\circ}$

 $\Phi_{3/2} = (1 \pm 21)^{\circ}, (60 \pm 18)^{\circ}$

Stat. Error Total Error

Two bands in $\Phi_{3/2}$ from ambiguity in $B^0 \to K_S \pi^+ \pi^-$

-80 -60 -40 -20 0 20 40

Preliminary

 $2\Delta \log(L)$

Issue 1 - Phase conventions

- Each quasi-two body subsystem of Kππ in the vector meson rest frame contains:
 - Two pseudoscalar decay products with momentum q and -q
 - The bachelor pseudoscalar with momentum p
- Choice of which resonance daughter is defined to have positive momentum defines the phase convention
- Alternative choice induces a 180° flip of the phase
- Whichever choice is made it must be correctly accounted for when combining amplitudes to obtain the constraint on the UT apex
- See Gronau et al., Phys.Rev.D81, 094026(2010)

Phases in $K^+ \pi^- \pi^0$

Helicity convention 180° out of phase for K* resonances.

- Two K* resonances have opposite conventions
- Appropriate Clebsch Gordon coefficients should be chosen when constructing the amplitudes from results of the DP fit

Defining phase conventions

- Can use any phase convention but:
 - important to include phase convention used in documentation
- Provide convention-independent information:
 - Useful cross check for understanding phase conventions and making comparison between experiments.
 - Using interference fraction can help identify constructive or destructive

Issue 2 - EWP contributions

Gronau et al., Phys.Rev.D75, 014002

$$A_{\frac{3}{2}} \propto \left(\overline{\rho} + i\overline{\eta}\right) \left(1 + \frac{r_3}{2}\right) + C \left(1 - r_3\right)$$

SU(3) decomposition of operators gives good approximation:

Wilson coeff, λ ≈ -0.27

Ratio of hadronic matrix elements

$$r_{\frac{3}{2}} = \frac{\left[A_{\rho^{+}\pi^{0}} - A_{\rho^{0}\pi^{+}}\right] - \sqrt{2}\left[A_{K^{*+}\overline{K}^{0}} - A_{K^{+}\overline{K}^{*0}}\right]}{A_{\rho^{+}\pi^{0}} + A_{\rho^{0}\pi^{+}}}$$

Estimating r_{3/2}

Decay Mode	BF(x10 ⁻⁶)	A _{CP}	BFs are well
$B^+ \to \rho^0 \pi^+$	8.3 +1.2 -1.3	0.18 +0.09 -0.17	measured
$B^+ \rightarrow \rho^+ \pi^0$	10.9 +1.4 -1.5	0.02 ± 0.11 -	Amplitudes small
$B^+ \to K^+ \overline{K}^{*0}$	0.68 ± 0.19		but relative
$B^+ \to K_S K_S \pi^+$	< 0.51	-	phases unknown

Experimental numbers from HFAG Winter 2010, www.slac.stanford.edu/xorg/hfag/

Strategy – Separate into well-measured components and systematic uncertainty $\frac{m_s}{\kappa^* \kappa} \approx 30\%$

$$r_{\frac{3}{2}} = \frac{A_{\rho^{+}\pi^{0}} - A_{\rho^{0}\pi^{+}}}{A_{\rho^{+}\pi^{0}} + A_{\rho^{0}\pi^{+}}} \pm \sqrt{2} \frac{A_{K^{*+}\overline{K}^{*0}} - A_{K^{+}\overline{K}^{*0}}}{A_{\rho^{+}\pi^{0}} + A_{\rho^{0}\pi^{+}}} \pm \sqrt{30\%SU(3)}$$

Measurement of $r_{3/2}$

3% SU(3) breaking

$$r_{3} = \frac{A_{\rho^{+}\pi^{0}} - A_{\rho^{0}\pi^{+}}}{A_{\rho^{+}\pi^{0}} + A_{\rho^{0}\pi^{+}}}$$

30% SU(3) breaking

Contours darkest to lightest: 1, 2, 3, 4, 5σ

A. Wagner, PhD Thesis, SLAC-R-942

K*K contribution added as a systematic.

Preliminary results for $r_{3/2}$ and P_{EWP}

A. Wagner, PhD Thesis, SLAC-R-942

• Preliminary results for $r_{3/2}$:

$$\operatorname{Re}(r_{\frac{3}{2}}) = 0.21 \pm 0.13 \text{ (stat.)} \pm 0.77 \text{ (syst.)} \pm 0.06 \text{ (theo.)},$$

 $\pm \operatorname{Im}(r_{\frac{3}{2}}) = 1.45 \pm 0.35 \text{ (stat.)} \pm 0.77 \text{ (syst.)} \pm 0.44 \text{ (theo.)}.$

Preliminary results for the ratio of EW penguin to tree amplitudes:

$$\text{Re}(P_{\text{EWP}}/T) = -0.21 \pm 0.13 \text{ (stat.)} \pm 0.29 \text{ (syst.)} \pm 0.16 \text{ (theo.)},$$

 $\pm \text{Im}(P_{\text{EWP}}/T) = -0.54 \pm 0.05 \text{ (stat.)} \pm 0.29 \text{ (syst.)} \pm 0.04 \text{ (theo.)}.$

- Systematic is dominant source of error in this measurement:
 - Only eliminated by measuring relative phases for K*+K0
 and K+K*0

Conclusion

- BaBar results for $K^+\pi^-\pi^0$ in process of being finalised.
- Results to be combined soon to form CKM constraint.
- Measuring γ from B→ρK via phase difference of ρK and K*π
 - Tree/QCD penguin ratio expected to be larger than K*π
 - Potentially better sensitivity to γ
- Promising method for future experiments:
 - At a Super B factory errors can expect errors to scale by 7% compared to BaBar results.
 - LHCb could also have potential for these measurements and additionally study the constraint in the B_s decays.

BACKUP SLIDES

Determining γ from $B \rightarrow \rho K$

- Another method involves using B→ρK with K⁺π⁻π⁰ and K_Sπ⁺π⁻
- Subtle difference with K*π: relative phase not measured directly:
 - ho^+K^- measured from $K^+\pi^-\pi^0$
- A_{3/2} determined from difference between the phases relative to K*+π⁻

EW penguin contributions follow again from ρπ like in K*(892)π case

Interference fractions

$$FF_{ij} = \frac{\int_{\mathrm{DP}} 2 \, \mathrm{Re} \left[c_i c_j^* F_i(m_+^2, m_-^2) F_j^*(m_+^2, m_-^2) \right] d(m_+^2) d(m_-^2)}{\int_{\mathrm{DP}} \left| \sum_j c_j F_j(m_+^2, m_-^2) \right|^2 d(m_+^2) d(m_-^2)}$$

- Gives the extent of the interference effect between two resonances as measured in the fit.
- It's a convention independent representation of the event population of the DP
 - +FF_{ij} = constructive interference
 - -FF_{ij} = destructive interference