# A Fresh Look at $B_{s,d} \rightarrow \pi\pi, \pi K, KK$ Decays

**Robert Fleischer** 

Nikhef Theory Group

CKM2010, Working Group VI, Warwick, UK, 6–10 September 2010

• Two main targets:  $\rightarrow | U$ -spin related B decays

- $B_d \rightarrow \pi^+ \pi^-, B_s \rightarrow K^+ K^-$
- $B_d \rightarrow \pi^{\mp} K^{\pm}$ ,  $B_s \rightarrow \pi^{\pm} K^{\mp}$
- Picture emerging from data:  $\rightarrow$   $\gamma$  determinations, predictions, ...

Update of R.F., Eur. Phys. J. C 52 (2007) 267  $\oplus$  work with Rob Knegjens





#### **Preliminaries**

• Key problem in phenomenological analysis of non-leptonic B decays:

Hadronic matrix elements!?  $| \rightarrow \text{get them from data...}$ 

• Particularly interesting: [R.F., Phys. Lett. B 459 (1999) 306]

U-spin-related decays:  $B_d \to \pi^+\pi^-$ ,  $B_s \to K^+K^-$ 



 $\Rightarrow$  extraction of  $\gamma \oplus$  hadronic parameters

- The advantage of this U-spin strategy with respect to the conventional SU(3) flavour-symmetry strategies is twofold:
  - no additional dynamical assumptions have to be made, which could be spoiled by large rescattering effects;
  - EW penguins, which are not invariant under the isospin symmetry because of the different up- and down-quark charges, can be included.
- Observables:
  - CP-averaged branching ratios;
  - Direct and mixing-induced CP asymmetries:<sup>1</sup>

$$\mathcal{A}_{\rm CP}(t) \equiv \frac{\Gamma(B_q^0(t) \to f) - \Gamma(\bar{B}_q^0(t) \to f)}{\Gamma(B_q^0(t) \to f) + \Gamma(\bar{B}_q^0(t) \to f)}$$
$$= \left[\frac{\mathcal{A}_{\rm CP}^{\rm dir}(B_q \to f) \, \cos(\Delta M_q t) + \mathcal{A}_{\rm CP}^{\rm mix}(B_q \to f) \, \sin(\Delta M_q t)}{\cosh(\Delta \Gamma_q t/2) - \mathcal{A}_{\Delta \Gamma}(B_q \to f) \, \sinh(\Delta \Gamma_q t/2)}\right]$$

• Another U-spin-related pair: [Gronau & Rosner, PLB 482 (2000) 7]

 $B_d \to \pi^{\mp} K^{\pm}$ ,  $B_s \to \pi^{\pm} K^{\mp}$ , but further input required:  $B^{\pm} \to \pi^{\pm} K$ .

<sup>&</sup>lt;sup>1</sup>Similar sign convention also for direct CP asymmetries of flavour-specific decays.

#### **Experimental Picture Autumn 2010 (HFAG)**

• Results for  $B \to \pi \pi, \pi K$  decays:

$$BR(B_d \to \pi^+ \pi^-) = (5.16 \pm 0.22) \times 10^{-6}$$
$$BR(B_d \to \pi^{\mp} K^{\pm}) = (19.4 \pm 0.6) \times 10^{-6}$$
$$BR(B^{\pm} \to \pi^{\pm} K) = (23.1 \pm 1.0) \times 10^{-6}$$
$$mix(B \to \pi^{\pm} \pi^-) = \int 0.68 \pm 0.10 \pm 0.03 \quad (BaBar)$$

$$\mathcal{A}_{\rm CP}^{\rm mix}(B_d \to \pi^+\pi^-) = \begin{cases} -0.05 \pm 0.10 \pm 0.06 & (\text{Bubler}) \\ 0.61 \pm 0.10 \pm 0.04 & (\text{Belle}) \end{cases}$$
$$\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^+\pi^-) = \begin{cases} -0.25 \pm 0.08 \pm 0.02 & (\text{BaBar}) \\ -0.55 \pm 0.08 \pm 0.05 & (\text{Belle}) \end{cases}$$

- Nice agreement for  $\mathcal{A}_{CP}^{mix}(B_d \to \pi^+\pi^-) \to -0.65 \pm 0.07.$ 

 $- \mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^{\mp} K^{\pm}) = 0.098^{+0.011}_{-0.012} \text{ favours the BaBar measurement:}$  $\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^{+} \pi^{-}) \stackrel{SU(3)}{=} - \left(\frac{f_{\pi}}{f_K}\right)^2 \frac{\mathsf{BR}(B_d \to \pi^{\mp} K^{\pm})}{\mathsf{BR}(B_d \to \pi^{+} \pi^{-})} \mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^{\mp} K^{\pm})$  $= -0.26 \pm 0.03 \quad \text{[see also R.F., Recksiegel \& Schwab ('07)]}$ 

• Results for  $B_s$  decays [CDF & Belle@ $\Upsilon(5S)$ ]:

$$BR(B_s \to \pi^{\pm} K^{\mp}) = (5.0 \pm 0.7 \pm 0.8) \times 10^{-6}$$
$$BR(B_s \to K^+ K^-) = (26.5 \pm 4.4) \times 10^{-6}$$
$$\mathcal{A}_{CP}^{dir}(B_s \to \pi^{\pm} K^{\mp}) = -0.39 \pm 0.15 \pm 0.08 = -0.39 \pm 0.17$$

$$B_d \to \pi^+ \pi^-$$
,  $B_s \to K^+ K^-$ 

### **Some Technical Details**

• Decay amplitudes:  $[\epsilon = \lambda^2/(1 - \lambda^2) = 0.053$ , with Wolfenstein Parameter  $\lambda$ ]

$$\begin{split} A(B_d^0 \to \pi^+ \pi^-) &= e^{i\gamma} \left( 1 - \frac{\lambda^2}{2} \right) \mathcal{C} \left[ 1 - d \, e^{i\theta} e^{-i\gamma} \right] \\ A(B_s^0 \to K^+ K^-) &= e^{i\gamma} \lambda \, \mathcal{C}' \left[ 1 + \frac{1}{\epsilon} d' e^{i\theta'} e^{-i\gamma} \right] \end{split}$$

• Implications of the *U*-spin symmetry:

(i) 
$$\underline{d'=d}, \ \theta'=\theta$$
:

- \*  $de^{i\theta}$  and  $d'e^{i\theta'}$  are actually ratios of certain hadronic amplitudes;
- \* U-spin-breaking form factors and decay constants *cancel*:

 $\rightarrow no$  factorizable U-spin-breaking corrections.

(ii)  $|\mathcal{C}'/\mathcal{C}| = 1$ :

\* Here the decay constants and form factors do *not* cancel:

$$\left|\frac{\mathcal{C}'}{\mathcal{C}}\right|_{\text{fact}} = \frac{f_K}{f_\pi} \frac{F_{B_s K}(M_K^2; 0^+)}{F_{B_d \pi}(M_\pi^2; 0^+)} \left(\frac{M_{B_s}^2 - M_K^2}{M_{B_d}^2 - M_\pi^2}\right) \rightarrow \left|\frac{\mathcal{C}'}{\mathcal{C}}\right|_{\text{fact}}^{\text{QCDSR}} = 1.41_{-0.11}^{+0.20}$$

[Updated QCD light-cone sum rule calculation: Duplancic & Melic (2008)]

#### **Observables**

• CP-violating 
$$B_d \rightarrow \pi^+\pi^-$$
 asymmetries:

$$\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^+ \pi^-) = -\left[\frac{2\,d\sin\theta\sin\gamma}{1-2\,d\cos\theta\cos\gamma+d^2}\right]$$
$$\mathcal{A}_{\rm CP}^{\rm mix}(B_d \to \pi^+ \pi^-) = +\left[\frac{\sin(\phi_d + 2\gamma) - 2\,d\,\cos\theta\,\sin(\phi_d + \gamma) + d^2\sin\phi_d}{1-2\,d\cos\theta\,\cos\gamma+d^2}\right]$$

 $[\phi_d = (42.2 \pm 1.8)^\circ$  is the  $B^0_d - \bar{B}^0_d$  mixing phase; HFAG average of  $B_d \to J/\psi K_{S,L}$ , etc.]

• CP-averaged branching ratios:  $\rightarrow B_s \rightarrow K^+K^-$  measurement enters:

$$K = \frac{1}{\epsilon} \left| \frac{\mathcal{C}}{\mathcal{C}'} \right|^2 \left[ \frac{M_{B_s}}{M_{B_d}} \frac{\Phi(M_\pi/M_{B_d}, M_\pi/M_{B_d})}{\Phi(M_K/M_{B_s}, M_K/M_{B_s})} \frac{\tau_{B_d}}{\tau_{B_s}} \right] \left[ \frac{\mathsf{BR}(B_s \to K^+K^-)}{\mathsf{BR}(B_d \to \pi^+\pi^-)} \right]$$
$$= \frac{1}{\epsilon^2} \left[ \frac{\epsilon^2 + 2\epsilon d\cos\theta\cos\gamma + d^2}{1 - 2d\cos\theta\cos\gamma + d^2} \right] \stackrel{\exp}{=} 51.8^{+12.7}_{-14.9}$$

- Contours in the  $\gamma$ -d plane:  $\rightarrow$  eliminate the strong phase  $\theta$  ...
  - $\mathcal{A}_{CP}^{dir}(B_d \to \pi^+\pi^-)$  and  $\mathcal{A}_{CP}^{mix}(B_d \to \pi^+\pi^-)$ : theoretically clean;
  - K and  $\mathcal{A}_{CP}^{mix}(B_d \to \pi^+\pi^-)$ : U-spin symmetry enters:



⇒ BaBar measurement of  $\mathcal{A}_{CP}^{dir}(B_d \to \pi^+\pi^-)$  favoured; will be used in the following numerical analysis...

#### Extraction of $\gamma$ , d and $\theta$



• We obtain the following numerical results:

$$\begin{split} \gamma &= (38.1^{+2.0+0.9+2.0}_{-1.3-0.5-2.2})^{\circ} &= (38.1^{+3.0}_{-2.6})^{\circ} \\ d &= 0.282^{+0.025+0.015+0.001}_{-0.09-0.001} &= 0.282^{+0.029}_{-0.036} \\ \theta &= (30.0^{+6.6+10.9+1.7}_{-3.5-10.0-1.3})^{\circ} &= (30.0^{+12.9}_{-10.7})^{\circ} \\ \gamma &= (68.5^{+3.2+1.2+3.0}_{-4.2-1.9-3.5})^{\circ} &= (68.5^{+4.5}_{-5.8})^{\circ} \\ d &= 0.498^{+0.065+0.000+0.013}_{-0.086-0.001-0.012} &= 0.498^{+0.066}_{-0.087} \\ \theta &= (154.8^{+2.6+8.5+0.9}_{-4.7-9.5-1.2})^{\circ} &= (154.8^{+8.9}_{-10.7})^{\circ} \end{split}$$
(B)

- Here we show the errors arising from K,  $\mathcal{A}_{CP}^{dir}(B_d \to \pi^+\pi^-)$  and  $\mathcal{A}_{CP}^{mix}(B_d \to \pi^+\pi^-)$ , and have finally added them in quadrature.

#### Impact of U-Spin-Breaking Effects



[1st errors: input; 2nd errors:  $\xi$ , 3rd errors:  $\Delta \theta$ ]

### **Discrete Ambiguities**

• For each of the solutions given above we obtain an additional one through:

$$\gamma \rightarrow \gamma - 180^{\circ}, \quad d \rightarrow d, \quad \theta \rightarrow \theta - 180^{\circ}$$

– The range of  $-180^{\circ} \leq \gamma \leq 0^{\circ}$  is excluded by  $\varepsilon_K$ . But NP ...

• Look at the cosines of  $\theta$ :

 $\cos \theta = +0.866^{+0.079}_{-0.128}$  (A),  $\cos \theta = -0.905^{+0.091}_{-0.056}$  (B)

- Although non-factorizable effects have a significant impact on  $\theta$ , we do *not* expect a change the sign of  $\cos \theta$ , which is *negative*.
- We may therefore exclude solution (A), which can also be done through  $\mathcal{A}_{CP}^{mix}(B_s \to K^+K^-)$  (see below), and the "mirror" solution of (B).
- Current data for  $B_d \to \pi^{\mp} K^{\pm}$ ,  $B^{\pm} \to \pi^{\pm} K$  allow us also to exclude (A) and its "mirror" solution (see below). Therefore only (B) remains:

$$\Rightarrow \qquad \gamma = (68.5^{+4.5}_{-5.8}|_{\text{input}} + 5.0_{-3.7}|_{\xi = 0.2}|_{\Delta\theta})^{\circ}$$

[UTfit:  $\gamma = (69.6 \pm 3.1)^{\circ}$ ; CKMfitter:  $\gamma = (67.2 \pm 3.9)^{\circ} \Rightarrow$  excellent agreement!]

#### CP Violation in $B_s \to K^+ K^-$

• We obtain the following SM predictions ( $\phi_s = -2^\circ$ ):

– 1st errors: input; 2nd errors:  $\xi = 1 \pm 0.15$ , 3rd errors:  $\Delta \theta = \pm 20^{\circ}$ ;

• Impact on the situation in the  $\gamma$ -d space (SM case):



[Note: the red  $\mathcal{A}_{CP}^{dir}(B_s) - \mathcal{A}_{CP}^{mix}(B_s)$  contour is *theoretically clean*!]

#### **Impact of New Physics**

• Agreement between  $B_d \to \pi^+\pi^-$ ,  $B_s \to K^+K^-$  result for  $\gamma$  and UT fits:

 $\Rightarrow$  dramatic NP effects @ amplitude level are *excluded* ...

- But the experimental picture has still to be improved considerably!
- NP can enter via  $B_s^0 \bar{B}_s^0$  mixing:

 $\Rightarrow$  | most recent Tevatron results from CPV in  $B_s \rightarrow J/\psi\phi$ :

- CDF finds the following ranges (68% C.L.):

 $\phi_s \in [-59.6^\circ, -2.29^\circ] \sim -30^\circ \lor [-177.6^\circ, -123.8^\circ] \sim -150^\circ$ 

- DØ takes also the dimuon charge asymmetry and data for BR( $B_s \rightarrow D_s^{(*)+}D_s^{(*)-}$ ) into account, yielding the best fit value  $\phi_s \sim -45^{\circ}$ .

 $\Rightarrow$  situation is far from being conclusive :-(

Such NP would also have footprints in  $B_s \to K^+K^-$ ...

# Target Space for $\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}(B_s \to K^+ K^-)$ Measurement

• Hadronic Parameters &  $\gamma$  as determined above:  $\Rightarrow$ 



 $\Rightarrow$  current picture for  $\phi_s$  would correspond to  $\mathcal{A}_{CP}^{mix} \sim -0.8!$ 

- This correlation can also be *calculated directly* from  $K: (\rightarrow new study:)$ 
  - Use  $\gamma$  as an input parameter (we assume  $\gamma = 68 \pm 7^{\circ}$ );
  - Use  $\mathcal{A}_{CP}^{dir}(B_s \to K^+K^-) \approx \mathcal{A}_{CP}^{dir}(B_d \to \pi^{\mp}K^{\pm}) = 0.098^{+0.011}_{-0.012}$  (see below) to fix the direct CP violation in  $B_s \to K^+K^- \Rightarrow$



• Corresponding SM prediction:

 $\mathcal{A}_{\rm CP}^{\rm dir}(B_s \to K^+ K^-)|_{\rm SM} = -0.213^{+0.031}_{-0.053}|_{K^{-0.022}_{-0.020}}|_{\gamma^{-0.005}_{-0.005}}|_{\mathcal{A}_{\rm CP}^{\rm dir}_{-0.010}}|_{\xi^{-0.004}_{-0.007}}|_{\Delta\theta}$ 

 $= -0.213^{+0.041}_{-0.058}$ 

R.F. & Rob Knegjens (in progress)

# $B_d \to \pi^{\mp} K^{\pm}$ , $B_s \to \pi^{\pm} K^{\mp}$

#### First Insights into U-Spin-Breaking Effects

• Parametrization of the decay amplitudes:

$$A(B_d^0 \to \pi^- K^+) = -P\left[1 - re^{i\delta}e^{i\gamma}\right]$$
$$A(B_s^0 \to \pi^+ K^-) = P_s\sqrt{\epsilon}\left[1 + \frac{1}{\epsilon}r_s e^{i\delta s}e^{i\gamma}\right]$$

• <u>U-spin symmetry</u>:  $\Rightarrow$  relations between strong parameters:

$$r_s = r, \quad \delta_s = \delta$$

$$\left|\frac{P_s}{P}\right|_{\text{fact}} = \frac{f_{\pi}}{f_K} \frac{F_{B_s K}(M_{\pi}^2; 0^+)}{F_{B_d \pi}(M_K^2; 0^+)} \left(\frac{M_{B_s}^2 - M_K^2}{M_{B_d}^2 - M_{\pi}^2}\right) \rightarrow \left|\frac{P_s}{P}\right|_{\text{fact}}^{\text{QCDSR}} = 0.99_{-0.06}^{+0.17}$$

• Another U-spin symmetry implication: [ $\rightarrow$  further info needed for  $\gamma$ ]

$$\frac{\mathcal{A}_{\rm CP}^{\rm dir}(B_s \to \pi^{\pm} K^{\mp})}{\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^{\mp} K^{\pm})} \sim - \left|\frac{P_s}{P}\right|^2 \left[\frac{\mathsf{BR}(B_d \to \pi^{\mp} K^{\pm})}{\mathsf{BR}(B_s \to \pi^{\pm} K^{\mp})}\right]$$

$$\Rightarrow \left|\frac{P_s}{P}\right|_{\exp} = \left|\frac{P_s}{P}\right| \sqrt{\left[\frac{r_s}{r}\right] \left[\frac{\sin \delta_s}{\sin \delta}\right]} = 1.04 \pm 0.26$$

# Further Information: $B^+ o \pi^+ K^0$ and $B^+ o K^+ ar K^0$

• For the extraction of  $\gamma$ , the overall normalization P has to be fixed:

– Neglect colour-suppressed EWPs and use the SU(2) isospin symmetry:

$$A(B^+ \to \pi^+ K^0) = P\left[1 + \epsilon \rho_{\pi K} e^{i\theta_{\pi K}} e^{i\gamma}\right]$$

• Hadronic parameter  $\rho_{\pi K} e^{i\theta_{\pi K}}$  is expected to play a minor rôle because of the  $\epsilon$  suppression, but could be enhanced through FSI effects(!?):

$$\mathcal{A}_{\rm CP}^{\rm dir}(B^{\pm} \to \pi^{\pm} K) = -\left[\frac{2\epsilon\rho_{\pi K}\sin\theta_{\pi K}\sin\gamma}{1+2\epsilon\rho_{\pi K}\cos\theta_{\pi K}\cos\gamma + \epsilon^2\rho_{\pi K}^2}\right] = -0.009\pm0.025$$

#### $\Rightarrow$ no anomalous behaviour indicated!

• U-spin-related  $b \to d$  penguin mode  $B^{\pm} \to K^{\pm}K$  (already observed):

$$A(B^+ \to K^+ \bar{K}^0) = \sqrt{\epsilon} P_{KK} \left[ 1 - \rho_{KK} e^{i\theta_{KK}} e^{i\gamma} \right]$$
$$\rho_{KK} = \rho_{\pi K}, \quad \theta_{KK} = \theta_{\pi K}$$

• Allows us to determine  $\rho_{KK}$  and  $\theta_{KK}$  for a given value of  $\gamma$ :

$$\mathcal{A}_{CP}^{dir}(B^{\pm} \to K^{\pm}K) = \frac{2\rho_{KK}\sin\theta_{KK}\sin\gamma}{1 - 2\rho_{KK}\cos\theta_{KK}\cos\gamma + \rho_{KK}^2} \stackrel{exp}{=} -0.12_{-0.17}^{+0.18}$$
$$H_{\pi K}^{KK} \sim \frac{1}{\epsilon} \left| \frac{P}{P_{KK}} \right|^2 \left[ \frac{\mathsf{BR}(B^{\pm} \to K^{\pm}K)}{\mathsf{BR}(B^{\pm} \to \pi^{\pm}K)} \right]$$
$$= \frac{1 - 2\rho_{KK}\cos\theta_{KK}\cos\gamma + \rho_{KK}^2}{1 + 2\epsilon\rho_{\pi K}\cos\theta_{\pi K}\cos\gamma + \epsilon^2\rho_{\pi K}^2} \stackrel{exp}{=} 0.64 \pm 0.15$$

• We arrive at a pretty resticted region in parameter space:



- Consequently, we find  $\epsilon \rho_{\pi K}|_{\exp} \sim 0.025$ :
  - We *do* not have to worry about the effects of this parameter;
  - Toy models of large FSI effects are ruled out by the B-factory data!

#### Extracting the UT Angle $\gamma$

• Let's first have a look at the  $B_d \to \pi^{\mp} K^{\pm}$ ,  $B^{\pm} \to \pi^{\pm} K$  system:

$$R \sim \frac{\tau_{B^+}}{\tau_{B_d}} \left[ \frac{\mathsf{BR}(B_d \to \pi^{\mp} K^{\pm})}{\mathsf{BR}(B^{\pm} \to \pi^{\pm} K)} \right] \stackrel{\exp}{=} 0.902 \pm 0.049$$

$$\Rightarrow w^2 R = 1 - 2r \cos \delta \cos \gamma + r^2$$

$$w = \sqrt{1 + 2\epsilon \rho_{\pi K} \cos \theta_{\pi K} + \epsilon^2 \rho_{\pi K}^2} \stackrel{\exp}{\sim} 1.02 \rightarrow \text{neglegt } \rho_{\pi K} \text{ effect!}$$

• R can be converted into a bound on  $\gamma$ : [R.F. & Mannel (1997)]

$$\sin^2 \gamma \le R \Rightarrow \gamma \le \left(71.8^{+5.4}_{-4.3}\right)^{\circ}$$

 $\rightarrow$  effectively constrains  $\gamma$  in a phenomenologically interesting region!

• Further information from direct CP violation:  $\rightarrow \gamma - r$  contours:<sup>2</sup>

$$A_0 \equiv \mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^{\mp} K^{\pm})R = 2r\sin\delta\sin\gamma$$

<sup>&</sup>lt;sup>2</sup>Detailed analysis: R.F., *Eur. Phys. J.* C6 (1999) 647.

• Introduce similar quantities for the  $B_s \to \pi^{\pm} K^{\mp}$ ,  $B^{\pm} \to \pi^{\pm} K$  system:

$$R_s \sim \left|\frac{P}{P_s}\right|^2 \left[\frac{\mathsf{BR}(B_s \to \pi^{\pm} K^{\mp})}{\mathsf{BR}(B^{\pm} \to \pi^{\pm} K)}\right] = \epsilon + 2r_s \cos \delta_s \cos \gamma + \frac{r_s^2}{\epsilon}$$

$$A_s \equiv \mathcal{A}_{\rm CP}^{\rm dir}(B_s \to \pi^{\pm} K^{\mp}) R_s = -2r_s \sin \delta_s \sin \gamma$$

 $\rightarrow \gamma - r_s$  contours (in analogy to the  $\gamma - r$  contours)

• <u>U-spin symmetry:</u> r =

$$r=r_s$$
,  $\delta=\delta_s$ 

- Intersection of the  $\gamma-r$  and  $\gamma-r_s$  contours:  $\Rightarrow \gamma$  ,  $r=r_s.$
- Moreover, the strong phases  $\delta$  and  $\delta_s$  can be extracted  $\Rightarrow$  test!
- A closer look shows the following additional features:
  - $\cos \delta$  positive for  $-90^{\circ} \leq \gamma \leq +90^{\circ} \Rightarrow 0^{\circ} \leq \gamma \leq +90^{\circ}$  (see above).
  - The requirement of  $\cos \delta_s > 0$  imposes further constraints ...

• Situation not as fortunate as in the case of  $B_d \to \pi^+\pi^-$ ,  $B_s \to K^+K^-$ :



- The FM bound is nicely visible for the blue  $\gamma$ -r contours;
- Because of the sgn $(\cos \delta_s) = \text{sgn}(\cos \delta) = 1$  constraint, only the lower branches of the red  $\gamma$ - $r_s$  contours are effective:

$$\Rightarrow \quad \boxed{24^{\circ} \le \gamma \le 71^{\circ}, \quad 0.07 \le r \le 0.13}$$

• Consider the upper  $1 \sigma$  values of  $R_s = 0.315$  and R = 0.951:

$$\Rightarrow \quad \gamma = 71.1^{\circ}, \quad r = 0.105, \quad \delta = 27.9^{\circ}, \quad \delta_s = 38.3^{\circ},$$

which would look quite reasonable.

## Interplay with the $B_s ightarrow K^+K^-$ , $B_d ightarrow \pi^+\pi^-$ Strategy

- $B_s^0 \to K^+ K^-$  and  $B_d^0 \to \pi^- K^+$  differ only in their spectator quarks:
  - Difference only through exchange and penguin annihilation topologies, which contribute to  $B_s^0 \to K^+ K^-$  but not to  $B_d^0 \to \pi^- K^+$ :

$$\begin{split} \sqrt{\frac{1}{2} \left[ \frac{\mathsf{BR}(B_d \to K^+ K^-)}{\mathsf{BR}(B^\pm \to \pi^\pm \pi^0)} \right] \frac{\tau_{B^+}}{\tau_{B_d}}} \\ \approx \left| \frac{\mathcal{E} - (\mathcal{P}\mathcal{A})_{tu}}{\mathcal{T} + \mathcal{C}} \right| \sqrt{1 + 2\varrho_{\mathcal{P}\mathcal{A}}\cos\vartheta_{\mathcal{P}\mathcal{A}}\cos\gamma + \varrho_{\mathcal{P}\mathcal{A}}^2} = 0.12^{+0.04}_{-0.06}} \\ \sqrt{\frac{\epsilon}{2} \left[ \frac{\mathsf{BR}(B_s \to \pi^+ \pi^-)}{\mathsf{BR}(B^\pm \to \pi^\pm \pi^0)} \right] \frac{\tau_{B^+}}{\tau_{B_s}}} \approx \frac{1}{R_b} \left| \frac{(\mathcal{P}\mathcal{A})_{tc}}{\mathcal{T} + \mathcal{C}} \right| = 0.05^{+0.03}_{-0.04}} \\ \Rightarrow \text{ data do not indicate any anomalous behaviour }} \Rightarrow \text{ neglect!} \end{split}$$

• We obtain then the following "dictionary":

$$re^{i\delta} = e^{i(\pi-\theta)}\epsilon/d$$

• Translation of our  $B_s \to K^+ K^-$ ,  $B_d \to \pi^+ \pi^-$  solutions:

$$\gamma = (38.1^{+3.0}_{-2.6})^{\circ} \qquad \gamma = (68.5^{+4.5}_{-5.8})^{\circ} r = 0.190^{+0.027}_{-0.018} \qquad r = 0.107^{+0.023}_{-0.012} \delta = (150.0^{+10.7}_{-12.9})^{\circ} \qquad \delta = (25.2^{+10.7}_{-8.9})^{\circ} (A) \qquad (B)$$

- Represented by green data points with error bars in the previous plot.
- The  $\gamma$ -r contours exclude (A), as noted above, leaving us with (B).
- Calculation of the  $B_d \to \pi^{\mp} K^{\pm}$ ,  $B_s \to \pi^{\pm} K^{\mp}$ ,  $B^{\pm} \to \pi^{\pm} K$  observables:

$$R = 0.940^{+0.016}_{-0.023} \stackrel{\text{exp}}{=} 0.902 \pm 0.049$$

$$R_s = 0.340^{+0.126}_{-0.063} \stackrel{\exp}{=} 0.250^{+0.065}_{-0.088}$$

 $\rightarrow \quad \mathsf{BR}(B_s \to \pi^{\pm} K^{\mp}) = \left(6.8^{+3.5}_{-1.6}\right) \times 10^{-6} \ (1 \,\sigma \text{ larger than CDF})$ 

 $\mathcal{A}_{\rm CP}^{\rm dir}(B_d \to \pi^{\mp} K^{\pm}) = +0.090^{+0.046}_{-0.034} \stackrel{\rm exp}{=} 0.098^{+0.011}_{-0.012} \left[ \to \mathcal{A}_{\rm CP}^{\rm dir}(B_s \to K^+ K^-) \right]$ 

- Corresponding situation in the  $\gamma-r_{(s)}$  plane:  $\rightarrow$  serves as future scenario:



• <u>Moreover:</u>

$$\frac{\mathrm{BR}(B_s \to K^+ K^-)}{\mathrm{BR}(B_d \to \pi^{\mp} K^{\pm})} \sim \left(\frac{f_{\pi}}{f_K} \left|\frac{\mathcal{C}'}{\mathcal{C}}\right|_{\mathrm{fact}}\right)^2 \Rightarrow \underbrace{\left|\frac{\mathcal{C}'}{\mathcal{C}}\right|_{\mathrm{fact}}^{\exp}}_{\mathrm{Gact}} = 1.44 \pm 0.12$$

$$\frac{\mathrm{BR}(B_s \to \pi^{\pm} K^{\pm})}{\mathrm{BR}(B_d \to \pi^{+} \pi^{-})} \sim \left(\frac{f_K}{f_{\pi}} \left|\frac{P_s}{P}\right|_{\mathrm{fact}}\right)^2 \Rightarrow \underbrace{\mathrm{BR}(B_s \to \pi^{\pm} K^{\pm})}_{\mathrm{CP}} = \left(\frac{6.8^{+2.5}_{-0.9}}{(6.8^{+2.5}_{-0.9}) \times 10^{-6}}\right)^2 + \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}(B_s \to \pi^{\pm} K^{\mp}) \sim -0.29$$

$$\mathrm{BR}(B_s \to \pi^{\pm} K^{\pm}) = \left[\frac{\mathrm{BR}(B_s \to K^+ K^-)}{\mathrm{BR}(B_d \to \pi^{\mp} K^{\pm})}\right] \mathrm{BR}(B_d \to \pi^{+} \pi^{-}) = (7.0 \pm 1.2) \times 10^{-6}$$

$$\Delta_{SU(3)}^{\mathrm{NF}} \equiv 1 - \left[\frac{\mathrm{BR}(B_s \to K^+ K^-)}{\mathrm{BR}(B_s \to \pi^{\pm} K^{\pm})}\right] \left[\frac{\mathrm{BR}(B_d \to \pi^{+} \pi^{-})}{\mathrm{BR}(B_d \to \pi^{\mp} K^{\pm})}\right] = -0.4 \pm 0.4$$

### **Final Remarks**

- Detailed analysis of the  $B_d \to \pi^+\pi^-$ ,  $B_s \to K^+K^-$  system:
  - The BaBar measurement of  $\mathcal{A}_{CP}^{dir}(B_d \to \pi^+\pi^-)$  is favoured.
  - A fortunate situation arises:

 $\gamma = \left(68.5^{+4.5}_{-5.8}|_{\text{input}} + 5.0}_{-3.7}|_{\xi = 0.2}|_{\Delta\theta}\right)^{\circ} \rightarrow \text{very competitive!}$ 

– Measurement of  $\mathcal{A}_{CP}^{mix}(B_s \to K^+K^-)$  is the next important step:

 $\rightarrow$  interesting *correlations* with  $(\sin \phi_s)_{B_s \rightarrow \psi \phi} \Rightarrow$  probe of NP!

- Detailed analysis of the  $B_d \to \pi^{\mp} K^{\pm}$ ,  $B_s \to \pi^{\pm} K^{\mp}$  system:
  - FM bound  $\gamma \leq (71.8^{+5.4}_{-4.3})^{\circ}$  is effective in an interesting region!
  - Current  $B_d \to \pi^{\mp} K^{\pm}$ ,  $B_s \to \pi^{\pm} K^{\mp}$  data:  $\Rightarrow 24^{\circ} \leq \gamma \leq 71^{\circ} \dots$
- Synergy between the two U-spin-related systems:
  - Resolves ambiguities for  $\gamma$ , thereby leaving us with a single solution.
  - Impressive consistency checks (U-spin-breaking effects, etc.).
  - Increase of  $BR(B_s \to \pi^{\pm} K^{\mp})$  is favoured...