A Fresh Look at $B_{s, d} \rightarrow \pi \pi, \pi K, K K$ Decays

Robert Fleischer

Nikhef Theory Group

CKM2010, Working Group VI, Warwick, UK, 6-10 September 2010

- Two main targets: $\rightarrow U$-spin related B decays
$-B_{d} \rightarrow \pi^{+} \pi^{-}, B_{s} \rightarrow K^{+} K^{-}$
$-B_{d} \rightarrow \pi^{\mp} K^{ \pm}, B_{s} \rightarrow \pi^{ \pm} K^{\mp}$
- Picture emerging from data: $\rightarrow \gamma$ determinations, predictions, ...

Update of R.F., Eur. Phys. J. C 52 (2007) $267 \oplus$ work with Rob Knegjens

Preliminaries

- Key problem in phenomenological analysis of non-leptonic B decays:

$$
\text { Hadronic matrix elements!? } \rightarrow \text { get them from data... }
$$

- Particularly interesting: [R.F., Phys. Lett. B 459 (1999) 306]

$$
U \text {-spin-related decays: } B_{d} \rightarrow \pi^{+} \pi^{-}, B_{s} \rightarrow K^{+} K^{-}
$$

\Rightarrow extraction of $\gamma \oplus$ hadronic parameters

- The advantage of this U-spin strategy with respect to the conventional $\overline{S U(3)}$ flavour-symmetry strategies is twofold:
- no additional dynamical assumptions have to be made, which could be spoiled by large rescattering effects;
- EW penguins, which are not invariant under the isospin symmetry because of the different up- and down-quark charges, can be included.
- Observables:
- CP-averaged branching ratios;
- Direct and mixing-induced CP asymmetries: ${ }^{1}$

$$
\begin{aligned}
\mathcal{A}_{\mathrm{CP}}(t) & \equiv \frac{\Gamma\left(B_{q}^{0}(t) \rightarrow f\right)-\Gamma\left(\bar{B}_{q}^{0}(t) \rightarrow f\right)}{\Gamma\left(B_{q}^{0}(t) \rightarrow f\right)+\Gamma\left(\bar{B}_{q}^{0}(t) \rightarrow f\right)} \\
& =\left[\frac{\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{q} \rightarrow f\right) \cos \left(\Delta M_{q} t\right)+\mathcal{A}_{\mathrm{CP}}^{\text {mix }}\left(B_{q} \rightarrow f\right) \sin \left(\Delta M_{q} t\right)}{\cosh \left(\Delta \Gamma_{q} t / 2\right)-\mathcal{A}_{\Delta \Gamma}\left(B_{q} \rightarrow f\right) \sinh \left(\Delta \Gamma_{q} t / 2\right)}\right]
\end{aligned}
$$

- Another U-spin-related pair: [Gronau \& Rosner, PLB 482 (2000) 7]

$$
B_{d} \rightarrow \pi^{\mp} K^{ \pm}, B_{s} \rightarrow \pi^{ \pm} K^{\mp}, \quad \text { but further input required: } B^{ \pm} \rightarrow \pi^{ \pm} K
$$

[^0]
Experimental Picture Autumn 2010 (HFAG)

- Results for $B \rightarrow \pi \pi, \pi K$ decays:

$$
\left.\begin{array}{c}
\mathrm{BR}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)=(5.16 \pm 0.22) \times 10^{-6} \\
\mathrm{BR}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right)=(19.4 \pm 0.6) \times 10^{-6} \\
\mathrm{BR}\left(B^{ \pm} \rightarrow \pi^{ \pm} K\right)=(23.1 \pm 1.0) \times 10^{-6}
\end{array}\right\} \begin{array}{ll}
0.68 \pm 0.10 \pm 0.03 & \text { (BaBar) } \\
\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)= \begin{cases}0.61 \pm 0.10 \pm 0.04 & \text { (Belle) }\end{cases} \\
\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)= \begin{cases}-0.25 \pm 0.08 \pm 0.02 & \text { (BaBar) } \\
-0.55 \pm 0.08 \pm 0.05 & \text { (Belle) }\end{cases}
\end{array}
$$

- Nice agreement for $\mathcal{A}_{\mathrm{CP}}^{\text {mix }}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right) \rightarrow-0.65 \pm 0.07$.
$-\mathcal{A}_{\mathrm{CP}}^{\text {dir }}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right)=0.098_{-0.012}^{+0.011}$ favours the BaBar measurement:

$$
\begin{array}{r}
\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right) \stackrel{S U(3)}{=}-\left(\frac{f_{\pi}}{f_{K}}\right)^{2} \frac{\mathrm{BR}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right)}{\mathrm{BR}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)} \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right) \\
=-0.26 \pm 0.03 \quad[\text { see also R.F., Recksiegel \& Schwab ('07)] }
\end{array}
$$

- Results for B_{s} decays [CDF \& Belle@ $\Upsilon(5 S)$]:

$$
\begin{gathered}
\mathrm{BR}\left(B_{s} \rightarrow \pi^{ \pm} K^{\mp}\right)=(5.0 \pm 0.7 \pm 0.8) \times 10^{-6} \\
\mathrm{BR}\left(B_{s} \rightarrow K^{+} K^{-}\right)=(26.5 \pm 4.4) \times 10^{-6} \\
\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s} \rightarrow \pi^{ \pm} K^{\mp}\right)=-0.39 \pm 0.15 \pm 0.08=-0.39 \pm 0.17
\end{gathered}
$$

$$
B_{d} \rightarrow \pi^{+} \pi^{-}, B_{s} \rightarrow K^{+} K^{-}
$$

Some Technical Details

- Decay amplitudes: $\left[\epsilon=\lambda^{2} /\left(1-\lambda^{2}\right)=0.053\right.$, with Wolfenstein Parameter $\left.\lambda\right]$

$$
\begin{aligned}
A\left(B_{d}^{0} \rightarrow \pi^{+} \pi^{-}\right) & =e^{i \gamma}\left(1-\frac{\lambda^{2}}{2}\right) \mathcal{C}\left[1-d e^{i \theta} e^{-i \gamma}\right] \\
A\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right) & =e^{i \gamma} \lambda \mathcal{C}^{\prime}\left[1+\frac{1}{\epsilon} d^{\prime} e^{i \theta^{\prime}} e^{-i \gamma}\right]
\end{aligned}
$$

- Implications of the U-spin symmetry:
(i) $\underline{d^{\prime}}=d, \theta^{\prime}=\theta$:
* $d e^{i \theta}$ and $d^{\prime} e^{i \theta^{\prime}}$ are actually ratios of certain hadronic amplitudes;
* U-spin-breaking form factors and decay constants cancel:
\rightarrow no factorizable U-spin-breaking corrections.
(ii) $\mid \underline{\mathcal{C}^{\prime} / \mathcal{C} \mid=1}$:
* Here the decay constants and form factors do not cancel:

$$
\left|\frac{\mathcal{C}^{\prime}}{\mathcal{C}}\right|_{\text {fact }}=\frac{f_{K}}{f_{\pi}} \frac{F_{B_{s} K}\left(M_{K}^{2} ; 0^{+}\right)}{F_{B_{d^{\pi}}}\left(M_{\pi}^{2} ; 0^{+}\right)}\left(\frac{M_{B_{s}}^{2}-M_{K}^{2}}{M_{B_{d}}^{2}-M_{\pi}^{2}}\right) \rightarrow\left|\frac{\mathcal{C}^{\prime}}{\mathcal{C}}\right|_{\text {fact }}^{\mathrm{QCDSR}}=1.41_{-0.11}^{+0.20}
$$

[Updated QCD light-cone sum rule calculation: Duplancic \& Melic (2008)]

Observables

- CP-violating $B_{d} \rightarrow \pi^{+} \pi^{-}$asymmetries:

$$
\begin{aligned}
\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right) & =-\left[\frac{2 d \sin \theta \sin \gamma}{1-2 d \cos \theta \cos \gamma+d^{2}}\right] \\
\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right) & =+\left[\frac{\sin \left(\phi_{d}+2 \gamma\right)-2 d \cos \theta \sin \left(\phi_{d}+\gamma\right)+d^{2} \sin \phi_{d}}{1-2 d \cos \theta \cos \gamma+d^{2}}\right]
\end{aligned}
$$

$\left[\phi_{d}=(42.2 \pm 1.8)^{\circ}\right.$ is the $B_{d}^{0}-\bar{B}_{d}^{0}$ mixing phase; HFAG average of $B_{d} \rightarrow J / \psi K_{\mathrm{S}, \mathrm{L}}$, etc.]

- CP-averaged branching ratios: $\rightarrow B_{s} \rightarrow K^{+} K^{-}$measurement enters:

$$
\begin{aligned}
K & =\frac{1}{\epsilon}\left|\frac{\mathcal{C}}{\mathcal{C}^{\prime}}\right|^{2}\left[\frac{M_{B_{s}}}{M_{B_{d}}} \frac{\Phi\left(M_{\pi} / M_{B_{d}}, M_{\pi} / M_{B_{d}}\right)}{\Phi\left(M_{K} / M_{B_{s}}, M_{K} / M_{B_{s}}\right)} \frac{\tau_{B_{d}}}{\tau_{B_{s}}}\right]\left[\frac{\mathrm{BR}\left(B_{s} \rightarrow K^{+} K^{-}\right)}{\operatorname{BR}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)}\right] \\
& =\frac{1}{\epsilon^{2}}\left[\frac{\epsilon^{2}+2 \epsilon d \cos \theta \cos \gamma+d^{2}}{1-2 d \cos \theta \cos \gamma+d^{2}}\right] \stackrel{\exp }{=} 51.8_{-14.9}^{+12.7}
\end{aligned}
$$

- Contours in the $\gamma-d$ plane: \rightarrow eliminate the strong phase $\theta \ldots$
$-\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)$and $\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right):$theoretically clean;
- K and $\mathcal{A}_{\mathrm{CP}}^{\operatorname{mix}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right): U$-spin symmetry enters:

\Rightarrow BaBar measurement of $\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)$favoured; will be used in the following numerical analysis...

Extraction of γ, d and θ

- We obtain the following numerical results:

$$
\begin{align*}
& \gamma=\left(38.1_{-1.3-0.5-2.2}^{+2.0+0.9+2.0}\right)^{\circ}=\left(38.1_{-2.6}^{+3.0}\right)^{\circ} \\
& d=0.282_{-0.035-0.009-0.001}^{+0.025+0.015+0.001}=0.282_{-0.036}^{+0.029} \tag{A}\\
& \theta=\left(30.0_{-3.5-10.0-1.3}^{+6.6+10.9+1.7}\right)^{\circ}=\left(30.0_{-10.7}^{+12.9}\right)^{\circ} \\
& \gamma=\left(68.5_{-4.2-1.9-3.5}^{+3.2+1.2+3.0}\right)^{\circ}=\left(68.5_{-5.8}^{+4.5}\right)^{\circ} \\
& d=0.498_{-0.086-0.001-0.012}^{+0.065+0.000+0.013}=0.498_{-0.087}^{+0.066} \tag{B}\\
& \theta=\left(154.8_{-4.7-9.5-1.2}^{+2.6+8.5+0.9}\right)^{\circ}=\left(154.8_{-10.7}^{+8.9}\right)^{\circ}
\end{align*}
$$

- Here we show the errors arising from $K, \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)$and $\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)$, and have finally added them in quadrature.

Impact of U-Spin-Breaking Effects

- Parametrized as follows:

$$
\xi \equiv d^{\prime} / d, \quad \Delta \theta \equiv \theta^{\prime}-\theta
$$

$$
\Rightarrow K=\frac{1}{\epsilon^{2}}\left[\frac{\epsilon^{2}+2 \epsilon \xi d \cos (\theta+\Delta \theta) \cos \gamma+\xi^{2} d^{2}}{1-2 d \cos \theta \cos \gamma+d^{2}}\right]:
$$

[1st errors: input; 2nd errors: ξ, 3rd errors: $\Delta \theta$]

Discrete Ambiguities

- For each of the solutions given above we obtain an additional one through:

$$
\gamma \rightarrow \gamma-180^{\circ}, \quad d \rightarrow d, \quad \theta \rightarrow \theta-180^{\circ}
$$

- The range of $-180^{\circ} \leq \gamma \leq 0^{\circ}$ is excluded by ε_{K}. But NP ...
- Look at the cosines of θ :

$$
\cos \theta=+0.866_{-0.128}^{+0.079}(\mathrm{~A}), \quad \cos \theta=-0.905_{-0.056}^{+0.091}(\mathrm{~B})
$$

- Although non-factorizable effects have a significant impact on θ, we do not expect a change the sign of $\cos \theta$, which is negative.
- We may therefore exclude solution (A), which can also be done through $\mathcal{A}_{\mathrm{CP}}^{\operatorname{mix}}\left(B_{s} \rightarrow K^{+} K^{-}\right)$(see below), and the "mirror" solution of (B).
- Current data for $B_{d} \rightarrow \pi^{\mp} K^{ \pm}, B^{ \pm} \rightarrow \pi^{ \pm} K$ allow us also to exclude (A) and its "mirror" solution (see below). Therefore only (B) remains:

$$
\Rightarrow \quad \gamma=\left(68.5_{-5.8}^{+4.5} \mid \text { input }\left.{ }_{-3.7}^{+5.0}\right|_{\left.\xi_{-0.2}^{+0.1} \mid \Delta \theta\right)^{\circ}}\right.
$$

[UTfit: $\gamma=(69.6 \pm 3.1)^{\circ}$; CKMfitter: $\gamma=(67.2 \pm 3.9)^{\circ} \Rightarrow$ excellent agreement!]

CP Violation in $B_{s} \rightarrow K^{+} K^{-}$

- We obtain the following SM predictions $\left(\phi_{s}=-2^{\circ}\right)$:

$$
\begin{aligned}
\mathcal{A}_{\mathrm{CP}}^{\operatorname{dir}}\left(B_{s} \rightarrow K^{+} K^{-}\right) & =+0.090_{-0.034}^{+0.046} \mid \text { input }_{-0.014}^{+0.014}\left|\xi_{-0.071}^{+0.057}\right| \Delta \theta \\
\mathcal{A}_{\mathrm{CP}}^{\operatorname{mix}}\left(B_{s} \rightarrow K^{+} K^{-}\right) & =-\left.0.218_{-0.027}^{+0.027}\right|_{\text {input }} ^{+0.00706}\left|\xi_{-0.020}^{+0.045}\right| \Delta \theta \\
\mathcal{A}_{\Delta \Gamma}\left(B_{s} \rightarrow K^{+} K^{-}\right) & =-\left.0.972_{-0.006}^{+0.009}\right|_{\text {input }} ^{-0.000}+{ }_{-0.000}^{+0.000}\left|\xi_{-0.002}^{+0.001}\right| \Delta \theta
\end{aligned}
$$

- 1st errors: input; 2nd errors: $\xi=1 \pm 0.15$, 3rd errors: $\Delta \theta= \pm 20^{\circ}$;
- Impact on the situation in the $\gamma-d$ space (SM case):

[Note: the red $\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s}\right)-\mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}}\left(B_{s}\right)$ contour is theoretically clean!]

Impact of New Physics

- Agreement between $B_{d} \rightarrow \pi^{+} \pi^{-}, B_{s} \rightarrow K^{+} K^{-}$result for γ and UT fits:

$$
\Rightarrow \quad \text { dramatic NP effects @ amplitude level are excluded ... }
$$

- But the experimental picture has still to be improved considerably!
- NP can enter via $B_{s}^{0}-\bar{B}_{s}^{0}$ mixing:

$$
\Rightarrow \text { most recent Tevatron results from CPV in } B_{s} \rightarrow J / \psi \phi:
$$

- CDF finds the following ranges (68\% C.L.):

$$
\phi_{s} \in\left[-59.6^{\circ},-2.29^{\circ}\right] \sim-30^{\circ} \vee\left[-177.6^{\circ},-123.8^{\circ}\right] \sim-150^{\circ}
$$

- $\mathrm{D} \emptyset$ takes also the dimuon charge asymmetry and data for $\mathrm{BR}\left(B_{s} \rightarrow\right.$ $\left.D_{s}^{(*)+} D_{s}^{(*)-}\right)$ into account, yielding the best fit value $\phi_{s} \sim-45^{\circ}$.
\Rightarrow situation is far from being conclusive :-(
Such NP would also have footprints in $B_{s} \rightarrow K^{+} K^{-} \ldots$

Target Space for $\mathcal{A}_{\mathrm{CP}}^{\operatorname{mix}}\left(\boldsymbol{B}_{s} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-}\right)$Measurement

- Hadronic Parameters \& γ as determined above: \Rightarrow

\Rightarrow current picture for ϕ_{s} would correspond to $\mathcal{A}_{\mathrm{CP}}^{\text {mix }} \sim-0.8$!
- This correlation can also be calculated directly from K : (\rightarrow new study:)
- Use γ as an input parameter (we assume $\gamma=68 \pm 7^{\circ}$);
- Use $\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s} \rightarrow K^{+} K^{-}\right) \approx \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right)=0.098_{-0.012}^{+0.011}$ (see below) to fix the direct CP violation in $B_{s} \rightarrow K^{+} K^{-} \Rightarrow$

- Corresponding SM prediction:

$$
\begin{gathered}
\left.\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s} \rightarrow K^{+} K^{-}\right)\right|_{\mathrm{SM}}=- \\
=\left.0.213_{-0.053}^{+0.031}\right|_{K} ^{-0.020}+\left.\left.0.022\right|_{-0.005} ^{+0.005}\right|_{\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}{ }_{-0.010}^{+0.014}\left|\xi_{-0.007}^{+0.004}\right|_{\Delta \theta}}=-0.213_{-0.058}^{+0.041} \\
\text { R.F. \& Rob Knegjens (in progress) }
\end{gathered}
$$

$$
B_{d} \rightarrow \pi^{\mp} K^{ \pm}, B_{s} \rightarrow \pi^{ \pm} K^{\mp}
$$

First Insights into U-Spin-Breaking Effects

- Parametrization of the decay amplitudes:

$$
\begin{aligned}
A\left(B_{d}^{0} \rightarrow \pi^{-} K^{+}\right) & =-P\left[1-r e^{i \delta} e^{i \gamma}\right] \\
A\left(B_{s}^{0} \rightarrow \pi^{+} K^{-}\right) & =P_{s} \sqrt{\epsilon}\left[1+\frac{1}{\epsilon} r_{s} e^{i \delta_{s}} e^{i \gamma}\right]
\end{aligned}
$$

- U-spin symmetry: \Rightarrow relations between strong parameters:

$$
\begin{gathered}
r_{s}=r, \quad \delta_{s}=\delta \\
\left|\frac{P_{s}}{P}\right|_{\text {fact }}=\frac{f_{\pi}}{f_{K}} \frac{F_{B_{s} K}\left(M_{\pi}^{2} ; 0^{+}\right)}{F_{B_{d} \pi}\left(M_{K}^{2} ; 0^{+}\right)}\left(\frac{M_{B_{s}}^{2}-M_{K}^{2}}{M_{B_{d}}^{2}-M_{\pi}^{2}}\right) \rightarrow\left|\frac{P_{s}}{P}\right|_{\text {fact }}^{\mathrm{QCDSR}}=0.99_{-0.06}^{+0.17}
\end{gathered}
$$

- Another U-spin symmetry implication: [\rightarrow further info needed for γ]

$$
\begin{gathered}
\frac{\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s} \rightarrow \pi^{ \pm} K^{\mp}\right)}{\mathcal{A}_{\mathrm{CP}}^{\operatorname{dir}}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right)} \sim-\left|\frac{P_{s}}{P}\right|^{2}\left[\frac{\mathrm{BR}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right)}{\operatorname{BR}\left(B_{s} \rightarrow \pi^{ \pm} K^{\mp}\right)}\right] \\
\Rightarrow\left|\frac{P_{s}}{P}\right|_{\exp }=\left|\frac{P_{s}}{P}\right| \sqrt{\left[\frac{r_{s}}{r}\right]\left[\frac{\sin \delta_{s}}{\sin \delta}\right]}=1.04 \pm 0.26
\end{gathered}
$$

Further Information: $B^{+} \rightarrow \pi^{+} K^{0}$ and $B^{+} \rightarrow K^{+} \overline{\boldsymbol{K}}^{0}$

- For the extraction of γ, the overall normalization P has to be fixed:
- Neglect colour-suppressed EWPs and use the $S U(2)$ isospin symmetry:

$$
A\left(B^{+} \rightarrow \pi^{+} K^{0}\right)=P\left[1+\epsilon \rho_{\pi K} e^{i \theta \pi K} e^{i \gamma}\right]
$$

- Hadronic parameter $\rho_{\pi K} e^{i \theta_{\pi K}}$ is expected to play a minor rôle because of the ϵ suppression, but could be enhanced through FSI effects(!?):
$\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B^{ \pm} \rightarrow \pi^{ \pm} K\right)=-\left[\frac{2 \epsilon \rho_{\pi K} \sin \theta_{\pi K} \sin \gamma}{1+2 \epsilon \rho_{\pi K} \cos \theta_{\pi K} \cos \gamma+\epsilon^{2} \rho_{\pi K}^{2}}\right]=-0.009 \pm 0.025$
\Rightarrow no anomalous behaviour indicated!
- $\underline{U \text {-spin-related } b \rightarrow d \text { penguin mode } B^{ \pm} \rightarrow K^{ \pm} K \text { (already observed): }}$

$$
\begin{gathered}
A\left(B^{+} \rightarrow K^{+} \bar{K}^{0}\right)=\sqrt{\epsilon} P_{K K}\left[1-\rho_{K K} e^{i \theta_{K K}} e^{i \gamma}\right] \\
\rho_{K K}=\rho_{\pi K}, \quad \theta_{K K}=\theta_{\pi K}
\end{gathered}
$$

- Allows us to determine $\rho_{K K}$ and $\theta_{K K}$ for a given value of γ :

$$
\begin{aligned}
\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B^{ \pm}\right. & \left.\rightarrow K^{ \pm} K\right)=\frac{2 \rho_{K K} \sin \theta_{K K} \sin \gamma}{1-2 \rho_{K K} \cos \theta_{K K} \cos \gamma+\rho_{K K}^{2}} \stackrel{\exp }{=}-0.12_{-0.17}^{+0.18} \\
H_{\pi K}^{K K} & \sim \frac{1}{\epsilon}\left|\frac{P}{P_{K K}}\right|^{2}\left[\frac{\mathrm{BR}\left(B^{ \pm} \rightarrow K^{ \pm} K\right)}{\mathrm{BR}\left(B^{ \pm} \rightarrow \pi^{ \pm} K\right)}\right] \\
& =\frac{1-2 \rho_{K K} \cos \theta_{K K} \cos \gamma+\rho_{K K}^{2}}{1+2 \epsilon \rho_{\pi K} \cos \theta_{\pi K} \cos \gamma+\epsilon^{2} \rho_{\pi K}^{2}} \stackrel{\exp }{=} 0.64 \pm 0.15
\end{aligned}
$$

- We arrive at a pretty resticted region in parameter space:

- Consequently, we find $\left.\epsilon \rho_{\pi K}\right|_{\exp } \sim 0.025$:
- We do not have to worry about the effects of this parameter;
- Toy models of large FSI effects are ruled out by the B-factory data!

Extracting the UT Angle γ

- Let's first have a look at the $B_{d} \rightarrow \pi^{\mp} K^{ \pm}, B^{ \pm} \rightarrow \pi^{ \pm} K$ system:

$$
\begin{gathered}
R \sim \frac{\tau_{B^{+}}}{\tau_{B_{d}}}\left[\frac{\mathrm{BR}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right)}{\mathrm{BR}\left(B^{ \pm} \rightarrow \pi^{ \pm} K\right)}\right] \stackrel{\exp }{=} 0.902 \pm 0.049 \\
\Rightarrow w^{2} R=1-2 r \cos \delta \cos \gamma+r^{2}
\end{gathered}
$$

$$
w=\sqrt{1+2 \epsilon \rho_{\pi K} \cos \theta_{\pi K}+\epsilon^{2} \rho_{\pi K}^{2}} \stackrel{\exp }{\sim} 1.02 \rightarrow \text { neglegt } \rho_{\pi K} \text { effect! }
$$

- $\quad \underline{R}$ can be converted into a bound on γ : [R.F. \& Mannel (1997)]

$$
\sin ^{2} \gamma \leq R \Rightarrow \gamma \leq\left(71.8_{-4.3}^{+5.4}\right)^{\circ}
$$

\rightarrow effectively constrains γ in a phenomenologically interesting region!

- Further information from direct CP violation: $\rightarrow \gamma-r$ contours: ${ }^{2}$

$$
A_{0} \equiv \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right) R=2 r \sin \delta \sin \gamma
$$

[^1]- Introduce similar quantities for the $B_{s} \rightarrow \pi^{ \pm} K^{\mp}, B^{ \pm} \rightarrow \pi^{ \pm} K$ system:

$$
\begin{aligned}
R_{s} \sim & \left|\frac{P}{P_{s}}\right|^{2}\left[\frac{\mathrm{BR}\left(B_{s} \rightarrow \pi^{ \pm} K^{\mp}\right)}{\mathrm{BR}\left(B^{ \pm} \rightarrow \pi^{ \pm} K\right)}\right]=\epsilon+2 r_{s} \cos \delta_{s} \cos \gamma+\frac{r_{s}^{2}}{\epsilon} \\
& A_{s} \equiv \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s} \rightarrow \pi^{ \pm} K^{\mp}\right) R_{s}=-2 r_{s} \sin \delta_{s} \sin \gamma \\
& \rightarrow \gamma-r_{s} \text { contours (in analogy to the } \gamma-r \text { contours) }
\end{aligned}
$$

- U-spin symmetry: $\quad r=r_{s}, \delta=\delta_{s}$
- Intersection of the $\gamma-r$ and $\gamma-r_{s}$ contours: $\Rightarrow \gamma, r=r_{s}$.
- Moreover, the strong phases δ and δ_{s} can be extracted \Rightarrow test!
- A closer look shows the following additional features:
$-\cos \delta$ positive for $-90^{\circ} \leq \gamma \leq+90^{\circ} \Rightarrow 0^{\circ} \leq \gamma \leq+90^{\circ}$ (see above).
- The requirement of $\cos \delta_{s}>0$ imposes further constraints ...
- Situation not as fortunate as in the case of $B_{d} \rightarrow \pi^{+} \pi^{-}, B_{s} \rightarrow K^{+} K^{-}$:

- The FM bound is nicely visible for the blue $\gamma-r$ contours;
- Because of the $\operatorname{sgn}\left(\cos \delta_{s}\right)=\operatorname{sgn}(\cos \delta)=1$ constraint, only the lower branches of the red $\gamma-r_{s}$ contours are effective:

$$
\Rightarrow \quad 24^{\circ} \leq \gamma \leq 71^{\circ}, \quad 0.07 \leq r \leq 0.13
$$

- Consider the upper 1σ values of $R_{s}=0.315$ and $R=0.951$:

$$
\Rightarrow \quad \gamma=71.1^{\circ}, \quad r=0.105, \quad \delta=27.9^{\circ}, \quad \delta_{s}=38.3^{\circ}
$$

which would look quite reasonable.

Interplay with the $B_{s} \rightarrow K^{+} K^{-}, B_{d} \rightarrow \pi^{+} \pi^{-}$Strategy

- $B_{s}^{0} \rightarrow K^{+} K^{-}$and $B_{d}^{0} \rightarrow \pi^{-} K^{+}$differ only in their spectator quarks:
- Difference only through exchange and penguin annihilation topologies, which contribute to $B_{s}^{0} \rightarrow K^{+} K^{-}$but not to $B_{d}^{0} \rightarrow \pi^{-} K^{+}$:

$$
\begin{aligned}
& \sqrt{\frac{1}{2}\left[\frac{\mathrm{BR}\left(B_{d} \rightarrow K^{+} K^{-}\right)}{\mathrm{BR}\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right)}\right] \frac{\tau_{B^{+}}}{\tau_{B_{d}}}} \\
& \quad \approx\left|\frac{\mathcal{E}-(\mathcal{P} \mathcal{A})_{t u}}{\mathcal{T}+\mathcal{C}}\right| \sqrt{1+2 \varrho_{\mathcal{P} \mathcal{A}} \cos \vartheta_{\mathcal{P A}} \cos \gamma+\varrho_{\mathcal{P} \mathcal{A}}^{2}}=0.12_{-0.06}^{+0.04} \\
& \quad \sqrt{\frac{\epsilon}{2}\left[\frac{\mathrm{BR}\left(B_{s} \rightarrow \pi^{+} \pi^{-}\right)}{\mathrm{BR}\left(B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}\right)}\right] \frac{\tau_{B^{+}}}{\tau_{B_{s}}}} \approx \frac{1}{R_{b}}\left|\frac{(\mathcal{P} \mathcal{A})_{t c}}{\mathcal{T}+\mathcal{C}}\right|=0.05_{-0.04}^{+0.03} \\
& \Rightarrow \text { data do not indicate any anomalous behaviour } \Rightarrow \text { neglect! }
\end{aligned}
$$

- We obtain then the following "dictionary":

$$
r e^{i \delta}=e^{i(\pi-\theta)} \epsilon / d
$$

- Translation of our $B_{s} \rightarrow K^{+} K^{-}, B_{d} \rightarrow \pi^{+} \pi^{-}$solutions:

$$
\underbrace{\begin{array}{c}
\gamma=\left(38.1_{-2.6}^{+3.0}\right)^{\circ} \\
r=0.190_{-0.018}^{+0.027} \\
\delta=\left(150.0_{-12.9}^{+10.7}\right)^{\circ}
\end{array}}_{(\mathrm{A})} \quad \begin{aligned}
& \gamma=\left(68.5_{-5.8}^{+4.5}\right)^{\circ} \\
& r=0.107_{-0.012}^{+0.023} \\
& \delta=\left(25.2_{-8.9}^{+0.7}\right)^{\circ}
\end{aligned}
$$

- Represented by green data points with error bars in the previous plot.
- The $\gamma-r$ contours exclude (A), as noted above, leaving us with (B).
- Calculation of the $B_{d} \rightarrow \pi^{\mp} K^{ \pm}, B_{s} \rightarrow \pi^{ \pm} K^{\mp}, B^{ \pm} \rightarrow \pi^{ \pm} K$ observables:

$$
\begin{gathered}
R=0.940_{-0.023}^{+0.016} \stackrel{\exp }{=} 0.902 \pm 0.049 \\
R_{s}=0.340_{-0.063}^{+0.126} \stackrel{\exp }{=} 0.250_{-0.088}^{+0.065} \\
\rightarrow \quad \mathrm{BR}\left(B_{s} \rightarrow \pi^{ \pm} K^{\mp}\right)=\left(6.8_{-1.6}^{+3.5}\right) \times 10^{-6}(1 \sigma \text { larger than CDF }) \\
\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right)=+0.090_{-0.034}^{+0.046} \stackrel{\exp }{=} 0.098_{-0.012}^{+0.011}\left[\rightarrow \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s} \rightarrow K^{+} K^{-}\right)\right]
\end{gathered}
$$

- Corresponding situation in the $\gamma-r_{(s)}$ plane: \rightarrow serves as future scenario:
- Moreover:

$$
\begin{gathered}
\frac{\mathrm{BR}\left(B_{s} \rightarrow K^{+} K^{-}\right)}{\operatorname{BR}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right)} \sim\left(\frac{f_{\pi}}{f_{K}}\left|\frac{\mathcal{C}^{\prime}}{\mathcal{C}}\right|_{\text {fact }}\right)^{2} \Rightarrow \underbrace{\left.\frac{\mathcal{C}^{\prime}}{\mathcal{C}}\right|_{\text {fact }} ^{\exp }=1.44 \pm 0.12}_{\mathrm{QCDSR}: 1.41_{-0.11}^{+0.20}} \\
\frac{\mathrm{BR}\left(B_{s} \rightarrow \pi^{ \pm} K^{ \pm}\right)}{\mathrm{BR}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)} \sim\left(\frac{f_{K}}{f_{\pi}}\left|\frac{P_{s}}{P}\right|_{\text {fact }}\right)^{2} \Rightarrow \underbrace{\mathrm{BR}\left(B_{s} \rightarrow \pi^{ \pm} K^{ \pm}\right)=\left(6.8_{-0.9}^{+2.5}\right) \times 10^{-6}}_{\rightarrow \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{s} \rightarrow \pi^{ \pm} K^{\mp}\right) \sim-0.29} \\
\mathrm{BR}\left(B_{s} \rightarrow \pi^{ \pm} K^{ \pm}\right)=\left[\frac{\mathrm{BR}\left(B_{s} \rightarrow K^{+} K^{-}\right)}{\mathrm{BR}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right)}\right] \operatorname{BR}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)=(7.0 \pm 1.2) \times 10^{-6} \\
\Delta_{S U(3)}^{\mathrm{NF}} \equiv 1-\left[\frac{\mathrm{BR}\left(B_{s} \rightarrow K^{+} K^{-}\right)}{\mathrm{BR}\left(B_{s} \rightarrow \pi^{ \pm} K^{ \pm}\right)}\right]\left[\frac{\mathrm{BR}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)}{\mathrm{BR}\left(B_{d} \rightarrow \pi^{\mp} K^{ \pm}\right)}\right]=-0.4 \pm 0.4
\end{gathered}
$$

Final Remarks

- Detailed analysis of the $B_{d} \rightarrow \pi^{+} \pi^{-}, B_{s} \rightarrow K^{+} K^{-}$system:
- The BaBar measurement of $\mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}}\left(B_{d} \rightarrow \pi^{+} \pi^{-}\right)$is favoured.
- A fortunate situation arises:

$$
\gamma=\left(\left.\left.68.5_{-5.8}^{+4.5}\right|_{\text {input }} ^{-3.7}{ }_{-0.0}^{+5.0}\right|_{-0.2} ^{+0.1} \mid \Delta \theta\right)^{\circ} \rightarrow \text { very competitive! }
$$

- Measurement of $\mathcal{A}_{\mathrm{CP}}^{\operatorname{mix}}\left(B_{s} \rightarrow K^{+} K^{-}\right)$is the next important step:
\rightarrow interesting correlations with $\left(\sin \phi_{s}\right)_{B_{s} \rightarrow \psi \phi} \Rightarrow$ probe of NP!
- Detailed analysis of the $B_{d} \rightarrow \pi^{\mp} K^{ \pm}, B_{s} \rightarrow \pi^{ \pm} K^{\mp}$ system:
- FM bound $\gamma \leq\left(71.8_{-4.3}^{+5.4}\right)^{\circ}$ is effective in an interesting region!
- Current $B_{d} \rightarrow \pi^{\mp} K^{ \pm}, B_{s} \rightarrow \pi^{ \pm} K^{\mp}$ data: $\Rightarrow 24^{\circ} \leq \gamma \leq 71^{\circ} \ldots$
- Synergy between the two U-spin-related systems:
- Resolves ambiguities for γ, thereby leaving us with a single solution.
- Impressive consistency checks (U-spin-breaking effects, etc.).
- Increase of $\operatorname{BR}\left(B_{s} \rightarrow \pi^{ \pm} K^{\mp}\right)$ is favoured...

[^0]: ${ }^{1}$ Similar sign convention also for direct CP asymmetries of flavour-specific decays.

[^1]: ${ }^{2}$ Detailed analysis: R.F., Eur. Phys. J. C6 (1999) 647.

