γ from penguin decays at LHCb

Angelo Carbone on behalf of the LHCb Collaboration

CKM Workshop 2010 Warwick , 6-10 September

Physics motivation: γ from charmless B \rightarrow hh

- B→hh decays comprise a rich set of channels and associated CP violation measurements
- b \rightarrow u tree transitions allow access to the CKM phase γ
 - E.g. CP time-dependent measurements from $B \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$ allow extraction of γ relying on U-spin [R. Fleischer, Phys. Lett. B 459 (306) 1999]
- New Physics may show up as virtual contributions of new particles inside the loops of penguin graphs

Physics motivation: γ from B \rightarrow hhh

- I. Bediaga et al. in Ref. [Phys. Rev. D 76, 073011 (2007)] depict a method to extract γ by combining Dalitz plot amplitude analyses of $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ and untagged B° , $\overline{B^{\circ}} \rightarrow K_{s}\pi^{+}\pi^{-}$
- The method also allows to measure the ratio and phase difference between the tree and penguin contributions from B° and $\overline{B} \circ \rightarrow K^{*\pm}\pi^{\mp}$ decays and the CP asymmetry between B° and \overline{B}°

The LHCb detector

Crucial for $B \rightarrow hh(h)$ physics:

- Hadronic trigger
- excellent particle ID
 - Mass peaks overlap,
 p/K/π separation
 necessary to disentangle
 all the different modes
- excellent tracking/ vertexing
 - mass and proper time resolution

- •VELO: Vertex Locator (around IP)
- TT, T1, T2, T3: Tracking stations
- RICH 1-2: Ring Imaging Cherenkov (PID)
- M1–M5: Muon stations
- •ECAL, HCAL: Calorimeters

Integrated Luminosity

Angelo Carbone

- To determine ID and mis-ID rates used samples from $K_s \rightarrow \pi \pi$, $\phi \rightarrow KK$ and $\Lambda \rightarrow p\pi$
- Good performance over expected B/D track momentum range
- ... but a lot of work for improvement:
 - Precision tuning of radiator refractive index
 - Targeting designed Cherenkov angle resolutions

Tracking

- ~ 15 μm for X & Y and ~ 90 μm for Z
- worse than MC: 11 μm for X & Y and 60 μm for Z

Further improvement is expected with better Alignment → lot of work in progress

LHCb trigger

2 kHz written to tape

Triggering on $B \rightarrow hh$

LO hadron \rightarrow cut on highest E_T measured by the hadronic calorimeter

Hadron alley \rightarrow confirm L0 decision using tracking system , cut on IP, p_T

Exclusive selection \rightarrow unique selection algorithm based on full detector information (except PID) for all B \rightarrow hh modes

Total efficiency with nominal trigger on $B \rightarrow hh \sim 40\%$

Angelo Carbone

Angelo Carbone

CKM-2010 Warwick, 6-10 September

Selecting $B \rightarrow hh$ at LHCb

- Measured bbar cross section at 7 TeV: $\sigma_{b\bar{b}} = 292 \pm 15 \pm 43 \mu b$ (Preliminary)
- Branching ratios are of the order 10⁻⁵ - 10⁻⁶
- Selection criteria must reject a huge amount of background
- Two main sources of background expected from Monte Carlo studies:
 - Combinatorial: mainly due to tracks coming from other B decays
 - Physical: partially reconstructed B→3body decays

- Transverse momentum
- Impact parameter
- χ^2 of common vertex Then, the B candidate is selected with cuts on:
- Transverse mometum
- Impact parameter
- Distance of flight

9

$B \rightarrow hh$ working in progress with L= 0.9 pb⁻¹

$B \rightarrow hh$ working in progress with L= 0.9 pb⁻¹

 lifetime fit on early B→Kπ data sample using a cut t>2 ps in order to select a region of flat proper time acceptance

$$\tau_{d} = (1.5 \ 1 \pm 0.28) \ ps$$

Prospects: yields for $B \rightarrow hh$

- Detailed studies available in "LHCb Roadmap document" [arXiv:0912.4179]
 - Studies made there for 14 TeV, here yields rescaled to 7 TeV according to the measured cross section

Decay mode	\mathcal{BR}	L=
	$\times 10^{6}$	500pb ⁻¹
$B^0 \to \pi^+ \pi^-$	5.16 ± 0.22	8.5k
$B^0 \to K^+ \pi^-$	19.4 ± 0.06	31k
$B_s^0 \to \pi^+ K^-$	5.27 ± 1.17	2.3k
$B_s^0 \to K^+ K^-$	25.8 ± 4.2	10.2k
$\Lambda_b \to p\pi^-$	3.1 ± 0.9	1k
$\Lambda_b \to pK^-$	5.0 ± 1.2	1.6k

Prospects: CP and BR measurements in $B \rightarrow hh$

- Competitive measurements already possible with L=200 pb⁻¹
 - E.g. $B_s \rightarrow K\pi$ charge asymmetry, relative BR's, ...
 - $B_s \rightarrow KK$ Lifetime
- With 500 pb⁻¹ we will largely overcome the current world statistics and measurements of time dependent CP asymmetries will be possible
 - (Maybe, unless CDF) first measurement of B_s→KK time dependent CP violation
- Observation/strong bounds on very rare decay $B_d \rightarrow K^+K^-$ and $B_s \rightarrow \pi^+\pi^-$

	Current	LHCb
	knowledge	stat.
$\mathcal{A}_{K^{+}\pi^{-}}^{CP}$	$-0.098^{+0.012}_{-0.011}$	0.008
$\mathcal{A}_{\pi^+K^-}^{\mathcal{CP}}$	$0.39 \pm 0.15 \pm 0.08$	0.05
$\mathcal{A}^{CP}_{p\pi-}$	$0.03 \pm 0.17 \pm 0.05$	0.05
$\mathcal{A}^{\mathcal{CP}}_{pK-}$	$0.37 \pm 0.17 \pm 0.03$	0.03
$\mathcal{A}^{dir}_{\pi^+\pi^-}$	0.38 ± 0.06	0.13
$\mathcal{A}^{mix}_{\pi^+\pi^-}$	-0.65 ± 0.07	0.13
$\operatorname{Corr}(\mathcal{A}_{\pi^+\pi^-}^{dir}, \mathcal{A}_{\pi^+\pi^-}^{mix})$	0.08	-0.03
$\mathcal{A}^{dir}_{K^+K^-}$		0.15
\mathcal{A}_{K+K-}^{mix}	Unmeasured	0.11
$\operatorname{Corr}(\mathcal{A}_{K^+K^-}^{dir}, \mathcal{A}_{K^+K^-}^{mix})$		0.02
$\frac{\mathcal{BR}(B^0 \to \pi^+\pi^-)}{\pi^-}$	0.264 ± 0.011	0.006
$\mathcal{BR}(B^0 \rightarrow K^+\pi^-)$	0.201 ± 0.011	0.000
$\frac{\mathcal{BR}(B^0 \to K^+ K^-)}{\mathcal{BR}(B^0 \to K^+ \pi^-)}$	$0.020 \pm 0.008 \pm 0.006$	0.005
$\frac{f_s \mathcal{BR}(B^0_s \to K^+ K^-)}{f_d \mathcal{BR}(B^0 \to K^+ \pi^-)}$	$0.347 \pm 0.020 \pm 0.021$	0.006
$\frac{f_s \mathcal{BR}(B^0_s \to \pi^+ K^-)}{f_d \mathcal{BR}(B^0 \to K^+ \pi^-)}$	$0.071 \pm 0.010 \pm 0.007$	0.004
$\frac{f_s \mathcal{BR}(B_s^0 \rightarrow \pi^+\pi^-)}{f_d \mathcal{BR}(B^0 \rightarrow K^+\pi^-)}$	$0.007 \pm 0.004 \pm 0.005$	0.002
$\frac{f_{\Lambda_b} \mathcal{BR}(\Lambda_b \to p\pi^-)}{f_d \mathcal{BR}(B^0 \to K^+\pi^-)}$	$0.0415 \pm 0.0074 \pm 0.0058$	0.0016
$\frac{\overline{f_{\Lambda_b} \mathcal{BR}(\Lambda_b \to pK^-)}}{\overline{f_d \mathcal{BR}(B^0 \to K^+\pi^-)}}$	$0.0663 \pm 0.0089 \pm 0.0084$	0.0018

LHCb stat. sensitivity with L=500 pb⁻¹

Prospects: γ from B \rightarrow hh (for L=2 fb⁻¹ at 14 TeV)

- Direct and mixing induced CP asymmetries in $B_d \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$ measured using tagged, time-dependent analysis allow to extract γ up to U-Spin breaking corrections [R. Fleischer, PLB 459 (306) 1999]
- Extraction of unknown parameters still possible even allowing U-spin breaking to a certain extent
- Not only γ , but also the B_s mixing phase can be probed

Results here obtained allowing for 20% of U-spin breaking for these channels

Sensitivities still good up to 50% of U-spin breaking, see LHCb Roadmap [arXiv: 0912.4179] for details

Prospects: yields for $B^{\pm} \rightarrow hhh$

• Expected events from MC studies with L=1fb⁻¹ @ 7 TeV

	BR x 10 ⁵	Yield
В→Кππ	5.50±0.70	162k
Β→πππ	1.62±0.15	48k
В→ККπ	0.50±0.07	15k
в→ккк	3.37±0.22	99k
В→ррπ	0.16±0.02	5k
В→ррК	0.59±0.05	17k

More than one order of magnitude than current world statistics

 $B \rightarrow K\pi\pi$ signal with current data

CP violation in $B^{\pm} \rightarrow hhh$ modes

 Possibility of probing regions of the Dalitz plot looking at interference with CP violation → Mirandazing method

Method: subtract B⁺ and B⁻ Dalitz surface and write the significance of each bin
If not gaussian → presence of CP violation

I. Bediaga et al., Phys. Rev. D 80, 096006 (2009)

Summary

- Analysis of first inverse pb of data very encouraging
 - First $B \rightarrow$ hh and $B \rightarrow$ hhh signals established
 - Observed yields confirm Monte Carlo expectations
 - detector and trigger in good shape
 - Trigger will have to cope soon with larger instantaneous luminosity
 - lot of work in progress on alignment and PID
- Depending on LHC ramp up in luminosity, we expect to be competitive with and even overcome current world statistics at some point in 2011
- Stay tuned!