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Motivation

Many "puzzles" in charmless B → M1M2 at leading power in the 1/mb expansion:

in B → PP :

Br(K0π0), Br(π0π0) too small

ACP (π+π−) too small; ACP (K+π−) has wrong sign and magnitude too small

ACP (K+π−) ≈ ACP (K+π0) contrary to observation

in B → V P :

B → φK and B → K∗π rates too small

in B → V V

B → φK∗, B → K∗ρ longitudinal polarization fractions (≈ 1) much larger than
observed (≈ 50%)
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Focus on possibility that

certain power corrections (PC’s) in 1/mb are enhanced due to long-distance effects,
e.g.,

in an outgoing meson, one valence quark is hard, the other soft

large "soft-overlap" between the fast and soft valence quarks is required

can not estimate power correction magnitudes via comparison to leading power!!!

CLEO-c and the B factories measure e+e− → M1M2 cross sections at different
√

s.
They are either PC dominated, or pure PC’s in 1/

√
s.

ideal for isolating PC’s and checking for large soft-overlaps

√
s ∼ mB ⇒ learn about the importance of soft-overlaps in B → M1M2.

Could they be O(1)?
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Leading power vs. power corrections:e+e− → M1M2

e+
e� q

q



g

1

∝ 〈M1M2|q̄ γµq|0〉

parametrized in terms of dimensionless timelike form factors

Each quark helicity flip requires transverse momentum, k⊥

⇒ O
`

ΛQCD/
√

s
´

form factor suppression, for meson with energy
√

s/2
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e+e− → π+π− , K+K−: 〈P1P2|Jµ
em|0〉 = FP (s)(p1 − p2)µ
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(a) leading power: no helicity flip

FLP
π ∝ 1

s
, calculable in QCD Factorization

(b), (c) power correction: two helicity flips

δFπ ∝ 1

s2
, infrared divergent, not calculable
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e+e− → V P : 〈V P |Jµ
em|0〉 = 1

mP +mV

2 i VV P (s) ǫµνρσǫνpσ
V pρ

P

Parity + angular momentum conservation ⇒ V is transverse
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V P

always need one helicity flip ⇒ VV P is a pure power correction

VV P ∝ 1

s2
, infrared divergent , not calculable
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e+e− → V1V2:

Three form factors: for LL, TL, and TT polarizations

T ≡ transverse, L ≡ longitudinal

〈V1V2 | Jµ
em | 0〉 =

hmV1
(ǫ⋆

1.p2)

2E2

ihmV2
(ǫ⋆

2.p1)

2E2

i

(p1 − p2)
µVLL(s) +

 

ǫ⋆µ
1⊥

hmV2
(ǫ⋆

2.p1)

2E2

i

−ǫ⋆µ
2⊥

hmV1
(ǫ⋆

1.p2)

2E2

i

!

VLT (s) +
“

ǫ⋆
1⊥.ǫ⋆

2⊥

”

(p1 − p2)
µVT T (s)

LL: no helicity flips ⇒ leading power, V LP
LL ∝ 1/s

two helicity flips ⇒ power correction, δVLL ∝ 1/s2

LT: one helicity flip ⇒ pure power correction, VLT ∝ 1/s

TT: two helicity flips ⇒ pure power correction, O(Λ2
QCD/s) suppression

The power corrections are infrared divergent, not calculable
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Leading power vs. power corrections:B → M1M2

QCD penguin amplitude (P ) at leading power:

leading order in αs (naive factorization), e.g.,
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A ∝ 〈M2|s̄γµ(1 ∓ γ5)q′|0〉 〈M1|q̄′γµ(1 − γ5)b|B̄〉
∝ decay constant × form factor, scales like m

1/2

B

leading power but higher order in αs, e.g., charm loops:
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QCD penguin power corrections

“Weak annihilation”, e.g., (perturbative limit)
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annihilation topology ⇒ 1/mb suppression (A ∝ fM1
fM2

fB)

quark helicity flip in PP , V P , or V V final states ⇒ 1/mb suppression

Charm loop power corrections, e.g., (perturbative limit)

Q1 s,db

_
q

c,u

charm loop PC’s cancel weak annihilation (and hard spectator) leading log µb

renormalization scale dependence – p. 10



Power correction amplitudes

At subleading powers in 1/mb:

short / long distance factorization breaks down

⇒ amplitudes could be soft dominated

Signaled by infrared log divergences in the convolution integrals

⇒ mesons produced in asymmetric configurations, e.g.,

fast valence antiquark, soft valence quark

the light mesons would be produced via soft-overlaps, necessarily
non-perturbative ⇒ large strong phases are possible
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Power corrections ine+e− → M1M2 vs. QCD penguins

Compare timelike form factor PC’s

e+
e� q

q



g

1

FM1M2
∝ 〈M1M2|q̄ γµq|0〉

to penguin PC’s, e.g.,

Q1 s,db

_
q

c,u

b

_
q

s,d

q
_

Q
1,..,10

in both cases

have hard outgoing quark and antiquark, E ∼ √
s/2 or mB/2

each hadronizes with soft quark or antiquark, i.e., both light mesons produced in
asymmetric configurations via soft overlaps

PC’s for C (color suppressed amplitude): only one light meson produced via
soft-overlap
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Analysis Procedure

Perturbative calculations of PC’s on the light-cone contain infrared log-divergent terms

∼ αs(µh)

„

1√
s

«n „

log

√
s or mB

Λ

«m

,

Λ ∼ ΛQCD represents a physical IR cutoff

Separate PC’s into "perturbative" parts, and "non-perturbative" parts,
e.g., for the pion form factor

δFπ = δFpert.
π + δFnon−pert.

π

perturbative parts correspond to Λ &
√

1 GeV, 1 GeV . µh .
√

s or mB

comparison with e+e− → M1M2 data yields non-perturbative parts,
e.g., δFnon−pert.

π /δFpert.
π

Asssume B decay "puzzles" due to PC’s. Fit non-perturbative PC’s to data.

Compare ratios of non-perturbative to perturbative PC’s in e+e− → M1M2 and
B → M1M2.
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Two ways to test power counting rules
check

√
s dependence of e+e− → M1M2 form factors, e.g.,

Vρη ∝ 1/s2 (CLEO-c, BELLE):
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compare power corrections in e+e− → PP (δFπ , δFK ) and in the QCD penguin
amplitudes (δPππ , δPKπ), and similarly for V P and V V final states

The “perturbative parts” of the power corrections are consistent with power
counting rules ⇒ ratios of non-perturbative to perturbative parts of PC’s with
similar kinematics should be consistent (order of magnitude), e.g.,

δFnon−pert.
π /δFpert.

π ∼ δPnon−pert.
ππ /δPpert.

ππ

and similarly for V P , V V final states – p. 14



CLEO-c continuum e+e− → π+π− , K+K− at
√

s = 3.67 GeV

CLEO-c measures (〈P+P−| Jµ
em |0〉 = FP (s) (p+ − p−)µ)

|Fπ| = 0.075 ± 0.009 , |FK | = 0.063 ± 0.004

calculable leading power contributions,

FLP
π = −0.01+0.002

−0.004 , FLP
K = −0.014+0.002

−0.006

⇒ Fπ , FK dominated by PC’s entering at O(1/s) !

perturbative PC’s. blue bands: variation of inputs (µh = Λ); yellow bands: add
variation of µh; dashed lines: asymptotic light-cone distribution amplitudes
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CLEO-c data implies

δFnon−pert.
π

δFpert.
π

= O(10),
δFnon−pert.

K

δFpert.
K

= O(10)

⇒ very large soft-overlaps !

similar soft enhancement would account for Fπ(mJ/Ψ) ≈ 0.10 ,
obtained from J/Ψ decays

Leading power form factors obey canonical SU(3)F flavor symmetry breaking

(Fπ/FK)LP ≈ f2
π/f2

K = 0.67

|Fπ/FK |exp. = 1.20 ± 0.17 ⇒ PC’s satisfy |δFπ/δFK | > 1

apparently, soft-overlap larger for pions than kaons

source for large SU(3)F breaking
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B → Kπ, ππ power correction fit procedure

scan procedure:

vary input parameters uniformly within errors, (γ ∈ [50◦ , 80◦],....)

require all Br’s, direct CP asymmetries AK+π− , AK0π+ , AK+π0 , Aπ+π− , time-dep.
CP asymmetry Sπ+π− lie within 1σ errors

obtain predictions for CKsπ0 = −AKsπ0 , SKsπ0

Goodness of B → Kπ fit:

χ2
min

/d. o. f. ≈ 3.5/2 or only ≈ 1.4σ from Standard Model

but are the power correction magnitudes in the fit natural?
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B → Kπ, ππ penguin power corrections

Kπ scatter plot for |δP c| vs. δP c (strong phase relative to naive factorization):

ACP (K+π−) favors δP c ≈ P c
LP

with significant strong phase
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Fits give:

Kπ :

˛

˛

˛

˛

δP c ,non−pert.

δP c ,pert.

˛

˛

˛

˛

= O(10) , ππ :

˛

˛

˛

˛

δP ′ c ,non−pert.

δP ′ c ,pert.

˛

˛

˛

˛

= O(10)

similar to continuum δFπ, K ⇒ gives us confidence the fit is natural

LP penguins obey canonical SU(3)F breaking: (fK/fπ)P ′ c
LP

(ππ) ≈ P c
LP

(Kπ).
Compare
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appears δP ′ c ,non−pert.(ππ) > δP c ,non−pert.(Kπ), as in continuum δFπ > δFK

, i.e., again appears larger soft-overlap larger for pions than kaons!
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e+e− → V P at
√

s ≈ 3.7 GeV, 10.58 GeV

Vρη at
√

s = 3.77 GeV (CLEO-c), and at the Υ(4S) (BELLE)
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B → V P penguin power corrections

B → K∗π PC fits: varied four Br’s, four ACP ’s within 1σ errors
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B → K∗π “perturbative” QCD penguin PC’s:
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For B → V P , find
˛

˛δP c ,non−pert./δP c ,pert.
˛

˛ ≥ O(few), consistent with
e+e− → V P
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e+e− → ρ+ρ− at the Υ(4S) (BABAR)

σ(e+e− → ρ+ρ−) = 19.6 ± 1.6 ± 3.2 fb + angular analysis

⇒ |VLL| = 0.0069 ± 0.0017, |VLT | = 0.032 ± 0.01

Angular analysis has large uncertainties, but contains useful information:

VLL has LP and PC contributions, VLT is a pure PC

Leading power contribution to VLL is calculable in QCDF ⇒V LP
LL = −0.002 ± 0.0005

perturbative power corrections
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VLL should be dominated by the LP contribution

|δV non−pert.
LT /δV pert.

LT | = O(1 − few), within large errors
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QCD penguin PC’s inB → φK∗ , K∗ρ

PC fits: varied all available Br, CP asymmetry, transversity angular analysis
measurements within 1σ errors

The negative helicity B → φK∗0 and B− → K∗0ρ− QCD penguins
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Consistent with
˛

˛δP c ,non−pert./δP c ,pert.
˛

˛ = O(1 − few),within large errors, and with
e+e− → ρ+ρ−
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Conclusions

puzzles in charmless B → M1M2 could be accounted for via power corrections if they
have large soft-overlaps

PP , V P , V V penguin power corrections would be same order as leading power
penguins

PP : O(10) enhancement of PC’s due to soft-overlaps
V P, V V : consistent with more moderate O(1) to O(few) enhancement of PC’s

e+e− → PP, V P, V V provides a direct probe of non-perturbative power corrections

continuum CLEO-c and Υ(4S) data yields a similar pattern to what would be
required in B decays:

O(10) non-perturbative enhancement of power corrections in PP , and consistent
with more moderate O(1) to O(few) enhancement in V P , V V

Therefore, the e+e− data is telling us that the power correction orders of magnitude

required in B decays are natural and not at all surprising
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More measurements that would be helpful:

strong phase difference between (LL) and (LT) helicity amplitudes in e+e− → ρ+ρ− at
the Υ(4S), improve the precision of the ρ+ρ− analysis

BELLE should also do the ρ+ρ− analysis

we do not have a continuum e+e− → V V analysis at CLEO-c energies

Vωπ at the Υ(4S). Can be combined with precise and clean CLEO-c measurement at
3.77 GeV, to further test power counting

BABAR should also measure Vρη

VK∗0K0 at the Υ(4S)

High luminosity flavor factories: use initial state radiation to measure Fπ at
√

s > 3.67

GeV. Expect σ(e+e− → π+π−) ∼ 0.5 pb at
√

s ≈ mB
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