What can $e^+e^- \rightarrow M_1M_2$ tell us about power corrections in $B \rightarrow M_1M_2$ decays?

Alex Kagan

University of Cincinnati

-based on work done with Murugesh Duraisamy, arXiv:0812.3162, and to appear

Outline

- Motivation
 - Leading power vs. power corrections
- Power corrections in $e^+e^- \rightarrow M_1M_2$ vs. $B \rightarrow M_1M_2$
- PP final states
- VP final states
 - $e^+e^- \rightarrow VP$ at CLEO-c and at the $\Upsilon(4S)$
 - power corrections in $B \to K^* \pi$
- VV final states
 - $e^+e^- \rightarrow \rho^+\rho^-$ at the $\Upsilon(4S)$
 - the longitudinal polarizations in penguin dominated $B \rightarrow \phi K^*$, ρK^*

Conclusion

Motivation

Many "puzzles" in charmless $B \rightarrow M_1 M_2$ at leading power in the $1/m_b$ expansion:

 $In B \to PP:$

• $\operatorname{Br}(K^0\pi^0)$, $\operatorname{Br}(\pi^0\pi^0)$ too small

• $A_{CP}(\pi^+\pi^-)$ too small; $A_{CP}(K^+\pi^-)$ has wrong sign and magnitude too small

• $A_{CP}(K^+\pi^-) \approx A_{CP}(K^+\pi^0)$ contrary to observation

in $B \to VP$:

■ $B \to \phi K$ and $B \to K^* \pi$ rates too small

 $in B \to VV$

■ $B \to \phi K^*$, $B \to K^* \rho$ longitudinal polarization fractions (≈ 1) much larger than observed ($\approx 50\%$)

Focus on possibility that

- certain power corrections (PC's) in 1/m_b are enhanced due to long-distance effects, e.g.,
 - in an outgoing meson, one valence quark is hard, the other soft
 - Iarge "soft-overlap" between the fast and soft valence quarks is required
- can not estimate power correction magnitudes via comparison to leading power!!!
- CLEO-c and the *B* factories measure $e^+e^- \rightarrow M_1M_2$ cross sections at different \sqrt{s} .
 They are either PC dominated, or pure PC's in $1/\sqrt{s}$.
 - ideal for isolating PC's and checking for large soft-overlaps

Leading power vs. power corrections: $e^+e^- \rightarrow M_1M_2$

 $\propto \langle M_1 M_2 | \bar{q} \gamma_\mu q | 0 \rangle$

parametrized in terms of dimensionless timelike form factors

Each quark helicity flip requires transverse momentum, k_{\perp}

 $\Rightarrow O(\Lambda_{QCD}/\sqrt{s})$ form factor suppression, for meson with energy $\sqrt{s}/2$

1

•
$$e^+e^- \rightarrow \pi^+\pi^-$$
, K^+K^- : $\langle P_1P_2|J_{em}^{\mu}|0\rangle = F_P(s)(p_1-p_2)^{\mu}$
 q_{c}
 \bar{q}_{b}
 \bar{q}_{b}
 \bar{q}_{c}
 \bar{q}_{b}
 \bar{q}_{c}
 \bar{q}_{c}

(a) leading power: no helicity flip

 $F_{\pi}^{\text{LP}} \propto \frac{1}{s}$, calculable in QCD Factorization

(b), (c) power correction: two helicity flips

$$\delta F_{\pi} \propto \frac{1}{s^2}$$
, infrared divergent, not calculable

•
$$e^+e^- \rightarrow VP$$
: $\langle VP|J_{em}^{\mu}|0\rangle = \frac{1}{m_P + m_V} 2i V_{VP}(s) \epsilon_{\mu\nu\rho\sigma} \epsilon^{\nu} p_V^{\sigma} p_P^{\rho}$
Parity + angular momentum conservation \Rightarrow V is transverse
 q_{c}
 \bar{q}_{b}
 q_{0}
 \bar{q}_{0}
 $\bar{q}_$

always need one helicity flip $\Rightarrow V_{VP}$ is a pure power correction

 $V_{VP} \propto \frac{1}{s^2}$, infrared divergent, not calculable

$$e^+e^- \rightarrow V_1V_2$$
:

Three form factors: for LL, TL, and TT polarizations

 $T \equiv \text{transverse}, \quad L \equiv \text{longitudinal}$

$$\langle V_1 V_2 \mid J_{em}^{\mu} \mid 0 \rangle = \left[\frac{m_{V_1}(\epsilon_1^{\star}.p_2)}{2E^2} \right] \left[\frac{m_{V_2}(\epsilon_2^{\star}.p_1)}{2E^2} \right] (p_1 - p_2)^{\mu} V_{LL}(s) + \left(\epsilon_{1\perp}^{\star\mu} \left[\frac{m_{V_2}(\epsilon_2^{\star}.p_1)}{2E^2} \right] \right) \\ - \epsilon_{2\perp}^{\star\mu} \left[\frac{m_{V_1}(\epsilon_1^{\star}.p_2)}{2E^2} \right] \right) V_{LT}(s) + \left(\epsilon_{1\perp}^{\star}.\epsilon_{2\perp}^{\star} \right) (p_1 - p_2)^{\mu} V_{TT}(s)$$

 \checkmark LL: no helicity flips \Rightarrow leading power, $V_{LL}^{LP} \propto 1/s$

two helicity flips \Rightarrow power correction, $\delta V_{LL} \propto 1/s^2$

• LT: one helicity flip \Rightarrow pure power correction, $V_{LT} \propto 1/s$

S TT: two helicity flips \Rightarrow pure power correction, $O(\Lambda_{QCD}^2/s)$ suppression

The power corrections are infrared divergent, not calculable

Leading power vs. power corrections: $B \rightarrow M_1 M_2$

-QCD penguin amplitude (P) at leading power:

leading order in α_s (naive factorization), e.g.,

$$\mathcal{A} \propto \langle M_2 | \bar{s} \gamma^{\mu} (1 \mp \gamma_5) q' | 0 \rangle \langle M_1 | \bar{q}' \gamma_{\mu} (1 - \gamma_5) b | \bar{B} \rangle$$

 $\propto \text{ decay constant} \times \text{ form factor, scales like m}_{\text{B}}^{1/2}$

leading power but higher order in α_s , e.g., charm loops:

QCD penguin power corrections

• annihilation topology $\Rightarrow 1/m_b$ suppression ($\mathcal{A} \propto f_{M_1} f_{M_2} f_B$)

• quark helicity flip in PP, VP, or VV final states $\Rightarrow 1/m_b$ suppression

Charm loop power corrections, e.g., (perturbative limit)

charm loop PC's cancel weak annihilation (and hard spectator) leading $\log \mu_b$ renormalization scale dependence

Power correction amplitudes

At subleading powers in $1/m_b$:

short / long distance factorization breaks down

- \Rightarrow amplitudes could be soft dominated
- Signaled by infrared log divergences in the convolution integrals

 \Rightarrow mesons produced in asymmetric configurations, e.g.,

fast valence antiquark, soft valence quark

the light mesons would be produced via soft-overlaps, necessarily non-perturbative

large strong phases are possible

in both cases

have hard outgoing quark and antiquark, $E\sim \sqrt{s}/2~~{
m or}~m_B/2$

1

- each hadronizes with soft quark or antiquark, i.e., both light mesons produced in asymmetric configurations via soft overlaps
- PC's for C (color suppressed amplitude): only one light meson produced via soft-overlap

Analysis Procedure

Perturbative calculations of PC's on the light-cone contain infrared log-divergent terms

$$\sim \alpha_s(\mu_h) \left(\frac{1}{\sqrt{s}}\right)^n \left(\log \frac{\sqrt{s} \text{ or } m_B}{\Lambda}\right)^m$$

 $\Lambda \sim \Lambda_{QCD}$ represents a physical IR cutoff

Separate PC's into "perturbative" parts, and "non-perturbative" parts, e.g., for the pion form factor

$$\delta F_{\pi} = \delta F_{\pi}^{\text{pert.}} + \delta F_{\pi}^{\text{non-pert.}}$$

- perturbative parts correspond to $\Lambda \gtrsim \sqrt{1}$ GeV, $1 \text{ GeV} \lesssim \mu_h \lesssim \sqrt{s}$ or m_B
- comparison with $e^+e^- \rightarrow M_1M_2$ data yields non-perturbative parts, e.g., $\delta F_{\pi}^{\text{non-pert.}}/\delta F_{\pi}^{\text{pert.}}$
- Asssume *B* decay "puzzles" due to PC's. Fit non-perturbative PC's to data.

Compare ratios of non-perturbative to perturbative PC's in $e^+e^- \rightarrow M_1M_2$ and $B \rightarrow M_1M_2$.

Two ways to test power counting rules

• check \sqrt{s} dependence of $e^+e^- \rightarrow M_1M_2$ form factors, e.g., $V_{\rho\eta} \propto 1/s^2$ (CLEO-c, BELLE):

- compare power corrections in $e^+e^- \rightarrow PP$ (δF_{π} , δF_K) and in the QCD penguin amplitudes ($\delta P_{\pi\pi}$, $\delta P_{K\pi}$), and similarly for VP and VV final states
 - The "perturbative parts" of the power corrections are consistent with power counting rules ⇒ ratios of non-perturbative to perturbative parts of PC's with similar kinematics should be consistent (order of magnitude), e.g.,

$$\delta F_{\pi}^{\text{non-pert.}} / \delta F_{\pi}^{\text{pert.}} \sim \delta P_{\pi\pi}^{\text{non-pert.}} / \delta P_{\pi\pi}^{\text{pert.}}$$

and similarly for VP, VV final states

CLEO-c continuum $e^+e^- \rightarrow \pi^+\pi^-$, K^+K^- at $\sqrt{s} = 3.67$ GeV

CLEO-c measures (
$$\langle P^+P^- | J_{em}^{\mu} | 0 \rangle = F_P(s) (p^+ - p^-)^{\mu}$$
)

 $|F_{\pi}| = 0.075 \pm 0.009$, $|F_{K}| = 0.063 \pm 0.004$

calculable leading power contributions,

$$F_{\pi}^{\text{LP}} = -0.01_{-0.004}^{+0.002}, \quad F_{K}^{\text{LP}} = -0.014_{-0.006}^{+0.002}$$

 \Rightarrow F_{π} , F_{K} dominated by PC's entering at O(1/s) !

$$\frac{\delta F_{\pi}^{\text{non-pert.}}}{\delta F_{\pi}^{\text{pert.}}} = O(10), \qquad \frac{\delta F_{K}^{\text{non-pert.}}}{\delta F_{K}^{\text{pert.}}} = O(10)$$

\Rightarrow very large soft-overlaps !

similar soft enhancement would account for $F_{\pi}(m_{J/\Psi}) \approx 0.10$, obtained from J/Ψ decays

Leading power form factors obey canonical $SU(3)_F$ flavor symmetry breaking

$$(F_{\pi}/F_K)_{\rm LP} \approx f_{\pi}^2/f_K^2 = 0.67$$

 $|F_{\pi}/F_{K}|_{\text{exp.}} = 1.20 \pm 0.17 \Rightarrow \text{PC's satisfy } |\delta F_{\pi}/\delta F_{K}| > 1$

- apparently, soft-overlap larger for pions than kaons
- **source for large** $SU(3)_F$ breaking

scan procedure:

- vary input parameters uniformly within errors, ($\gamma \in [50^\circ\,,\,80^\circ],....$)
- require all Br's, direct CP asymmetries $A_{K^+\pi^-}$, $A_{K^0\pi^+}$, $A_{K^+\pi^0}$, $A_{\pi^+\pi^-}$, time-dep.
 CP asymmetry $S_{\pi^+\pi^-}$ lie within 1σ errors
- lobtain predictions for $C_{K_s\pi^0} = -A_{K_s\pi^0}$, $S_{K_s\pi^0}$
- Goodness of $B \to K\pi$ fit:

 $\chi^2_{
m min}/d.\,o.\,f.pprox 3.5/2$ or only $pprox 1.4\sigma$ from Standard Model

but are the power correction magnitudes in the fit natural?

 $B \rightarrow K\pi, \, \pi\pi$ penguin power corrections

 $K\pi$ scatter plot for $|\delta P^c|$ vs. δ_{P^c} (strong phase relative to naive factorization):

 $A_{CP}(K^+\pi^-)$ favors $\delta P^c \approx P^c_{\rm LP}$ with significant strong phase

Compare to $\delta P^{c, \text{pert.}}$ for $K\pi$

$$K\pi: \quad \left|\frac{\delta P^{c,\text{non-pert.}}}{\delta P^{c,\text{pert.}}}\right| = O(10), \qquad \pi\pi: \quad \left|\frac{\delta P^{\prime c,\text{non-pert.}}}{\delta P^{\prime c,\text{pert.}}}\right| = O(10)$$

similar to continuum $\delta F_{\pi, K} \Rightarrow$ gives us confidence the fit is natural

LP penguins obey canonical $SU(3)_F$ breaking: $(f_K/f_\pi)P'_{LP}(\pi\pi) \approx P^c_{LP}(K\pi)$. Compare

appears $\delta P'^{c,\text{non-pert.}}(\pi\pi) > \delta P^{c,\text{non-pert.}}(K\pi)$, as in continuum $\delta F_{\pi} > \delta F_{K}$, i.e., again appears larger soft-overlap larger for pions than kaons!

 $e^+e^- \rightarrow VP$ at $\sqrt{s} \approx 3.7$ GeV, 10.58 GeV

 $V_{\rho\eta}$ at $\sqrt{s} = 3.77$ GeV (CLEO-c), and at the $\Upsilon(4S)$ (BELLE)

$$\frac{V_{VP}^{\text{non-pert.}}}{V_{VP}^{\text{pert.}}} \ge O(few), \text{ and appears } \frac{V_{VP}^{\text{non-pert.}}}{V_{VP}^{\text{pert.}}} < \frac{F_{\pi}^{\text{non-pert.}}}{F_{\pi}^{\text{pert.}}}$$

 $e^+e^- \rightarrow \rho^+\rho^-$ at the $\Upsilon(4S)$ (BABAR)

 $\sigma(e^+e^- \rightarrow \rho^+\rho^-) = 19.6 \pm 1.6 \pm 3.2$ fb + angular analysis

 $\Rightarrow |V_{LL}| = 0.0069 \pm 0.0017, |V_{LT}| = 0.032 \pm 0.01$

Angular analysis has large uncertainties, but contains useful information:

I V_{LL} has LP and PC contributions, V_{LT} is a pure PC

Leading power contribution to V_{LL} is calculable in QCDF \Rightarrow V^{LP}_{LL} = -0.002 ± 0.0005
 perturbative power corrections

 V_{LL} should be dominated by the LP contribution

• $|\delta V_{LT}^{\text{non-pert.}}/\delta V_{LT}^{\text{pert.}}| = O(1 - \text{few})$, within large errors

QCD penguin PC's in $B \to \phi K^* \ , \ K^* \rho$

PC fits: varied all available Br, CP asymmetry, transversity angular analysis measurements within 1σ errors

 $B \rightarrow \phi K^{*0}$ "perturbative" QCD penguin PC's:

Consistent with $|\delta P^{c,\text{non-pert.}}/\delta P^{c,\text{pert.}}| = O(1 - few)$, within large errors, and with $e^+e^- \rightarrow \rho^+\rho^-$

Conclusions

puzzles in charmless $B \rightarrow M_1 M_2$ could be accounted for via power corrections if they have large soft-overlaps

- PP, VP, VV penguin power corrections would be same order as leading power penguins
- PP: O(10) enhancement of PC's due to soft-overlaps
 VP, VV: consistent with more moderate O(1) to O(few) enhancement of PC's

• $e^+e^- \rightarrow PP, VP, VV$ provides a direct probe of non-perturbative power corrections

- continuum CLEO-c and $\Upsilon(4S)$ data yields a similar pattern to what would be required in *B* decays:
- O(10) non-perturbative enhancement of power corrections in *PP*, and consistent with more moderate O(1) to O(few) enhancement in *VP*, *VV*
- Therefore, the e^+e^- data is telling us that the power correction orders of magnitude required in *B* decays are natural and not at all surprising

More measurements that would be helpful:

- strong phase difference between (LL) and (LT) helicity amplitudes in $e^+e^- \rightarrow \rho^+\rho^-$ at the $\Upsilon(4S)$, improve the precision of the $\rho^+\rho^-$ analysis
- **D** BELLE should also do the $\rho^+\rho^-$ analysis
- \blacksquare we do not have a continuum $e^+e^- \rightarrow VV$ analysis at CLEO-c energies
- V_{$\omega\pi$} at the $\Upsilon(4S)$. Can be combined with precise and clean CLEO-c measurement at 3.77 GeV, to further test power counting
- BABAR should also measure $V_{
 ho\eta}$
- $\, { \, { J } \, } \, V_{K^{*0}K^0} \text{ at the } \Upsilon(4S)$
- If the second s