

Charmless and Penguin Decays at CDFII:

$$B_s^0 \rightarrow \phi \phi, B_{(s)}^0 \rightarrow h^+h^{\prime-}$$

Mirco Dorigo*

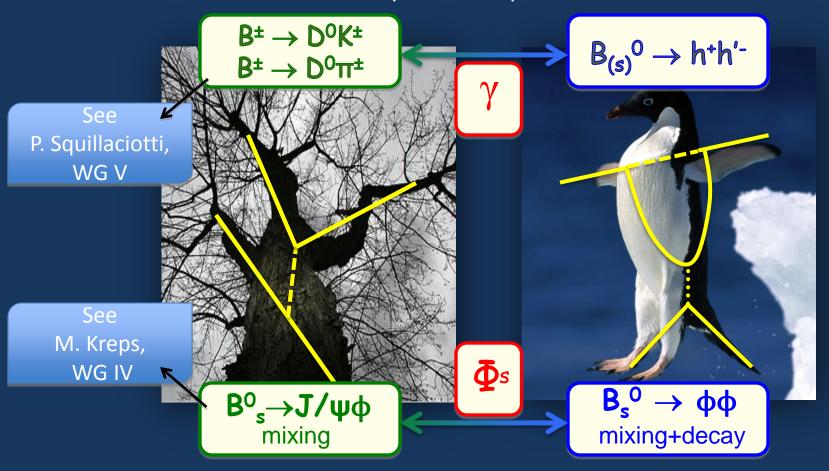
(on behalf of the CDF Collaboration)

*University of Trieste and INFN

Warwick, 6-10 Sept.

The charmless Beauty

"Charmless" is pleasant!


B non-leptonic 2-body charmless decays:
unique interplay of EW and low-energy strong
interactions

why penguins

The Penguin Beauty

A loop's treasure:

Another potential place for NP.

For neutral mesons, comparing to Tree transitions, allow to disentangle NP contribution in mixing and decay

The Penguin Beauty

Penguin: thought as opportunity rather than as limitation!

The best (hard) way: observables from full tagged

PRL 100, 161802 (2008) PHYSICAL REVIEW LETTERS week ending 25 APRIL 2008

First Flavor-Tagged Determination of Bounds on Mixing-Induced CP Violation in $B_s^0 \to J/\psi \phi$ Decays

and time-dependent analysis as for tree transitions.

...but: lot of statistics, disfavored by BR

statistics

Investigate step by step...

- 1. BR, time-integrated ACP Polarization Amplitudes
- 2. $\Delta\Gamma_s$ from Penguins (time dependent)
- 3. Tagged: Φ_{s}

A CDF's Beauty_(s)

PRL **95**, 031801 (2005)

PHYSICAL REVIEW LETTERS

week ending 15 JULY 2005

Evidence for $B_s^0 \to \phi \phi$ Decay and Measurements of Branching Ratio and A_{CP} for $B^+ \to \phi K^+$

PRL 97, 211802 (2006)

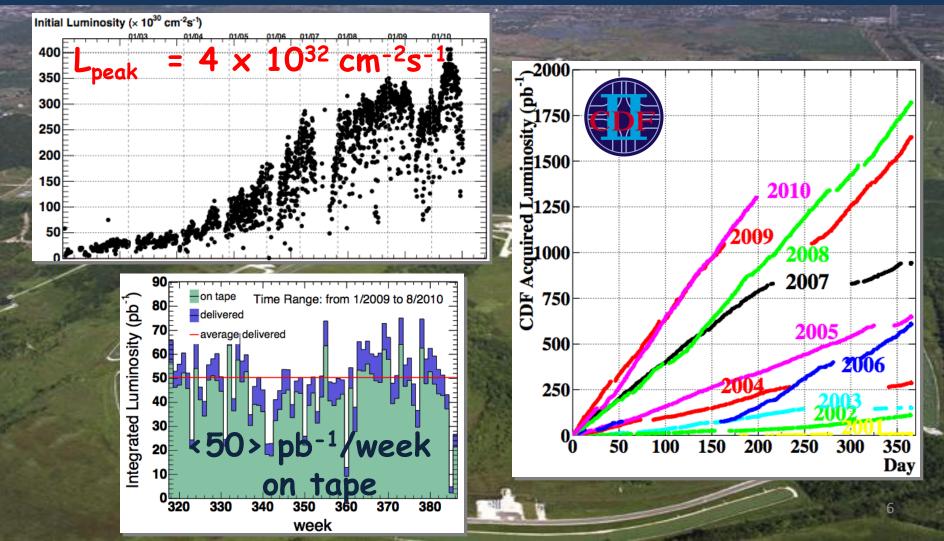
PHYSICAL REVIEW LETTERS

week ending 24 NOVEMBER 2006

Observation of $B_s^0 \to K^+K^-$ and Measurements of Branching Fractions of Charmless Two-Body Decays of B^0 and B_s^0 Mesons in $\bar{p}p$ Collisions at $\sqrt{s}=1.96$ TeV

PRL 103, 031801 (2009)

PHYSICAL REVIEW LETTERS

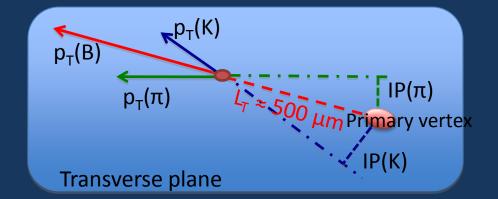

week ending 17 JULY 2009

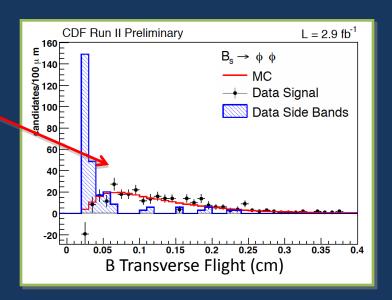
Observation of New Charmless Decays of Bottom Hadrons

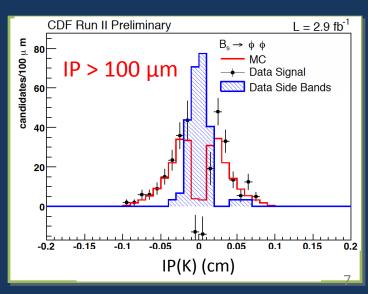
- Today: News on $B_s^0 \rightarrow \phi \phi$
 - Results on $B_{(s)}^{0} \rightarrow h^{+}h^{-}$
 - Prospects

"No Country for Old Colliders"

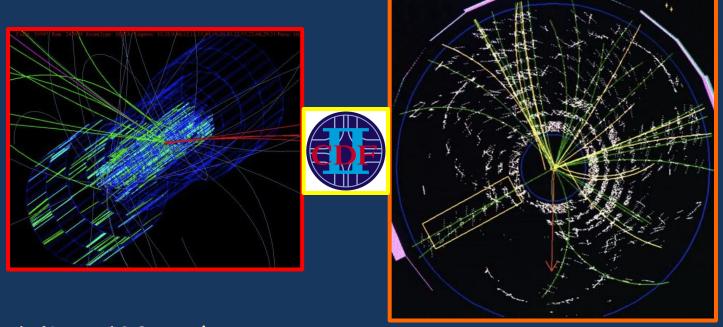
TeVatron: superconducting proton-synchrotron 36 (p) \times 36 (\overline{p}) bunches collide every 396 ns at \sqrt{s} = 1.96 TeV


The CDF (hadronic) trigger...

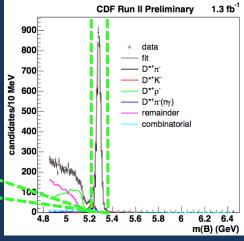

 $\sigma_{p\overline{p}\to b\overline{b}X} \approx 50 \ \mu b \ vs \ \sigma_{p\overline{p}\to X} \approx 60 \ mb$


<T(B)> ≈ 1.5 ps: in the lab frame B. flights ≥500 µm: a powerful signature accesible at trigger level, that requires:

- √ high resolution vertex detector
- ✓ read out silicon (212 K channels)
- do pattern recognition and track fitting


SVT: within 25 µs, IP resolution 48 µm!

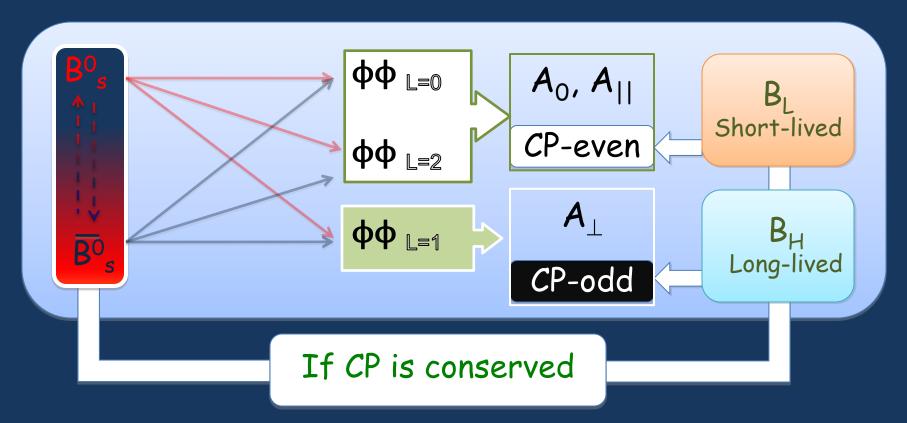
... and tracker



1.4T in 132 cm lever-arm.

6 silicon + 96 drift chamber samplings.

1st layer 1.5 cm from beam


$$\delta p_t/p_t^2 = 10^{-3} \; [({\it GeV/c})^{-1}]$$

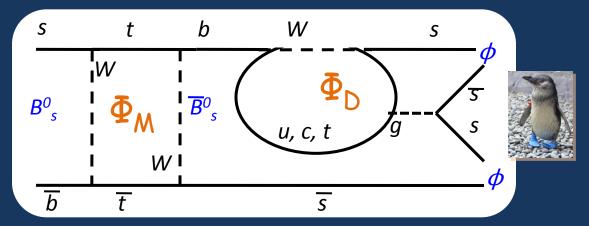
$$B_s^0 \rightarrow \phi \phi$$

The Vector-Vector Richness...

 B_s^0 (Pseudoscalar) $\rightarrow \phi$ (Vector) ϕ (Vector)

 A_0 : logitudinal polarization amplitude

A_{II}: parallel polarization amplitude


 A_{\perp} : transverse polarization amplitude

B_{L(H)}: light (heavy) mass eigeinstate

...and (loop's) Potential

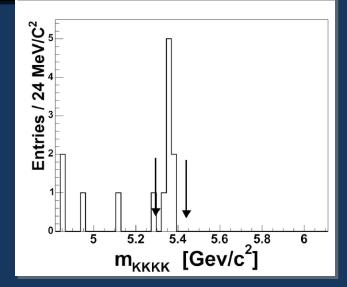
In principle, all may be mixed by a CP-violating phase:

$$\Phi_s = \Phi_{M^-} \Phi_{D}$$

SM: dominated by top, $\Phi_M \cong \Phi_D \cong 2arg(V_{tb}V_{ts}^*)$ and $\Phi_s \cong 0.0041 \pm 0.0008$

independent probe on $\sin 2\beta s$ to be compared with tree-dominated $B^0_s \rightarrow J/\psi \phi$ determination (NP in Φ_M only)

$B_s^0 \rightarrow \phi \phi$: a CDF privilege

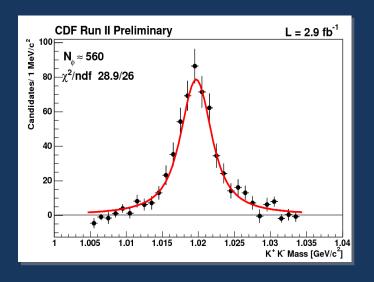

First (and only) evidence, CDF 2005 180 pb⁻¹, looking at $B_s{}^0 \rightarrow \phi \phi \rightarrow [\text{K}^+\text{K}^-] [\text{K}^+\text{K}^-]$

PRL 95, 031801 (2005) PHYSICAL REVIEW LETTERS week ending 15 JULY 2005

Evidence for $B_s^0 \to \phi \phi$ Decay and Measurements of Branching Ratio and A_{CP} for $B^+ \to \phi K^+$ PRL 95, 031801 (2005)

8 signal events

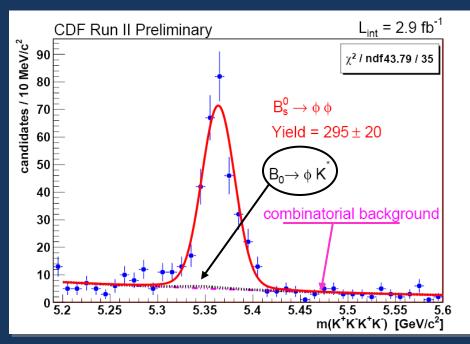
BR =
$$[14^{+6}_{-5}(stat) \pm 6(syst)] \times 10^{-6}$$


Theoretical prediction:

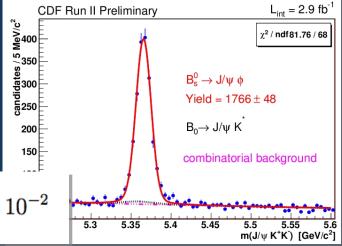
QCDf: (19.5±1.0^{+13.1}_{-8.0})×10⁻⁶ NPB 774, 64 (2007)

pQCD: $(35.3^{+8.3}_{-6.9}^{+16.7}_{-10.2}) \times 10^{-6}$ PRD 76, 074018 (2007)

2009: $B_s^0 \rightarrow \phi \phi$ in 2.9 fb⁻¹


Take $|m_{[KK]} - m_{\phi(1020)}| < 15 \text{ MeV/c}^2$

 $B_s^0 \rightarrow \phi K^*$ reflection ~3%, no other peaking bkg from simulation of B_s^0 or Λ_b decays


Optimized selection

L_{xy}^B	$[\mu \mathrm{m}]$	> 330
$p_{ m Tmin}^{K^{\circ}}$	$[\mathrm{GeV}/c]$	> 0.7
p_{T}^{ϕ}	$[\mathrm{GeV}/c]$	
$egin{array}{c} p_{\mathrm{T}}^{\phi} \ \chi_{xy}^{2} \end{array}$		< 17
d_0^B	$[\mu \mathrm{m}]$	< 65
$d_0^{\phi_{ ext{max}}}$	$[\mu \mathrm{m}]$	> 85
$p_{ m T}^{J/\psi}$	$[\mathrm{GeV}/c]$	

Branching Ratio update

Use $B_s^0 \rightarrow J/\psi \phi$ with the same trigger selection for normalization, avoid dependence on fragmentation probabilities f_s/f_d

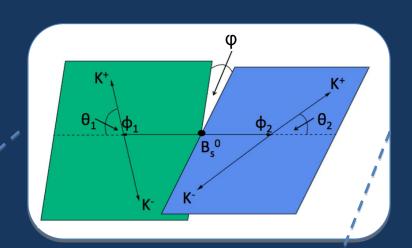
$$\frac{BR(B_s^0 \to \phi \phi)}{BR(B_s^0 \to J/\psi \phi)} = [1.78 \pm 0.14(stat) \pm 0.20(syst)] \cdot 10^{-2}$$

Using BR(B⁰_s \rightarrow J/ $\psi \phi$) from PDG, updated to current values of f_s/f_d:

$$BR(B_s^0 \to \phi \phi) = [2.40 \pm 0.21(stat) \pm 0.27(syst) \pm 0.82(BR)] \cdot 10^{-5}$$

CDF-PUB-10064 (2010)

Previous CDF result $(1.4^{+0.6}_{-0.5} \pm 0.6) \times 10^{-5}$


Theoretical prediction:

QCDf: (1.95±1.0+1.31_{-0.80})×10⁻⁵ NPB 774, 64 (2007)

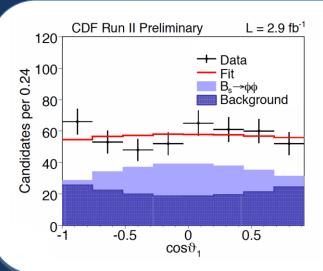
pQCD: $(3.53^{+0.83}_{-0.69}^{+1.67}_{-1.02}) \times 10^{-5}$ PRD 76, 074018 (2007)

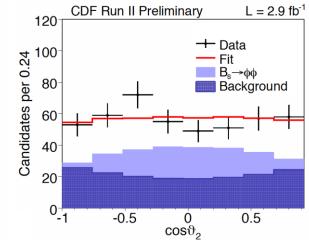
World's 1° Polarization Measurement

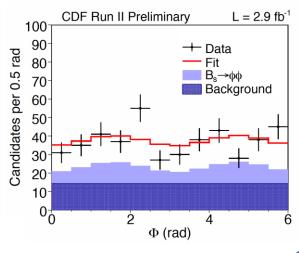
Measure polarization amplitudes from untagged time-integrated differential decays rate as a function of kaon decay angles (θ_1, θ_2) and the angle between the two decay planes (ϕ)

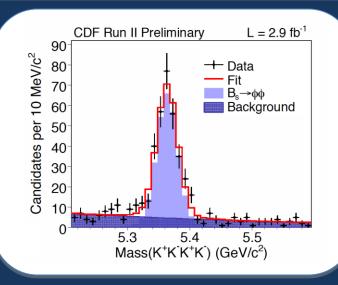
Fix
$$\Phi_s = 0$$

$$1 \left[\tilde{\tau}_s(\vec{z}) + \tilde{\tau}_s(\vec{z}) \right]$$


$$\frac{d^{3}\Lambda(\vec{\omega})}{d\vec{\omega}} = \frac{9}{32\pi} \frac{1}{\tilde{W}} \left[\tilde{\mathcal{F}}_{e}(\vec{\omega}) + \tilde{\mathcal{F}}_{o}(\vec{\omega}) \right]$$


$$\tilde{\mathcal{F}}_{e} = \frac{2}{\Gamma_{L}} \left[|A_{0}|^{2} f_{1}(\vec{\omega}) + |A_{\parallel}|^{2} f_{2}(\vec{\omega}) + |A_{0}| |A_{\parallel}| \cos \delta_{\parallel} f_{5}(\vec{\omega}) \right],$$


$$\tilde{\mathcal{F}}_{o} = \frac{2}{\Gamma_{H}} |A_{\perp}|^{2} f_{3}(\vec{\omega}),$$
observables


1° Polarization Measurement

Unbinned Maximum Likelihood fit to Mass and Angles

- Acceptance correction from simulation
- background modeled on sideband (polynomials) and fitted in the whole mass range

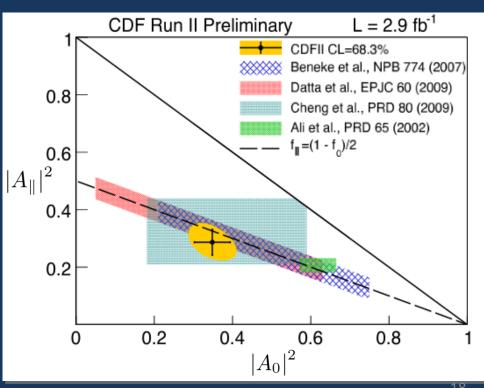
Polarization Results

- Cross check with $B^0_s \rightarrow J/\psi \phi$ sample used in BR measurement (same trigger, ~1800 ev.) consistent with WA within stat. uncertainties
- Systematics dominated by:
 - Non-resonant contributions (B⁰_s $\rightarrow \phi$ (KK) and B⁰_s $\rightarrow \phi$ f₀): ~1%
 - Dependence of acceptance on $\Delta\Gamma_s$: ~1%
 - Uncertainties of $T_{L(H)}$: ~1%

$$|A_0|^2 = 0.348 \pm 0.041(\mathrm{stat}) \pm 0.021(\mathrm{syst}),$$
 $|A_{\parallel}|^2 = 0.287 \pm 0.043(\mathrm{stat}) \pm 0.011(\mathrm{syst}),$
 $|A_{\perp}|^2 = 0.365 \pm 0.044(\mathrm{stat}) \pm 0.027(\mathrm{syst}),$
 $\cos \delta_{\parallel} = -0.91^{+0.15}_{-0.13}(\mathrm{stat}) \pm 0.09(\mathrm{syst}).$

...a little insight the Puzzle

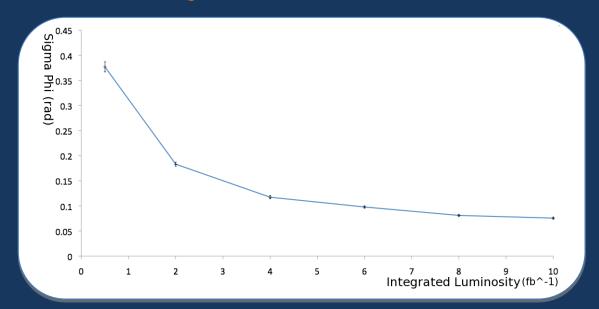
Naïve expectation: $|A_0|^2 \gg |A_1|^2 \sim |A_\perp|^2$


- V-A nature of weak interaction and conservation helicity in QCD

Experimentally violated in penguin decays (BaBar, Belle):

- PA [e.g. PL B601, 151 (2004); NP B774, 64 (2007)]
- FSI [PL B597, 291 (2004) + many others]
- NP? [PR D76, 075015 (2007)]

Agreement with QCDf prediction


	$\cos\delta_\parallel$	
CDF	$-0.91^{+0.15}_{-0.13}(stat) \pm 0.09(syst)$)
QCDf	$-0.80^{+0.31}_{-0.16}$ NP B774 (2007)	
	0.27+0.09	
QCDp	0.27 ^{+0.09} _{-0.27} PR D76 (2007)	

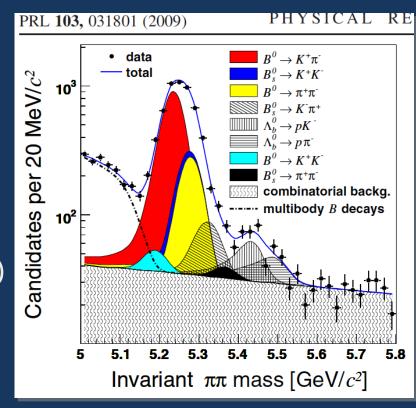
A look at the future

CDF: 10 fb⁻¹ of data on tape expected in 2011 $\Delta\Gamma_s$ measurement from penguin, sensitivity O(10%) to compare with (tree-level) $B^0_s \rightarrow J/\psi \phi$ determination

LHCb: with 2 fb⁻¹, 6.2K events expected (S/B≈0.8 @90% CL), $\sigma(\Phi_s) = 0.14-0.18 \text{ rad}$ [LHCB-PUB-2009-025]

$$B_{(s)}^{0} \rightarrow h^{+}h^{\prime}$$

2-body charmless decays


B⁰ and B⁰_s \rightarrow K⁺K⁻, π⁺π⁻ and Kπ sensitive to γ (PL B459, 306 (1999)) and NP (PL B492, 297 (2000), PL B621,126, (2005)). Theory and exp. uncertainties largely cancel thanks to flavor symmetries and similar final states.

CDF has world's largest sample: $4K B^0 \rightarrow K^+\pi^-$ and $1.3K B^0_s \rightarrow K^+K^-$ per fb⁻¹.

Unique joint access to large samples of charmless B⁰ and B⁰_s

Challenging analysis but fruitful:

- ✓ observation of 4 new modes (so far)
- ✓ unique access to direct CPV in B^os
- ✓ competitive in direct CPV in B⁰

CDFII results (1 fb⁻¹)

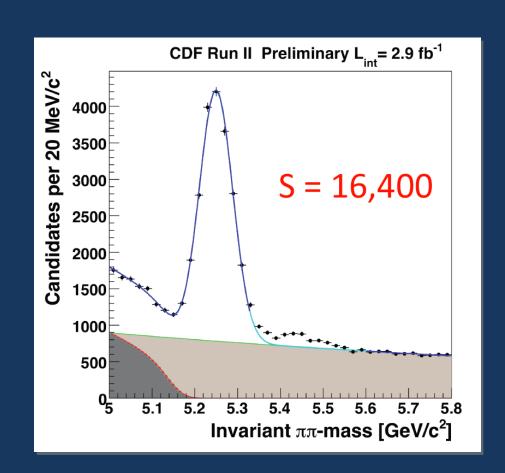
PRL 103, 031801 (2009)

PHYSICAL REVIEW LETTERS

week ending 17 JULY 2009

Observation of New Charmless Decays of Bottom Hadrons

	Mode	Relative ${\mathcal B}$	Absolute $\mathcal{B}(10^{-6})$
√	$B_s^0 \to K^- \pi^+$	$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to K^- \pi^+)}{\mathcal{B}(B^0 \to K^+ \pi^-)} = 0.071 \pm 0.010 \pm 0.007$	$5.0 \pm 0.7 \pm 0.8$
√	$B^0_s \longrightarrow \pi^+\pi^-$	$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to \pi^+ \pi^-)}{\mathcal{B}(B^0 \to K^+ \pi^-)} = 0.007 \pm 0.004 \pm 0.005$	$0.49 \pm 0.28 \pm 0.36$ (<1.2 at 90% C.L.)
	$B^0 \longrightarrow K^+ K^-$	$\frac{\mathcal{B}(B^0 \to K^+ K^-)}{\mathcal{B}(B^0 \to K^+ \pi^-)} = 0.020 \pm 0.008 \pm 0.006$	$0.39 \pm 0.16 \pm 0.12$ (<0.7 at 90% C.L.)
	$\Lambda_b^0 \to p K^-$	$\frac{f_{\Lambda}}{f_d} \frac{\mathcal{B}(\Lambda_b^0 \to pK^-)}{\mathcal{B}(B^0 \to K^+\pi^-)} = 0.066 \pm 0.009 \pm 0.008$	$5.6 \pm 0.8 \pm 1.5$
√	$\Lambda_b^0 \to p \pi^-$	$\frac{f_{\Lambda}}{f_d} \frac{\mathcal{B}(\Lambda_b^0 \to p\pi^-)}{\mathcal{B}(B^0 \to K^+\pi^-)} = 0.042 \pm 0.007 \pm 0.006$	$3.5 \pm 0.6 \pm 0.9$

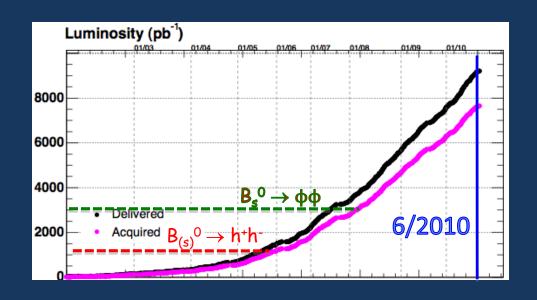

- world's first
- world's best

	Mode sub	mitted soon	Relative \mathcal{B}	Absolute $\mathcal{B}(10^{-6})$
	$B^0 \to \pi^+\pi^-$	$\frac{\mathcal{B}(B^0 \to \pi^+ \pi^-)}{\mathcal{B}(B^0 \to K^+ \pi^-)}$	$\frac{1}{\pi^{-1}} = 0.259 \pm 0.017 \pm 0.010$	$5.02 \pm 0.33 \pm 0.35$
√	$B_s^0 \to K^+ K^-$	$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to K^+)}{\mathcal{B}(B^0 \to K^+)}$	$\frac{K^{-}}{(\pi^{-})} = 0.347 \pm 0.020 \pm 0.021$	$24.4 \pm 1.4 \pm 3.5$
	Mode		CP-asymmetry	
	$B^0 \to K^+\pi^-$	$\mathcal{B}(\overline{B}^0 \to K^-\pi^+)$	$\frac{(1)^{-\mathcal{B}(B^0 \to K^+\pi^-)}}{(1)^{+\mathcal{B}(B^0 \to K^+\pi^-)}} = -0.086 \pm 0$	0.023 ± 0.009
√	$B_s^0 \to K^- \pi^+$	$\mathcal{B}(\overline{B}_s^0 \to K^+\pi^-)$	$\frac{(1-\mathcal{B}(B_s^0 \to K^- \pi^+))}{(1+\mathcal{B}(B_s^0 \to K^- \pi^+))} = +0.39 \pm 0.39$	15 ± 0.08
√	$\Lambda_b^0 \to p K^-$		$\frac{(\overline{\Lambda}_b^0 \to \overline{p}K^+)}{(\overline{\Lambda}_b^0 \to \overline{p}K^+)} = +0.37 \pm 0.1$	17 ± 0.03
√	$\Lambda_b^0 o p\pi^-$		$\frac{\pi^{-}) - \mathcal{B}(\overline{\Lambda}_{b}^{0} \to \overline{p}\pi^{+})}{\pi^{-}) + \mathcal{B}(\overline{\Lambda}_{b}^{0} \to \overline{p}\pi^{+})} = +0.03 \pm 0.$	17 ± 0.05

Next

5 fb⁻¹ analysis in progress

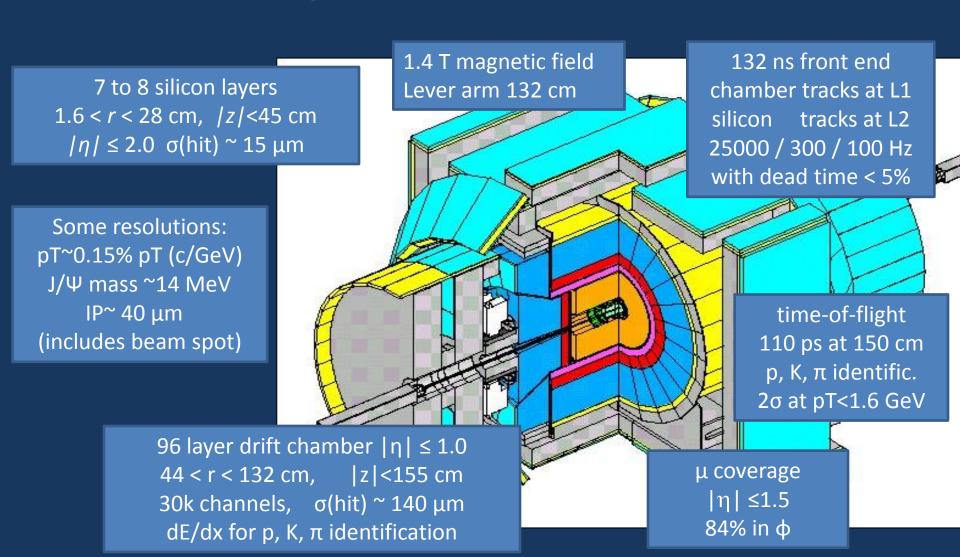
- ✓ Expect observation of DCPV in B_s^0 .
- ✓ DCPV in B⁰ competitive with Belle.
- ✓ Precision measurement of rare modes' BR.
- ✓ Observe new modes? (aim at $B_s^0 \to \pi^+\pi^-$)



Conclusion

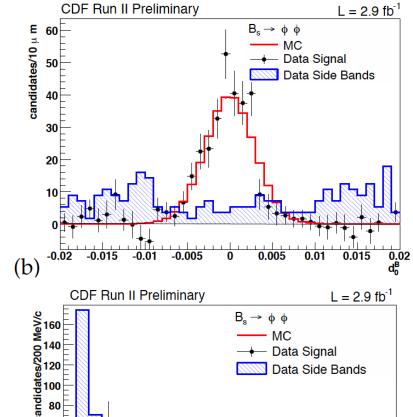
CDF keeps leading a rich and unique program in charmless B_s^0 physics

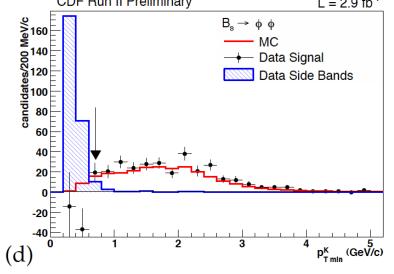
Competitive results with B-factories in B⁰ sector

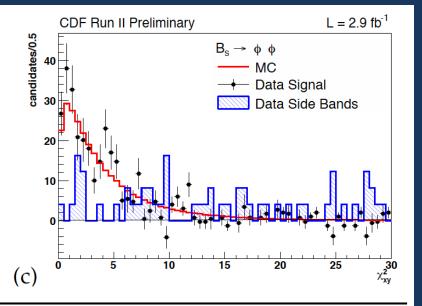

- ✓ $B_s^0 \rightarrow \phi \phi$ NP and Φ_s from $b \rightarrow s\bar{s}\bar{s}$ penguin: ~halved BR uncertainty. 1^{st} Polarization analysis.
- $V = B_{(s)}^{0} \rightarrow h^{+}h^{-}$ NP and constrain for V from penguins: Many new decays observed - BR and DCPV measured. 5 fb⁻¹ analysis in progress.

analyses steadily improving: exciting years of overlap with LHC exps. are coming

Backup


CDFII detector




Hadronic Trigger details

	Level-1	Level-2	Level-3
	XFT tracks	SVT tracks	COT+SVXII tracks
B_CHARM_HIGHPT	opposite charge $p_{\rm T} > 2.5{\rm GeV}/c$ $\Delta \phi_6 < 135^\circ$ $\sum p_{\rm T} > 6.5{\rm GeV}/c$	opposite charge $p_{\mathrm{T}} > 2.5\mathrm{GeV}/c$ $2^{\circ} < \Delta \varphi_{0} < 90^{\circ}$ $\sum p_{\mathrm{T}} > 6.5\mathrm{GeV}/c$ $120\mathrm{\mu m} < d_{0} < 1000\mathrm{\mu m}$ $L_{xy} > 200\mathrm{\mu m}$	opposite charge $p_{ m T}>2.5{ m GeV}/c$ $2^{\circ}<\Delta\varphi_0<90^{\circ}$ $\Sigmap_{ m T}>6.5{ m GeV}/c$ $80{ m \mu m}< d_0<1000{ m \mu m}$ $L_{xy}>200{ m \mu m}$ $ \Delta z_0 <5{ m cm}$
B_CHARM_L1	opposite charge $p_{\rm T} > 2.0{\rm GeV}/c$ $\Delta \varphi_6 < 135^\circ$ $\sum p_{\rm T} > 5.5{\rm GeV}/c$	opposite charge $p_{ m T}>2.0{ m GeV}/c$ $2^{\circ}<\Delta\varphi_0<90^{\circ}$ $\Sigmap_{ m T}>5.5{ m GeV}/c$ $120{ m \mu m}< d_0<1000{ m \mu m}$ $L_{xy}>200{ m \mu m}$	opposite charge $p_{ m T}>2.0{ m GeV}/c$ $2^{\circ}<\Delta\varphi_0<90^{\circ}$ $\Sigmap_{ m T}>5.5{ m GeV}/c$ $120{ m \mu m}< d_0<1000{ m \mu m}$ $L_{xy}>200{ m \mu m}$ $ \Delta z_0 <5{ m cm}$
B_CHARM_LOWPT	$p_{\mathrm{T}} > 2.0\mathrm{GeV}/c$ $\Delta \varphi_6 < 90^{\circ}$	$p_{ m T} > 2.0{ m GeV}/c$ $\Delta arphi_0 < 90^\circ$ $120{ m \mu m} < d_0 < 1000{ m \mu m}$ $L_{xy} > 200{ m \mu m}$	$p_{ m T} > 2.0{ m GeV}/c$ $2^{\circ} < \Delta arphi_0 < 90^{\circ}$ $120{ m \mu m} < d_0 < 1000{ m \mu m}$ $L_{xy} > 200{ m \mu m}$ $ \Delta z_0 < 5{ m cm}$

$B_s^0 \rightarrow \phi \phi$ optimization

Variables		Requirements		
		$B_S \to \phi \phi$	$B_S \to J/\psi \phi$	
L_{xy}^B $p_{\mathrm{T}\min}^K$	[µm]	> 330	> 290	
$p_{ m Tmin}^{K}$	[GeV/c]	> 0.7		
$p_{ m Tmin}^{oldsymbol{\phi}}$	[GeV/c]		> 1.4	
χ^2_{xy}		< 17	< 15	
λ_{xy}^2 d_0^B	[µm]	< 65	< 80	
$d_{0\mathrm{max}}^{\phi}$	$[\mu m]$	> 85		
$p_{ m T}^{ ilde{J}/\psi}$ min	[GeV/c]		> 2.0	

Branching Ratio update: strategy

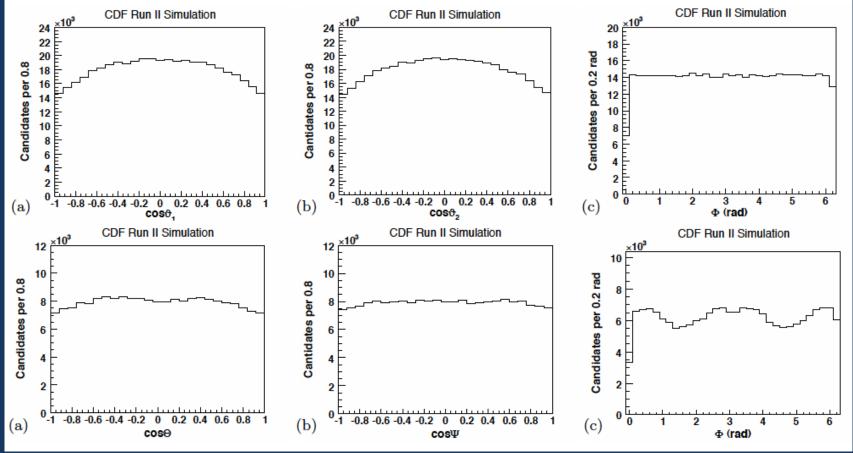
Fit to mass in data

$$N_{\phi\phi} = 295 \pm 20(\text{stat}) \pm 12(\text{syst})$$

 $N_{J/\psi\phi} = 1766 \pm 48(\text{stat}) \pm 41(\text{syst})$

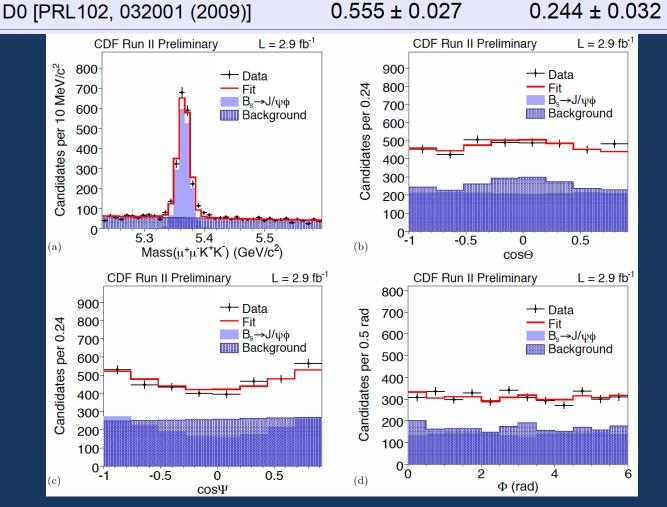
$$\frac{\mathrm{BR}(B_s^0 \to \phi \phi)}{\mathrm{BR}(B_s^0 \to J/\psi \phi)} = \underbrace{\frac{N_{\phi \phi}}{N_{\psi \phi}}} \frac{\mathrm{BR}(J/\psi \to \mu \mu)}{\mathrm{BR}(\phi \to KK)} \underbrace{\frac{\epsilon_{\psi \phi}}{\epsilon_{\phi \phi}}} \underbrace{\epsilon_{\psi \phi'}^{\mu}}_{\bullet \phi}$$

PDG


Trigger and selection acceptance/efficiency from simulation

Muon-ID efficiency from control samples of data

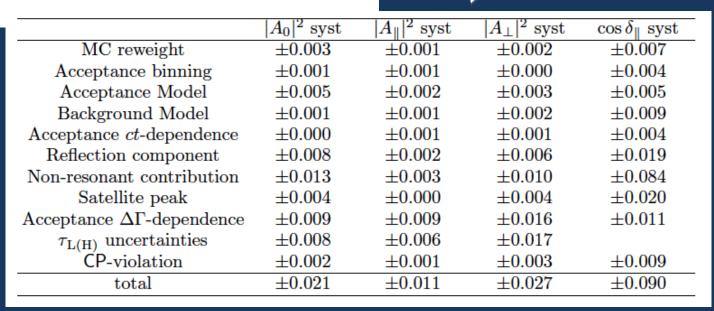
$$\frac{\boldsymbol{\epsilon}_{\psi\phi}}{\boldsymbol{\epsilon}_{\phi\phi}} = 0.939 \pm 0.030 \pm 0.009 \qquad \boldsymbol{\epsilon}_{\psi\phi}^{\mu} = 0.8695 \pm 0.0044 \text{(stat)}$$


Acceptance

- model the **angular acceptance** for both $B^0_s o \phi \phi$ and $B^0_s o J/\psi \phi$ respectively 400K and 200K events of **PHSP** decay model:
 - § it performs the decay using only phase space,
 - § it averages all final state spin values without taking into account any spin correlations between the two vectors in the final state
 - § it generates uniform angular distribution

Control Sample

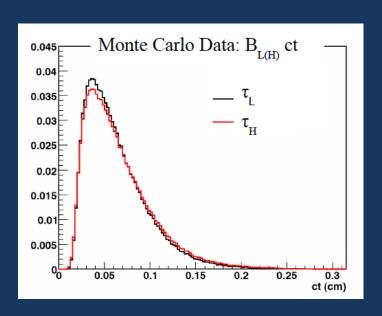
Control sample (same trigger selection): $B_s^0 \to J/\psi \phi \to [K^+K^-][\mu^+\mu^-]$ $|A_0|^2 \qquad |A_{\parallel}|^2$ Main Analysis fitter $0.534 \pm 0.019 \qquad 0.220 \pm 0.025$ CDFII [PRL100, 121803 (2008)] $0.531 \pm 0.020 \qquad 0.239 \pm 0.029$


Systematic Tables

	$B_s^0 \rightarrow \phi \phi$	$B_s^0 \rightarrow J/\psi \phi$
	$\Delta N_{\phi\phi}/N_{\phi\phi}$	$\Delta N_{J/\psi\phi}/N_{J/\psi\phi}$
fit range	3%	-
signal parametrization	3%	2%
background subtraction: error on BRs	1%	1%
	$\Delta \varepsilon_{\phi\phi}/\varepsilon_{\phi\phi}$	$\Delta \varepsilon_{J/\psi\phi}/\varepsilon_{J/\psi\phi}$
polarization in MC	7%	6%
	$\Delta \varepsilon_q$	$_{b\phi}/\varepsilon_{J/\psi\phi}$
XFT particle dep.	4%	
p_T reweight	0.9%	
	$\Delta \varepsilon_{\mu}/\varepsilon_{\mu}$	
η parametrization		
& correlation	0.9%	

Table 16: Contributions to the total relative uncertainty from the systematic uncertainty sources considered.

____BR measurement


Polarization measurement

$\Delta\Gamma_s$ effect on the Acceptance

2 effects:

- 1. Normalization of the decay rate
- 2. Non uniform acceptance with the B_s^0 ct introduced by the displaced tracks trigger

The MC reproduces the ct acceptance of the trigger and selection reasonably well.

Systematic: full shift expected in measured polarization assuming a value for $\Delta\Gamma_s$ equal to the world average +1 σ