The MuLan Collaboration: Improved Measurement of the Muon Lifetime and Determination of the Fermi Constant

CKM 2010

P. T. Debevec

University of Illinois

MuLan Collaboration

University of Illinois
University of Kentucky
Boston University
James Madison University
Kentucky Wesleyan College
Regis University
Paul Scherrer Institute

MuLan collaboration acknowledges support from

Conclusion, I

In two different experiments, we have measured the muon lifetime to a precision of 1.0 ppm. Our result is 2.6 σ below the current World Average, which has a precision of 9.6 ppm.

Conclusion, II

From our lifetime measurement, we determine the Fermi constant to a precision 0.6 ppm. Our determination is 12 ppm greater than the current World Average.

$\tau_{\mu}\,G_F$ and g

In Fermi theory muon decay is a contact interaction

$$\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} 1 + \Delta q \qquad \left[G_{\mu} \to G_F \right]$$

$$\Delta q \quad \text{QED radiative corrections *}$$

The Fermi constant is related to the electroweak gauge coupling by

$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2} 1 + \Delta r$$

 Δr weak interaction loop corrections

^{*} We use van Ritbergen & Stuart, Nucl. Phys. B564 (2000) 343.

G_F and CKM matrix elements

$$V_{ud}^2 = \frac{G_V^2}{G_F^2}$$

 $V_{ud}^2 = \frac{G_V^2}{G_v^2}$ is the vector coupling constant determined 9for example) from superallowed nuclear beta decay

$$F t = \frac{K}{2G_V^2 + 1 + \Delta_R^V}$$

see Towner & Hardy, Rep. Prog. Phys. 73(2010)046301

$$V_{us}^{2} = \frac{\Gamma_{K \to \ell 3}}{G_{F}^{2} \left[\frac{m_{K}^{5}}{192\pi^{3}} S_{EW} + \delta_{K}^{\ell} + \delta_{SU2} C^{2} f_{+}^{2} 0 I_{K}^{\ell} \right]}$$

 $\Gamma_{\nu \rightarrow \ell 3}$ is a kaon decay rate

see Blucher and Marciano in Nakamura et al., J. Phys. G37(2010)075021

Chronology of muon lifetime measurements

Chronology of muon lifetime experiments and G_F theory precision

MuLan experiment

The beamline transports ~10⁷ "surface" muons per second to the experimental area.

MuLan "3π" detector truncated icosahedron with point symmetry

Each section contains either 6 or 5 tile elements

Each element is made from two independent scintillator tiles with light guides and photomultiplier tubes.

The experimental concept in one animation ...

170 scintillator tile pairs readout using 450 MHz custom waveform digitizers.

 $1 \operatorname{clock} \operatorname{tick} = 2.2 \operatorname{ns}$

The clock was stable to 0.010 ppm during the two runs and accurate to 0.025 ppm.

- •The MuLan experiment is doubly blinded.
- During the runs and throughout the analysis, the two absolute clock frequencies for the 2006 and 2007 data sets were only known to the collaboration to 0.2 MHz.
- •When relative blinding between the two data sets was removed, it was found that they agreed to 0.3 ppm.

Fit raw waveforms to pulse templates to obtain amplitude and time

mean RMS >2 x 10¹² events in normal pulse each data set 225 terabytes data analyzed at NCSA 100⊦ RMS RMS two pulses close together difficult fit

MuLan collected two datasets, each containing 10¹² muon decays.

Ferromagnetic Target, 2006

Quartz Target, 2007

- Two (very different) data sets
 - -2006:
 - Ferromagnetic target dephases muon ensemble
 - 1.2 ppm statistical uncertainty
 - **2007**:
 - Quartz target forms 90% muonium, 10% free (precessing) muons
 - 1.7 ppm statistical uncertainty (part of data used as misalignment check)

The ferromagnetic target (2006 data) dephases the muons during accumulation.

- •Arnokrome-3 (AK3) Target (~28% chromium, ~8% cobalt, ~64% iron)
- •0.5 T internal magnetic field
- •Muons arrive randomly during 5 μs accumulation period
- •Muons precess by 0 to 350 revolutions

90% of the muons form muonium in the quartz target (2007 data). The remainder precess in an ~135 G quasi-uniform external field.

Point symmetry of the detector largely removes the precession signal.

Leading systematic error considerations

- "early-to-late" change in extinction
- change in source residual polarization
- counting loses from pile-up
- "early-to-late" change in detection efficiency from gain, threshold or timing instabilities

Each systematic error reduced to sub-ppm level.

Three parameter fit of pile-up corrected AK-3 data.

Three parameter fit of quartz data.

Detector symmetry removes precession.

Leading order pileup is a 500 ppm effect

Pileup to sub-ppm requires higher-order terms

- 12 ns deadtime, pileup has a 5 x 10⁻⁴ probability at our rates
- Proof of procedure validated with detailed Monte Carlo simulation

Lifetime versus artificially imposed deadtime window is an important diagnostic.

A slope indicates a pileup under correction. However, extrapolation to 0 deadtime still gives the correct lifetime.

Slope in pileup correction yields 0.2 ppm uncertainty.

Monte-Carlo shows that fill-to-fill rate fluctuations give a pileup under correction.

A 2% fluctuation in beam rate fill-to-fill would account for the R vs. ADT slope. The PSI beam staff report 4-10% fluctuations are expected on µs timescales.

Systematic and Statistical Uncertainties

Source	2006 (ppm)	2007 (ppm)
Kicker stability	0.22	0.07
Spin precession / relaxation	n/a	0.20
Pileup		0.20
Gain stability		0.25
Unseen pulses		0.15
Upstream muon stops		0.10
Timing stability		0.12
Clock calibration		0.03
Total systematic (0.38 common)	0.41	0.41
Statistical uncertainty	1.14	1.67
Combined total uncertainty		1.05

New MuLan Result

MuLan 2006: $\tau_u = 2196979.9$ 2.5(stat) 0.9(sys) ps

MuLan 2007: τ_{μ} = 2196980.9 ± 3.7(stat) ± 0.9(sys) ps

2006 & 2007 avg: τ_{μ} = 2196980.3 2.2 ps (1.0 ppm)

 $G_F = 1.166 381 8(7) \times 10^{-5} \text{ GeV}^{-2} (0.6 \text{ ppm})^*$

*We use van Ritbergen & Stuart, Nucl. Phys. B564 (2000) 343. Following Pak & Czarnecki, Phys. Rev. Lett. 100(2008)241807, we include 0.43 ppm shift in Δq from linear m_e term.

MuLan Collaborators

