Belle time-integrated γ (ϕ_3) measurements

Introduction

• The phase ϕ_3 is included in the transition b \rightarrow u.

$$\phi_3 \equiv \arg\left(\frac{V_{ud}V_{ub}^*}{-V_{cd}V_{cb}^*}\right) \sim -\arg(V_{ub})$$

• Most popular methods use the decay $B^- \rightarrow DK^-$ (and the conjugate).

Value of \$\phi_3\$ is extracted through the interference of two paths, which occurs when D⁰ and D

⁰ decay to the same final state.

Introduction

Dalitz (GGSZ)

- GGSZ, PRD 68, 054018 (2003).
- ► Dalitz analysis on $D \rightarrow K_{s}\pi^{+}\pi^{-}$, etc.
- Most sensitive.

GLW+ADS

- GW, PLB 265, 172 (1991).
 ADS, PRL 78, 3257 (1997).
- Fit using the observables from $D \rightarrow CP$ eigenstates, $K^+\pi^-$, etc.

Topics for Today

► $B^- \rightarrow D^{(*)}K^-$, $D \rightarrow K_S \pi^+ \pi^-$ Dalitz

- A. Poluektov et al.,
 PRD 81, 112002 (2010).
- ▶ 657 M BB.
- ► B⁻→DK⁻, D→K⁺ π ⁻ ADS
 - New result (preliminary) shown for the first time.
 - 772 M BB: full Y(4S) data for Belle.

B Meson Reconstruction

Primary particles

- K/ π identification: efficiency ~ 85%, fake rate ~ 10%.
- K_s: reconstructed from $\pi^+\pi^-$ using M_{$\pi\pi$} and vertex information.
- π^0 : reconstructed from $\gamma\gamma$ using $M_{\gamma\gamma}$ and E_{γ} .
- Two kinematic variables
 - Energy difference $\Delta E \equiv E_B E_{\text{beam}}$
 - Beam-energy constrained mass $M_{\rm bc} \equiv \sqrt{E_{\rm beam}^2 |p_B|^2}$
- Continuum suppression by
 - Fisher discriminant of SFW moments or
 - Neural Network including more variables.

B- \rightarrow D^(*)K-, D \rightarrow K_S $\pi^+\pi^-$ Dalitz

• Amplitude of $B^{\pm} \rightarrow DK^{\pm}$ process can be expressed as

$$M_{\pm} = \underline{f(m_{\pm}^2, m_{\mp}^2)} + \underline{r}e^{\pm i\phi_3 + i\delta}\underline{f(m_{\mp}^2, m_{\pm}^2)}$$

 $m_{\pm}^2 = m_{K_S \pi^{\pm}}^2$

Ratio of magnitudes of interfering amplitudes.

Amplitude of $D \rightarrow K_{S}\pi^{+}\pi^{-}$ decay determined from Dalitz plot of large continuum data (Flavor is tagged by soft-pion charge in $D^{*\pm} \rightarrow D\pi^{\pm}_{soft}$). Isobar-model assumption with BW for resonances.

- Procedure of analysis:
 - 1. Background fractions are determined by 2-D UML fit for ΔE and M_{bc} .
 - 2. Fit is performed to m_{\pm} (Dalitz plane).

 $B^{-} \rightarrow D^{(*)}K^{-}$ Dalitz, ΔE and M_{bc} Projections

7

$B \rightarrow D^{(*)}K \rightarrow Dalitz$, Result

- 657 M BB
- Using the background fractions, Dalitz plane is fitted with the parameters $x_{\pm} = r_{\pm}\cos(\pm\phi_3 + \delta)$ and $y_{\pm} = r_{\pm}\sin(\pm\phi_3 + \delta)$.

$B^{-} \rightarrow DK^{-}, D \rightarrow K^{+}\pi^{-} ADS$

- Large effect of φ₃ appears in the branching fraction due to similar magnitudes of interfering amplitudes.
- We also analyze $B \rightarrow D\pi$ as a reference.

Continuum Suppression

- Main background is $e^+e^- \rightarrow q\overline{q}$ (q=u, d, s, c) continuum process.
- To discriminate this background, new technique employs NeuroBayes (NB) neural network.

Peaking Background

- ► $B^- \rightarrow D\pi^-$, $D \rightarrow K^+K^-$ (same final state)
 - Veto on K⁺K⁻ mass.
- ► $B^- \rightarrow Dh^-, D \rightarrow K^- \pi^+$ (double mis-ID)
 - Veto on $K^-\pi^+$ mass, where ID is exchanged.
- Charmless $B^- \rightarrow K^+ K^- \pi^-$ (same final state)
- We estimate the total contribution using $K^+\pi^-$ -mass sideband of data.
 - ▶ 0.020 < |M_{Kπ}−1.865| < 0.050 (in GeV).
 - Estimated number = 0.4 ± 5.5.

-~Flat K⁺ π ⁻-mass distribution.

PRELIMINARY

Simultaneous Fit for $B^{-} \rightarrow [K^{+}\pi^{-}]_{D}h^{-}$ 772 M BB

- Projections for h=π
 in signal regions are shown.
 - ▶ NB > 0.5
 - ▶ |∆E| < 0.04 GeV
- The results ($R_{D\pi}$ in 10⁻³) are

 $\mathcal{R}_{D\pi} = 3.28 \pm 0.37 (\text{stat})^{+0.22}_{-0.23} (\text{syst})$ $\mathcal{A}_{D\pi} = -0.04 \pm 0.11 (\text{stat})^{+0.01}_{-0.02} (\text{syst})$

 Most precise measurements to date with a significance 8.4σ (including syst).

PRELIMINARY

Simultaneous Fit for $B^- \rightarrow [K^+\pi^-]_D h^-$ 772 M BB

- Projections for h=K in signal regions are shown.
 - ▶ NB > 0.5
 - ▶ |∆E| < 0.04 GeV
- The results (R_{DK} in 10⁻²) are

 $\mathcal{R}_{DK} = 1.62 \pm 0.42 (\text{stat})^{+0.16}_{-0.19} (\text{syst})$ $\mathcal{A}_{DK} = -0.39 \pm 0.26 (\text{stat})^{+0.06}_{-0.04} (\text{syst})$

 First evidence is obtained with a significance 3.8 (including syst).

PRELIMINARY

Systematic Uncertainties

Source	\mathcal{R}_{DK}	$\mathcal{R}_{D\pi}$	\mathcal{A}_{DK}	$\mathcal{A}_{D\pi}$
Fit	$^{+9.7}_{-6.3}\%$	$^{+6.5}_{-5.3}\%$	$^{+0.05}_{-0.04}$	$+0.009 \\ -0.018$
$(\Delta E\text{-PDF})$	$^{+4.4}_{-3.6}\%$	$^{+2.4}_{-2.3}\%$	± 0.02	± 0.003)
$(\mathcal{NB}-PDF)$	$^{+4.2}_{-1.6}\%$	$^{+4.0}_{-2.8}\%$	$^{+0.02}_{-0.01}$	$^{+0.001}_{-0.010}$)
(Yield and asymmetry	$\pm 1.1\%$	$\pm 0.1\%$	± 0.01	± 0.005)
Peaking backgrounds	$^{+0.7}_{-9.9}\%$	$^{+0.0}_{-4.1}\%$	$^{+0.03}_{-0.00}$	$+0.002 \\ -0.000$
Efficiency	$\pm 1.7\%$	$\pm 1.5\%$		
Detector asymmetry		•••	± 0.02	± 0.005

- The uncertainties due to the fit are dominant components.
 - Conservatively take a linear sum of all uncertainties in the fit.
- Detector asymmetry is obtained by the calibration mode.
- The total systematic error is the sum in quadrature.

Summary

- ► $B^- \rightarrow D^{(*)}K^-$, $D \rightarrow K_S \pi^+ \pi^-$ Dalitz
 - 657 M BB.
 - Mode $D^* \rightarrow D\gamma$ is included.
 - Most precise measurement of ϕ_3 is obtained.

$$\phi_3 = 78.4^{\circ} {}^{+10.8^{\circ}}_{-11.6^{\circ}} \pm 3.6^{\circ}(\text{syst}) \pm 8.9^{\circ}(\text{model})$$

- ► B⁻→DK⁻, D→K⁺ π ⁻ ADS (PRELIMINARY)
 - 772 M BB: full Y(4S) data.
 - New approach on continuum suppression is employed.
 - First evidence of signal is obtained with a significance 3.8σ .

A Check for NeuroBayes Performance

NB training is performed with 7 variables (removing Δz , $\cos\theta_{D \to K\pi}$, and $\operatorname{distance}_{Dh}$). By using the result of this training, we obtain the NB-output distributions for κ qq MC shown with a histogram and data ($\Delta E > 150$ MeV: qq-dominated region) shown with dots.

Note: we obtain the PDF used for the fit from M_{bc} sideband (5.20 GeV< M_{bc} <5.26 GeV) of data; the result will not be effected by a discrepancy between data and MC.

Comparison between Different Results

	This Analysis	Previous Result by Belle	Latest Result by BaBar
$R_{DK} [imes 10^{-2}]$	$1.62 \pm 0.42 {}^{+0.16}_{-0.19}$	$0.78 {}^{+0.62}_{-0.57} {}^{+0.20}_{-0.28}$	$1.1\pm0.6\pm0.2$
$\mathcal{R}_{D\pi} \ [imes 10^{-3}]$	$3.28 \pm 0.37 \ ^{+0.22}_{-0.23}$	$3.40 \begin{array}{c} +0.55 \\ -0.53 \end{array} \begin{array}{c} +0.15 \\ -0.22 \end{array}$	$3.3\pm0.6\pm0.4$
\mathcal{A}_{DK}	$-0.39 \pm 0.26 \ ^{+0.06}_{-0.04}$	$-0.1 {}^{+0.8}_{-1.0} \pm 0.4$	$-0.86 \pm 0.47 \ ^{+0.12}_{-0.16}$
$\mathcal{A}_{D\pi}$	$-0.04\pm0.11~^{+0.01}_{-0.02}$	$-0.02 {}^{+0.15}_{-0.16} \pm 0.04$	$0.03 \pm 0.17 \pm 0.04$
N(BB) =	772 M	657 M	467 M

- The consistencies for Dπ results strongly encourage us to be confident with our new method.
- The value of R_{DK} is ~ I o higher than the previous value by Belle, for which the reason can be statistical since more than 60 % events are independent of the ones in the previous analysis. (In the previous analysis, tight cut was applied for qq suppression.)

Significance

The significance is estimated by convoluting the likelihood in the fit and an asymmetric Gaussian whose widths are the systematic errors.

