CLEO-c inputs to the determination of the CKM angle γ

- Introduction: measuring the strong-phase difference δ_D between D⁰ and \overline{D}^0 decays at CLEO-c
- Measurements of δ_D for D \to K_SK⁺K⁻ and D \to K_S $\pi^+\pi^-$
- Measurement of δ_D for D \to K⁺ π^-
- Results from the coherence studies for $D \rightarrow K^+\pi^-\pi^0$, $K^+\pi^-\pi^+\pi^-$

Stefania Ricciardi
STFC Rutherford Appleton Laboratory
(On behalf of the CLEO Collaboration)

γ from B[±] \rightarrow DK[±]

Sensitivity to γ through interference of $b \rightarrow c$ and $b \rightarrow u$ transitions

methods]

y extracted from timeintegrated measurements of B⁺ and B⁻ decay rates [several well-established

> Other B-decay parameters (to be extracted from data)

 $\delta_{\rm B} = B$ -decay strong phase difference

r_B = relative magnitude of suppressed B-decay amplitude

Interference if D^0 and $\overline{D^0}$ decay to common final state f

D decay parameters in particular $\delta_{
m D}$ not well-known

$$\frac{\langle D^0 \to f \rangle}{\langle \overline{D}^0 \to f \rangle} = r_D \left(e^{i\delta_D} \right)$$

CLEO-c

818 pb⁻¹ accumulated in

$$e^+e^- \to \psi(3770)$$

- Just above open-charm threshold
 - very clean environment
 - no fragmentation particles
 - efficient reconstruction of both D decays
 - Efficient reconstruction of modes with missing particles (K₁,v)
- Coherent decay of

$$\psi(3770) \rightarrow D^0\overline{D}{}^0$$

⇒ Reconstructing one D decay in a CP eigenstate (CP-tag) allows one to infer CP of the other D (decay mode of interest) CP(signal) = $-1 \times CP(tag)$

$$\overline{D}{}^0 \!\! \longrightarrow K_S \pi \pi \ \, \mathrm{vs} \ \, D^0 \!\! \longrightarrow K^- \! \pi^+$$

CP-tagged D sample, unique to $\psi(3770)$ decays, gives access to phases

$\delta_{\rm D}$ from quantum-correlations: the principle

E.g., decay mode of interest is $D^0 \rightarrow K_s \pi^+ \pi^-$ (mixed CP)

 $cos(\delta_D)$ from CP-tagged decays

In addition, both $\cos(\delta_D)$ and $\sin(\delta_D)$ from mixed CP-tags

Measurements of δ_D for D \rightarrow K_SK⁺K⁻ and D \rightarrow K_S $\pi^+\pi^-$

- New preliminary results (to be submitted to PRD)
- Impact on γ from B \rightarrow D(K_shh)K

γ from B⁺ \rightarrow D(K_Sh⁺h⁻)K⁺

[GGSZ,PRD 68, 054018 (2003)]

Exploit interference pattern over *D-Dalitz* plots from B⁺ and B⁻ decays

$$m_{\pm}=m^2(K_s\pi^{\pm})$$

- Two ways to extract γ :
 - Model-dependent method 1.
 - Unbinned amplitude fit
- $A(B^{\pm} \rightarrow D(K_{\scriptscriptstyle S}\pi\pi)K^{\pm}) \propto f(m_{\scriptscriptstyle \mp}, m_{\scriptscriptstyle +}) + r_{\scriptscriptstyle B}e^{i(\delta_{\scriptscriptstyle B}\pm\gamma)}f(m_{\scriptscriptstyle \mp}, m_{\scriptscriptstyle +})$
- Relies on a model for D decay amplitude $f(m_+, m)$
- Model-error
 - BaBar [arXiv1005.1096] $K_s \pi \pi + K_s KK : \sim 3^{\circ}$
 - Belle [PRD 81 112002,2010] $K_s \pi \pi : \sim 9^{\circ}$
- 2. Model-independent method
 - Binned fit
 - Small loss in statistical sensitivity compared to unbinned fit
 - No model error
- Requires external inputs on δ_{field} rectarding 8/9/2010

Model error

- Hard to quantify
- Will limit future

Model-independent extraction of γ

■ Discrete measurements of δ_D in bins of the Dalitz plot are sufficient to extract γ in a model-independent way [GGSZ, PRD 68(2003)054018, Bondar&Poluektov, EPJ C 47(2006) 347]

of B decays in bin i $T_i = \int_i |A_D(m_+, m_-)|^2 dm_+ dm_- \\ \# \text{ of flavour-tagged D decays in bin i}$ $T_i + r_B^2 T_{-i} + 2r_B \sqrt{T_i T_{-i}} \{c_i \cos(\delta_B \pm \gamma) + s_i \sin(\delta_B \pm \gamma)\}$ $C_i = \left\langle \cos \delta_D \right\rangle_i$ $S_i = \left\langle \sin \delta_D \right\rangle_i$

- c_i and s_i are weighted averages of the cosine and sine of the phase-difference between D^0 and \overline{D}^0 in bin i
- Extracted from CP, mixed-CP, and flavour-tagged $D \rightarrow K_S hh$ decay yields in bin i (and –i)
 - CP-Tags $\rightarrow c_i$
 - CP-mixed tags \rightarrow c_i and s_i
 - Flavour-tags → T_i

D→K_SKK Dalitz plot binning

- Bins of equal δ_D give a better statistical precision on c_i and s_i than rectangular binning [Bondar & Poluektov, EPJ C55 (2008) 51; EPJ C47 (2006)347]
 - D-decay model required to define $\delta_{\rm D}$ binning
 - No model-dependence: binning choice induces no bias on γ , but may affect statistical uncertainty
 - BaBar model used [arXiV:1005.1096]: isobar formalism with 8 intermediate resonances
- Three sets of equal δ_D bins studied (for N_{bins} =2,3 and 4)
 - Small number of bins to match size of D data-sample at CLEO-c
 - Different sets will allow B-experiments to perform cross-checks and to match binning to size of different B data-samples

K_SKK and K_LKK flavour-tagged samples

K_SKK and K_LKK CP-tagged samples

c_i vs s_i for $D \rightarrow K_S KK$ (preliminary)

i	c_i	s_i
	$\mathcal{N}=2 \text{ equal } \Delta c$	δ_D bins
41.	$0.872 \pm 0.068 \pm 0.057$	$0.443 \pm 0.216 \pm 0.280$
2	$-0.838 \pm 0.085 \pm 0.042$	$0.220 \pm 0.217 \pm 0.074$
	$\mathcal{N} = 3 \text{ equal } \Delta_0$	δ_D bins
1	$0.840 \pm 0.066 \pm 0.061$	$0.426 \pm 0.223 \pm 0.143$
2	$-0.652 \pm 0.059 \pm 0.040$	$0.397 \pm 0.231 \pm 0.077$
3	$-0.267 \pm 0.360 \pm 0.156$	$-0.468 \pm 0.431 \pm 0.233$
	$\mathcal{N} = 4 \text{ equal } \Delta_0$	δ_D bins
1	$0.913 \pm 0.088 \pm 0.120$	$0.303 \pm 0.248 \pm 0.185$
2	$0.058 \pm 0.224 \pm 0.091$	$0.992 \pm 0.464 \pm 0.348$
3	$-0.899 \pm 0.081 \pm 0.047$	$0.285 \pm 0.262 \pm 0.171$
4	$0.261 \pm 0.378 \pm 0.152$	$-0.153 \pm 0.651 \pm 0.344$

- Good agreement of measured values with model predictions but no model-dependency
- Statistic uncertainty dominant
- Main systematic uncertainty due to background determination

Measurements of δ_D for $D \rightarrow K_S \pi \pi$

- First measurement published by CLEO last year [PRD 80, 032002, 2009] using total data sample
- Results produced for 8 bins of equal δ_D derived from BABAR 2005 model [BaBar, PRL 95,121802,2005]
- Projected uncertainty on γ: ~2°
- Statistical sensitivity on γ: 75% of unbinned method

Motivation for updating the first measurement

- use updated models of D decay amplitude from BABAR [1] and Belle[2]
- $\ ^{\blacksquare}$ investigate different ways of binning, which may improve statistical sensitivity to γ

[1]BABAR PRD 78,034023,2008 [2]Belle, PRD 81,112002,2010

$D \rightarrow K_S \pi \pi$ Dalitz plot binning

Q' modified metric quantifies relative statistical sensitivity in presence of background (B/S=1, typical value for LHCb)

sensitivity of binned and unbinned method

(in absence of background)

Bondar and Poluektov [EPJC 55,51, 2008]

s_i vs c_i for $D \rightarrow K_S \pi \pi$ (preliminary)

 $\chi^2/DOF = 25.3/16$

Optimal BABAR 2008

 $\chi^2/DOF = 15.5/16$

Equal $\delta_{\rm D}$ Belle 2008

 $\chi^2/DOF = 26.8/16$

Modified optimal BABAR 2008

 $\chi^2/DOF = 13.8/16$

Reasonable consistency among model predictions and measurements

Expected impact on γ

- Toy MC used to estimate two different consequences:
 - 1. Induced systematic uncertainty on γ due to uncertainties on ci and si (σ_{CLFO})
 - 2. loss in statistical precision relative to unbinned fit (1-Q)

```
K_SKK

B<sup>+</sup>→D(K_SKK)K<sup>+</sup>: σ_{CLEO}(γ) \sim 3-4°

Small dependence on number of bins Q ~90% (all binnings)
```

 $\sigma_{CLEO}(\gamma)$ [instead of model error]
Error of experimental origin dominated by statistical uncertainty on c_i and s_i coefficients

```
K_S\pi\pi
B^+ \rightarrow D(K_S\pi\pi)K^+: \sigma_{CLEO}(\gamma) \sim 2^\circ \text{ for } \delta_D \text{ and modified optimal binning}
\sigma_{CLEO}(\gamma) \sim 4^\circ \text{ for optimal binning}
Q \sim 80\% \text{ for } \delta_D \text{ binnings}
Q \sim 90\% \text{ for optimal binnings}
```

■ Update of the previous CLEO-c measurement (281 pb⁻¹) [PRL 100, 221801 (2008), PRD 78, 012001 (2008)]

$$\frac{\langle D^0 \to K^+ \pi^- \rangle}{\langle \overline{D}^0 \to K^+ \pi^- \rangle} = r_{K\pi} e^{i\delta_D^{K\pi}}$$

Measurement of strong-phase difference $\delta_D^{K\pi}$ between D^0 and $\overline{D}{}^0 \longrightarrow K^+\pi^-$

■ New preliminary result using full data sample (818 pb⁻¹) and additional tags

Important input to measurements of γ from B \rightarrow DK with D \rightarrow K π

Measuring $\delta_{D}^{K\pi}$ with quantum-correlation

Another application of threshold production of Quantum-Correlated DD

[Asner and Sun, PRD73, 034024, 2006]

- Combined analysis in many modes measures $\delta_{D}^{K\pi}$ without ambiguities
- First-order dependence on Dmixing parameters y

Sensitivity **CP** tagged also to Drates give mixing $\cos\delta_{\rm D}$ parameter

 $y' = y \cos(\delta_D^{K\pi}) - x \sin(\delta_D^{K\pi})$

Avg (Yield/No-QC prediction)

[PRL 100, 221801 (2008), PRD 78, 012001 (2008)]

Results for $\delta_D^{K\pi}$ (818 pb⁻¹, preliminary)

- ■Fit to extract
 - $K\pi$ decay and mixing parameters
 - Branching fractions, normalisation parameters
 - $K_s\pi\pi$ amplitude/phase coefficients

- Fit result w/o external measurements:
 - Statistical uncertainty

on
$$\mathbf{r}_{K\pi} \, \text{cos} \delta^{K\pi}$$
 and \mathbf{y}

3x smaller than previous analysis

first direct determination of

r
$$_{K\pi}^{}$$
 and $sin\delta^{K\pi}$

Parameter	Previous: PDG, HFAG, or CLEO	Fit: no ext. meas.	Fit: with ext. y, x, y'
y (10 ⁻²)	0.79 ± 0.13	3.0 ± 2.0 ± 1.2	0.635 ± 0.118
x^2 (10 ⁻³)	0.037 ± 0.024	1.5 ± 2.0 ± 0.9	0.022 ± 0.017
r² (10-3)	3.32 ± 0.08	4.12 ± 0.92 ± 0.23	3.32 ± 0.08
cosδ	1.10 ± 0.36	0.98 +0.27 _{-0.20} ± 0.08	1.15 ± 0.16 ± 0.12
sinδ		-0.04 ± 0.49 ± 0.08	$0.55^{+0.36}_{-0.40} \pm 0.08$
δ ($^{\circ}$) [derived]	22 +11 -12 +9 -11	0 ± 22 ± 6	$\delta_{D}^{K\pi} = (15^{+11}_{-17} \pm 7)^{\circ}$

- Fit results with external y,x,y' gives δ_D^{Kπ}
- Preliminary systematic uncertainty

Coherence studies for $D^0 \rightarrow K\pi\pi^0$ and $D^0 \rightarrow K\pi\pi\pi$

- Published results use total CLEO-c data sample [PRD 80, 031105 (R) (2009)]
- Multi-body decay

 ⇒measure average strong phase and Coherence factor (R)
- Extract both R and δ_D from CP-tagged and flavour-tagged decays

Conclusions

- Quantum-correlation at $\psi(3770)$ gives access to strong-phase δ_D and provides crucial input to measurements of γ (and charm-mixing)
- Several results from CLEO-c:
 - D \rightarrow K_SKK: first measurement of c_i and s_i in bins of δ _D NEW
 - D \rightarrow K_S $\pi\pi$: c_i and s_i for 4 different ways of binning NEW
 - D \rightarrow K π : updated result for δ_D on full statistics NEW
 - D \rightarrow K $\pi\pi^0$,K $\pi\pi\pi$ coherence factors and average strong-phase
- Exploitation of precious CLEO-c data sample continues; soon also high-statistics data sample at BES-III expected to provide new measurements and improved results
 [prospects for the next decade in P. Spradlin's talk]

Additional material

$$egin{aligned} c_i &= rac{1}{\sqrt{T_i T_{ar{i}}}} \int_{D_i} |A_D(x,y)| |A_D(y,x)| \cos(\delta_{x,y} - \delta_{y,x}) dx dy \ s_i &= rac{1}{\sqrt{T_i T_{ar{i}}}} \int_{D_i} |A_D(x,y)| |A_D(y,x)| \sin(\delta_{x,y} - \delta_{y,x}) dx dy \ T_i &\equiv \int_i |A_D(x,y)|^2 dx dy \end{aligned}$$

D→K_SKK Data samples

K_SKK vs $K_S\pi\pi$

K_SKK and $K_S\pi\pi$ yields

Mode	ST yield	DT yields					
		$K^0_S\pi^+\pi^-$	$K_L^0 \pi^+ \pi^-$	$K_S^0K^+K^-$	$K_L^0K^+K^-$		
Flavor tags							
$K^-\pi^+$	144563 ± 403	1444	2857	168	302		
$K^{-}\pi^{+}\pi^{0}$	258938 ± 581	2759	5133	330	585		
$K^{-}\pi^{+}\pi^{+}\pi^{-}$	220831 ± 541	2240	4100	248	287		
$K^-e^+\nu$		1191		100			
CP-even tags							
K^+K^-	13349 ± 128	124	357	12	32		
$\pi^{+}\pi^{-}$	6177 ± 114	61	184	4	13		
$K_S^0 \pi^0 \pi^0$	6838 ± 134	56		7	14		
$K_{L}^{0}\pi^{0}$		237		17			
$K_L^0 \eta(\gamma \gamma)$				4			
$K_L^0 \eta (\pi^+ \pi^- \pi^0)$				1			
$K_L^0 \omega$				4			
$K_L^0 \eta'$				1			
CP-odd tags							
$K_{S}^{0}\pi^{0}$	19753 ± 153	189	288	18	43		
$K_S^0 \eta(\gamma \gamma)$	2886 ± 71	39	43	4	6		
$K_S^0 \eta(\pi^+\pi^-\pi^0)$				2	1		
$K_S^0\omega$	8830 ± 110	83		14	10		
$K_S^0 \eta'$				3	4		
$K_L^0 \pi^0 \pi^0$				5			
$K_S^0 \pi^+ \pi^-$		473	1201	56	126		
$K_{L}^{0}\pi^{+}\pi^{-}$				140			
$K_S^0K^+K^-$				4	9		

Systematic uncertainties

TABLE XVIII: Statistical and systematic uncertainties on c_i and s_i determined for the $\mathcal{N} = \text{equal } \Delta \delta_D$ binning of $D^0 \to K_S^0 K^+ K^-$ data.

Uncertainty	c_1	c_2	c_3	s_1	s_2	s_3
Pseudo-flavor statistics		0.007	0.056	0.015	0.014	0.040
Momentum resolution	0.002	0.004	0.013	0.018	0.023	0.030
Mode-to-mode normalisation	0.004	0.005	0.013	0.001	0.007	0.004
Multiple-candidate selection	0.015	0.004	0.006	0.003	0.000	0.003
DCS correction	0.001	0.001	0.003	0.002	0.004	0.002
$K_{S,L}^0 \pi^+ \pi^- (c_i^{(\prime)}, s_i^{(\prime)})$	0.010	0.013	0.052	0.135	0.062	0.127
Fitter assumptions		0.009				
Parameterisation of non- K_L^0 final state background		0.002	0.012	0.000	0.005	0.003
Parameterisation of K_L^0 final state background	0.054	0.024	0.087	0.038	0.016	0.184
Background Dalitz space distribution	0.010	0.023	0.092	0.006	0.030	0.021
Assumed background \mathcal{B}	0.010	0.011	0.032	0.001	0.009	0.000
Total systematic	0.061	0.040	0.156	0.143	0.077	0.233
Statistical plus $K_L^0 K^+ K^-$ model	0.066	0.059	0.360	0.223	0.231	0.431
$K_L^0K^+K^-$ model alone	0.000	0.000	0.120	0.008	0.000	0.035
Total	0.090	0.071	0.392	0.265	0.243	0.490

K_Lhh vs K_Shh and Residual Model Uncertainty

$$A(D^{0} \to K_{S}^{0}\pi^{+}\pi^{-}) = \frac{1}{\sqrt{2}}[A(D^{0} \to \bar{K}^{0}\pi^{+}\pi^{-}) + A(D^{0} \to K^{0}\pi^{+}\pi^{-})]$$

$$A(D^{0} \to K_{L}^{0}\pi^{+}\pi^{-}) = \frac{1}{\sqrt{2}}[A(D^{0} \to \bar{K}^{0}\pi^{+}\pi^{-}) - A(D^{0} \to K^{0}\pi^{+}\pi^{-})]$$

$$A(D^0 \to K_L^0 \pi^+ \pi^-) = A(D^0 \to K_S^0 \pi^+ \pi^-) - \sqrt{2} A(D^0 \to K^0 \pi^+ \pi^-)$$

- Correction to approximate equality between $K_S\pi\pi$ and K_SKK
 - Minus sign introduce a 180 degrees shift for all DCS resonances
 - CP eigenstate resonances acquire a factor $\propto -2re^{i\delta}$ [r = tan²(θ_c)]
- Residual model dependence due to uncertainty on this small correction ⇒small effect

Determining c_i and s_i

Observables

Normalisations

M_i = Number of K_shh vs CPtag in bin i

$$M_i^{\pm} = h_{CP\pm}(K_i \pm 2c_i\sqrt{K_iK_{-i}} + K_{-i}),$$

$$h_{CP\pm} = S^{\pm}/2S_f$$

 $M_{ii} = K_S hh$ in bin i vs $K_S hh$ in bin j

$$M_{ij} = h_{corr}(K_iK_{-j} + K_{-i}K_j - 2\sqrt{K_iK_{-j}K_{-i}K_j}(c_ic_j + s_is_j))$$

M_i = K₁ hh vs CPtag in bin i

$$M_i^{\pm} = h_{CP\pm}(K_i' \mp 2c_i' \sqrt{K_i' K_{-i}'} + K_{-i}')$$

$$h_{corr} = N_{D\bar{D}}/2S_f^2$$

 $M_{ii} = K_S hh$ in bin i vs KLhh in bin j

$$M_{ij} = h_{corr}[K_i K'_{-j} + K_{-i} K'_j + 2\sqrt{K_i K'_{-j} K_{-i} K'_j} (c_i c'_j + s_i s'_j)].$$

 $K_i = A_D T_i$ number of flavour-tagged decays in bin_i

The Q and Q' metrics

$$Q^{2} = \frac{\sum_{i} \left[\left(\frac{1}{\sqrt{\Gamma_{i}}} \frac{d\Gamma_{i}}{dx} \right)^{2} + \left(\frac{1}{\sqrt{\Gamma_{i}}} \frac{d\Gamma_{i}}{dy} \right)^{2} \right]}{\int \left[\left(\frac{1}{\sqrt{|f_{B^{-}}|^{2}}} \frac{d|f_{B^{-}}|^{2}}{dx} \right)^{2} + \left(\frac{1}{\sqrt{|f_{B^{-}}|^{2}}} \frac{d|f_{B^{-}}|^{2}}{dy} \right)^{2} \right] dm_{+}^{2} dm_{-}^{2}}$$

$$\Gamma_i = \int_i |f_{B^-}|^2 dm_+^2 dm_-^2 \ .$$

$$f_{B^-} = f_D(m_+^2, m_-^2) + (x+iy) f_D(m_-^2, m_+^2)$$

$$Q^{'2}|_{x=y=0} = \frac{\displaystyle\sum_{i} \frac{f_{s}^{2} F_{i} F_{-i}}{f_{s} F_{i} + f_{1} B_{1i} + f_{2} B_{2i}} (c_{i}^{2} + s_{i}^{2})}{\displaystyle\int \frac{f_{s}^{2} |f_{D}(m_{+}^{2}, m_{-}^{2})|^{2} |f_{D}(m_{-}^{2}, m_{+}^{2})|^{2}}{f_{s} |f_{D}(m_{+}^{2}, m_{-}^{2})|^{2} + f_{1} \mathcal{B}_{1} + f_{2} \mathcal{B}_{2}} dm_{+}^{2} dm_{-}^{2}}$$

$$|f_{B^-}|^2 = f_s \cdot |f_D(m_+^2, m_-^2) + (x + iy)f_D(m_-^2, m_+^2)|^2 + f_1 \cdot \mathcal{B}_1(m_+^2, m_-^2) + f_2 \cdot \mathcal{B}_2(m_+^2, m_-^2)$$

EO-c input to gamma

Data samples and yields in 818 pb⁻¹

261 yield measurements in total, including most double-tag combinations and single-tags

New to this analysis:

8/9/2010

- Additional K_L and semi-leptonic modes
 - semi-muonic modes double semileptonic data-sample
 - CP-tagged semileptonic sensitive to y
- Addition of binned measurements of $K_s\pi\pi$
 - sensitive to $\sin \delta_{K\pi}$ as well as $\cos \delta_{K\pi}$ [yields from PRD80, 032002, 2009]
- Addition of semileptonic vs DCS $K\pi$
 - direct determination of $r_{K\pi}$
- All decay and mixing parameters, and branching fractions extracted from a fit w/o external constraints

29