

Tevatron time-integrated γ measurements and prospects

Paola Squillacioti Fermilab for the CDF Collaboration

CKM 2010 Warwick, 6-10 September 2010

γ angle from B⁺ \rightarrow D⁰ K⁺ γ could be extracted by exploiting the interference between the processes $\overline{b} \rightarrow \overline{cu} \ \overline{s} \ (B^+ \rightarrow \overline{D}^0 \ K^+)$ and $\overline{b} \rightarrow \overline{uc} \ \overline{s} \ (B^+ \rightarrow D^0 \ K^+)$ $V_{\underline{ub}}$ K^+ D^0 \hat{V}_{cs} \mathbf{B}^+ V_{cb} D^0 B^+ K^+ u U u Color suppressed $\overline{b} \rightarrow \overline{u}$ decay Favored $\overline{b} \rightarrow \overline{c}$ decay $A_2 \sim V_{\mu\nu} V_{cs}^* \sim \lambda^3 r_B e^{-i\delta B} e^{-i\gamma}$ $A_1 \sim V_{cb} V_{us}^* \sim \lambda^3$ GLW (Gronau-London-Wyler) method ([PLB253,483 PLB265,172]) that uses the B[±] \rightarrow D K[±] decays with D_{CP} decay modes. $D_{CP+} \rightarrow \pi^+ \pi^-$, K⁺ K⁻ and $D_{CP} \rightarrow K^{0}_{s} \pi^{0}, K^{0}_{s} \omega, K^{0}_{s} \phi$. ADS (Atwood-Dunietz-Soni) method ([PRL78,3257;PRD63,036005]) that uses the $B^{\pm} \rightarrow D$ K[±] decays with D reconstructed in the doubly cabibbo suppressed $D^0_{DCS} \rightarrow K^+ \pi^-$ • GGSZ (Giri-Grossmann-Soffer-Zupan) method ([PRL78,3257, PRD68,054018]) that uses the $B^{\pm} \rightarrow D$ K[±] decays with the D^0 and \overline{D}^0 reconstructed into threebody final state. For example the $D^0 \rightarrow K^0_{c} \pi^+ \pi^-$ 2

The CDF II detector

- TRACKING system:
- DRIFT CHAMBER 96 layers ($|\eta|$ <1)
 - \rightarrow 1.5 σ π/K separation by dE/dx
- SILICON TRACKER
 7 layers (1.5-22cm from beam pipe)
- \rightarrow I.P. resolution 35 μm at 2 GeV
- $\rightarrow \sigma(p_T)/p_T^2 \sim 0.015\%$ (c/GeV)

TRACKING TRIGGER system:

- Chamber track processor at L1, 2D tracks in COT, p_T > 1.5 GeV
- Silicon Vertex Trigger at L2, 2D tracks p_T > 2 GeV, Impact Parameter measurement (trigger on events containing long lived particles)

NEW : ADS method at CDF

First measurement of A_{ADS} and R_{ADS} at a hadron collider using 5 fb⁻¹

ADS Observables

Direct CP violation in $B \rightarrow D_{DCS} K$ modes

$$R_{ADS}(K) = \frac{N(B^- \to D^0_{DCS}K^-) + N(B^+ \to D^0_{DCS}K^+)}{N(B^- \to D^0_{CF}K^-) + N(B^+ \to D^0_{CF}K^+)}$$

Observables

$$\mathcal{A}_{ADS}(K) = \frac{N(B^- \to D^0_{DCS}K^-) - N(B^+ \to D^0_{DCS}K^+)}{N(B^- \to D^0_{DCS}K^-) + N(B^+ \to D^0_{DCS}K^+)}$$

From theory:

$$R_{ADS}(K) = r_D^2 + r_B^2 + 2r_Br_D \cos(\delta_B + \delta_D) \cos\gamma$$

 $A_{ADS}(K) = 2r_Br_D \sin(\delta_B + \delta_D)\sin\gamma/R_{ADS}(K)$

$$\mathcal{A}_{ADS}(\pi) = \frac{N(B^- \to D^0_{DCS}\pi^-) - N(B^+ \to D^0_{DCS}\pi^+)}{N(B^- \to D^0_{DCS}\pi^-) + N(B^+ \to D^0_{DCS}\pi^+)}$$

$$R_{ADS}(\pi) = \frac{N(B^- \to D^0_{DCS}\pi^-) + N(B^+ \to D^0_{DCS}\pi^+)}{N(B^- \to D^0_{CF}\pi^-) + N(B^+ \to D^0_{CF}\pi^+)}$$

$$A_{ADS}(MAX) = \frac{2r_B r_D}{r_B^2 + r_D^2}$$

Sizeable
asymmetries may
be found also for
 $B \rightarrow D_{DCS} \pi$

Optimized cuts

D0 candidate

 $\cdot |\cos(\theta^*)_{\rm b}| \leq 0.6$

• $\Delta R(D-track from B) \leq 1.5$

• Δ ID(KfromD- π fromD) \geq -1.

• 1.8495 ≤ M(HP k-π) ≤ 1.8815

 • M(HP k-πfromB) ≥ 1.9045 & M(HP k-πfromB) ≤ 1.8265

<u>B candidate</u>

- $\cdot Lxy_B/errLxy_B \ge 12$
- \cdot |IP_B| \leq 0.005 cm
- Pointing angle ≤ 0.15
- Isolation(R=0.4) ≥ 0.7
- Isolation(R=1) \geq 0.4
- χ²_{3D} ≤ 13

• M(HP π−k) ≥ 1.9045 & M(HP π−k) ≤ 1.8265

Reduce contamination from three body decay (B⁺→h⁺h⁻h⁺)

 $I(B) = \frac{p_T(B)}{p_T(B) + \sum_i p_T(i)} \qquad \eta - \phi \text{ space} \qquad B$

Exploit the powerful 3D silicon-tracking to resolve multiple vertices along the beam direction and to reject fake tracks. Backg. reduces x2, small inefficiency on signal (<10%).

CF and DCS after cut optimization

 $\mathsf{B}^{-} \to \mathsf{D}^{0}_{\mathsf{DCS}} \pi^{-} \to [\mathsf{K}^{+} \pi^{-}] \pi^{-}$

$$\mathsf{B}^{-} \to \mathsf{D}^{0}_{CF} \pi^{-} \to [\mathsf{K}^{-} \pi^{+}] \pi^{-}$$

Separation by Particle ID

Implementation of a Likelihood FIT using masses and particle identification (dE/dx) information to determine the signal composition

Results

D mode	$B^{+} \rightarrow D\pi^{+}$	B⁻ →Dπ⁻	B⁺ →DK⁺	B- →DK-
CF	8873±103	8804±103	727±47	785±49
DCS	29±10	44±12	28±11	6±8

Yield (B →
$$D_{DCS}K$$
) = 34 ± 14 (5 fb⁻¹)
Yield (B → $D_{DCS}\pi$) = 73 ± 16 (5 fb⁻¹)

Significance for all DCS signal ($D_{DCS}\pi + D_{DCS}K$) > 5 σ

$$B^{+} \rightarrow \overline{D}^{0}_{DCS} \pi^{+} \rightarrow [K^{-} \pi^{+}] \pi^{+}$$

Results: physics background

Physics background for DCS:

Decay	Yield
B ⁻ →D ^{0*} π ⁻ , D ^{0*} →D ⁰ γ/π ⁰	3±3
B-→D ⁰ π ⁻ , D ⁰ →X	90±13
B-→Dº K-, Dº→X	4±3
B⁻→K⁻π⁺ π⁻	18±4
$B^0 \rightarrow D_0^{*} e^* v_e$	4±3

Results

$$\begin{split} R_{ADS}(\pi) &= 0.0041 \pm 0.0008(stat) \pm 0.0004(syst) \\ A_{ADS}(\pi) &= 0.22 \pm 0.18(stat) \pm 0.06(syst) \\ R_{ADS}(K) &= 0.0225 \pm 0.0084(stat) \pm 0.0079(syst) \\ A_{ADS}(K) &= -0.63 \pm 0.40(stat) \pm 0.23(syst) \end{split}$$

- First measurement of A_{ADS} and R_{ADS} at a hadron collider.
- Agrees with previous measurements from other experiments.

GLW method: first measurement of A_{CP+} and R_{CP+} at a hadron collider using 1 fb⁻¹ (Phys.Rev.D81:031105,2010)

GLW Observables

Direct CP violation in $B \rightarrow D_{CP}K$ modes

4 observables

$$R_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}^0 K^-) + \Gamma(B^+ \to D_{CP\pm}^0 K^+)}{[\Gamma(B^- \to D^0 K^-) + \Gamma(B^+ \to D^0 K^+)]/2}$$

$$A_{CP\pm} = \frac{\Gamma(B^- \to D^0_{CP\pm}K^-) - \Gamma(B^+ \to D^0_{CP\pm}K^+)}{\Gamma(B^- \to D^0_{CP\pm}K^-) + \Gamma(B^+ \to D^0_{CP\pm}K^+)}$$

From theory:

$$R_{CP\pm} = 1 + r_{B}^{2} \pm 2r_{B} \cos\delta_{B} \cos\gamma$$
$$A_{CP\pm} = 2r_{B} \sin\delta_{B} \sin\gamma/R_{CP\pm}$$

3 are independent $(A_{CP+}R_{CP+} = -A_{CP-}R_{CP-})$ and 3 unknowns (r_B, γ, δ_B)

$$R = \frac{B(B^{-} \to D^{0}K^{-}) + B(B^{+} \to \overline{D}^{0}K^{+})}{B(B^{-} \to D^{0}\pi^{-}) + B(B^{+} \to \overline{D}^{0}\pi^{+})}$$
$$R_{\pm} = \frac{B(B^{-} \to D^{0}_{CP\pm}K^{-}) + B(B^{+} \to D^{0}_{CP\pm}K^{+})}{B(B^{-} \to D^{0}_{CP\pm}\pi^{-}) + B(B^{+} \to D^{0}_{CP\pm}\pi^{+})}$$

15

Selection of D_{CP} modes

We optimized the cuts by minimizing the expected statistical uncertainty on A_{CP}

• Isol > 0.65

- chi3D < 13
- |d0_B| < 0.007 cm
- Sig_LxyB > 12

• LxyD_B > 0.01 cm

- m · LxyD > 0.04 cm
- $\Delta R = (\Delta \phi^2 + \Delta \eta^2)^{1/2} < 2$

Select the sub-sample where the B-pion is a trigger track (kinematics differ according to which tracks trigger, need a separate fit for the rest) ¹⁶

Separation by kinematics and Particle ID

Implementation of a Likelihood FIT using kinematics (masses and momenta) and particle identification (dE/dx) information to determine the signal composition

 $D^0\pi$ mass vs momentum imbalance α

Results

$D \mod B^+ \to D\pi^+ \ B^- \to D\pi^- \ B^+ \to DK^+ \ B^- \to DK^-$				
$K^-\pi^+$	3769 ± 68	3763 ± 68	250 ± 26	266 ± 27
K^+K^-	381 ± 25	399 ± 26	22 ± 8	49 ± 11
$\pi^+\pi^-$	101 ± 13	117 ± 14	6 ± 6	14 ± 6

 $\text{Yield (B} \rightarrow \text{D}_{CP+}\text{K}) \sim 90 \text{ (1 fb}^{-1}\text{)}$

$$R_{CP+} = 1.30 \pm 0.24(stat) \pm 0.12(syst)$$
$$A_{CP+} = 0.39 \pm 0.17(stat) \pm 0.04(syst)$$

Paola Sqi

Cross-check: kaon PID selection

A requirement on the PID variable was applied to suppress the $D\pi$ component and favor the DK component.

GLW method: Summary

- First measurement of A_{CP+} and R_{CP+} at a hadron collider.
- Agrees with previous measurements from other experiments.

NEXT

Luminosity (pb⁻¹) ~9 fb⁻¹ delivered 8000 • Excellent performance of ~7.5 fb⁻¹ recorded Tevatron accelerator 6000 • Expect 10-12 fb⁻¹ by 2011 4000 Delivered 2000 Acquired 1000 2000 3000 4000 5000 6000 7000 8000 store number CDF Yield 10 fb⁻¹ B mode D mode Meth. CDF Yield 5fb⁻¹ (rough extrapolation) 300 $B \rightarrow DK$ **ΚΚ**, ππ GLW 550 $B \to D\pi$ $K\pi$ DCS ADS 70 130 $K\pi$ DCS $B \rightarrow DK$ ADS 35 65

	σ(A _{ADS} (K))	σ(R _{ADS} (K))	$σ(A_{ADS}(\pi))$	$σ(R_{ADS}(\pi))$	σ(A _{CP+})	σ(R _{CP+})
Now	0.40	0.0084	0.18	0.0008	0.17	0.24
L=10 fb ⁻¹	0.29	0.0062	0.13	0.0006	0.07	0.10

• CDF performed the first measurement of A_{ADS} and R_{ADS} at a hadron collider using 5 fb⁻¹.

• Significance of DCS signal ($D_{DCS} \pi + D_{DCS} K$) > 5σ

• This supplements recently published first GLW analysis in hadron collisions within a CDF global program to measure angle gamma from trees.

 \cdot Now working to expeditely update the GLW analysis to the 5 fb^-1 sample

BACKUP

ADS: cuts definition

Pointing angle = angle between the momentum 3D of B and the decay axis

 $\cos(\theta^*)_D$ = angle between the D⁰ in the CM of the B and the flight direction of B

 $\Delta ID = ID(K_D) - ID(\pi_D) \text{ where } ID(h) = \frac{dE/dx(h) - dE/dx_{exp}(\pi)}{dE/dx_{exp}(K) - dE/dx_{exp}(\pi)}$

ADS: Systematics

Source	$R_{ADS}(\pi)$	$R_{ADS}(K)$	$A_{ADS}(\pi)$	$A_{ADS}(K)$
dE/dx	0.0001	0.0050	0.0560	0.070
combinatorial background	0.0003	0.0037	0.0073	0.153
$B^- \to [X]_D \pi^-$ shape	0.0002	0.0025	0.0067	0.057
$B^- \to [X]_D K^-$ shape	-	0.0001	0.0003	0.003
$B^- \to K^- \pi^+ \pi^-$ shape	0.0001	0.0004	0.0049	0.009
$B^0 \to D_0^{*-} e^+ \nu_e$ shape	-	0.0003	0.0020	0.007
$B^- \to D^{*0} \pi^-$ shape	-	0.0005	0.0009	0.013
efficiency	-	0.0001	-	0.003
bias	0.0001	0.0042	0.0159	0.148
Total	0.0004	0.0079	0.059	0.232

ADS: Likelihood

$$\mathcal{L}_{DCS+} = \prod_{i}^{Nevents} \left[(1 - b_{DCS+}) \cdot \left(f_{\pi}^{DCS+} \cdot pdf_{\pi}(M, ID) + \mathbf{c}^{+} \cdot f_{\pi}^{DCS+} \cdot pdf_{D*}(M, ID) \right) + \left(1 - f_{\pi}^{DCS+} - \mathbf{c}^{+} \cdot f_{\pi}^{DCS+} \right) \cdot pdf_{K}(M, ID) \right) + \\ + b_{DCS+} \cdot \left(f_{[X]\pi}^{+} \cdot pdf_{[X]\pi}(M, ID) + f_{[X]K}^{+} \cdot pdf_{[X]K} + f_{K\pi\pi}^{+} \cdot pdf_{K\pi\pi}(M, ID) + \\ f_{B^{0}}^{+} \cdot pdf_{B^{0}}(M, ID) + (1 - f_{[X]\pi}^{+} - f_{[X]K}^{+} - f_{K\pi\pi}^{+} - f_{B^{0}}^{+}) \cdot pdf_{comb}(M, ID) \right) \right]$$

$$\mathcal{L}_{DCS-} = \prod_{i}^{Nevents} \left[(1 - b_{DCS-}) \cdot \left(f_{\pi}^{DCS-} \cdot pdf_{\pi}(M, ID) + \mathbf{c}^{-} \cdot f_{\pi}^{DCS-} \cdot pdf_{D*}(M, ID) + \right. \\ \left. + \left(1 - f_{\pi}^{DCS-} - \mathbf{c}^{-} \cdot f_{\pi}^{DCS-} \right) \cdot pdf_{K}(M, ID) \right) + \right. \\ \left. + b_{DCS-} \cdot \left(f_{[X]\pi}^{-} \cdot pdf_{[X]\pi}(M, ID) + f_{[X]K}^{-} \cdot pdf_{[X]K} + f_{K\pi\pi}^{-} \cdot pdf_{K\pi\pi}(M, ID) + \right. \\ \left. f_{B^{0}}^{-} \cdot pdf_{B^{0}}(M, ID) + (1 - f_{[X]\pi}^{-} - f_{[X]K}^{-} - f_{K\pi\pi}^{-} - f_{B^{0}}^{-}) \cdot pdf_{comb}(M, ID) \right) \right]$$

GLW: Likelihood

Fit for $B^- \rightarrow D^0 \pi^-/K^-$ fractions SIMULTANEOUSLY in: $D^0_{flav}, D^0_{CP} \rightarrow KK, D^0_{CP} \rightarrow \pi\pi$ modes.

Likelihood =

 $\Pi_{k}^{\text{Nevents}} [(1-b) * (f_{\pi} F_{\pi} (\alpha, \text{Ptot}, M_{\text{DO}\pi}, \text{dE/dx}) + f_{\text{D}} BG_{\text{D}} (\alpha, \text{Ptot}, M_{\text{DO}\pi}, \text{dE/dx})]$

+ (1-f_{π} - f_D) F_K (α , Ptot, M_{D0 π}, dE/dx)) + b BG_{comb} (α , Ptot, M_{D0 π}, dE/dx)]

b = fraction of the background measured with respect to all the events f_{π} = fraction of B $\rightarrow D^0 \pi$ with respect to the total signal (common to the two DCP modes) f_D = fraction of B $\rightarrow D^{0^*} \pi$ with respect to the total signal (common to the flavor and the DCP modes)

 $F_{i} (\alpha, Ptot, M_{D0\pi}, ID) = pdf(M_{D0\pi} | \alpha, Ptot) pdf(\alpha, Ptot) pdf(dE/dx | \alpha, Ptot)$

GLW:Likelihood

 $F_i(\alpha, Ptot, M_{D0\pi}, ID) = pdf(M_{D0\pi}|\alpha, Ptot) pdf(\alpha, Ptot) pdf(dE/dx|\alpha, Ptot)$

Mass term • Signal shape from MC (including FSR) • Background shape: exponential function free

in the fit

Momentum termSignal shape from MC

• Background shape from data sideband

GLW: Systematics

Source	R_{CP+}	A_{CP+}
dE/dx model	0.056	0.030
$D^{0*}\pi$ mass model	0.025	0.006
Input B^- mass to the fit	0.004	0.002
Combinatorial background mass model	0.020	0.001
Combinatorial background kinematics		0.020
$D\pi$ kinematics	0.002	0.001
DK kinematics	0.002	0.004
$D^{0*}\pi$ kinematics	0.004	0.002
Fit bias	0.005	0.003
Total (sum in quadrature)	0.12	0.04

29

Current situation for the γ angle measurement using $B^+ \rightarrow \ \overline{D}{}^0 \ K^+$

 γ (deg) = 71 [+21 -25]

The Tevatron

Tevatron is great for rare B decay searches:

- Enormous b production cross section, x1000 times larger than e^+e^- B factories
- All B species are produced (B^0 , B^+ , B_s , Λ_{b} ...)

But:

- The total inelastic x-section is a factor 10^3 larger than $\sigma(b\ E)$
- The BRs of rare b-hadron decays are O(10⁻⁶) or lower

Therefore interesting events must be extracted from a high track multiplicity environment

Detectors need to have:

- Very good tracking and vertex resolution
- Highly selective trigger

