Time-dependent γ measurements at BABAR

Ada Rubin

Iowa State University BABAR Collaboration

6th International Workshop on the CKM Unitarity Triangle University of Warwick, UK September 8, 2010

Over-constraining the UT angle γ

 $ho-\eta$ from global CKM fit

 $ho - \eta$ from sin(2 $eta + \gamma)$

- Test the SM, look for new physics, check for consistency with indirect, high statistics measurements
 - Most precise measurement of γ from CKM fit (67.2 ± 3.9)°(CKMfitter), (67.3 ± 4.8)°(UTfit) Error $\approx 6 - 7\%$
 - Direct measurements: $(71^{+21}_{-25})^{\circ}$, Error $\approx 35\%$
- Extract γ from sin(2 β + γ) with TD analyses of $B^0\overline{B}{}^0$
 - Interference between V_{ub} , V_{cb} from relative weak phase $e^{i\gamma}$
 - 2β from $B^0\overline{B}^0$ mixing

• Why?

- Theoretically clean compared to time integrated methods
- Tree level only no penguin contributions.
- Purity of the $D^{(*)}\pi$ modes
- Possibility of large asymmetries in $B^0 \rightarrow D^{0(*)} K_S^0$ modes

• But γ is the most difficult angle to measure directly

- Smaller branching ratios & reconstruction efficiencies
- CP violating effect in each mode depends on the (small) ratio of magnitudes of V_{ub} : V_{cb}

Summary of BABAR results of γ measurement via TD methods

- Measurement of Time-Dependent CP-Violating Asymmetries and Constraints on sin(2β + γ) with Partial Reconstruction of B → D*∓π[±] Decays Phys.Rev.D 71, 112003 (2005) 232 × 10⁶ BB pairs
- Measurement of time-dependent CP asymmetries in $B^0 \rightarrow D^{(*)\pm}\pi^{\mp}$ and $B^0 \rightarrow D^{\pm}\rho^{\mp}$ decays Phys.Rev.D 73, 111101 (2006) $232 \times 10^6 B\overline{B}$ pairs
- *Time-dependent Dalitz plot analysis of* $B^0 \rightarrow D^{\mp}K^0\pi^{\pm}$ *decays.* Phys.Rev.D **77**, 071102 (2008) $347 \times 10^6 B\overline{B}$ pairs
- Measurement of $\overline{B}^0 \rightarrow D^{(*)0}\overline{K}^{(*)0}$ Branching Fraction Phys.Rev.D 74, 031101 (2006) $226 \times 10^6 B\overline{B}$ pairs

Introduction to $B \rightarrow D^{(*)\mp}\pi^{\pm}/\rho^{\pm}$ decays

Suppressed: $V_{ub} \approx 0.004$

The TD decay rate

- $\frac{e^{-|\Delta t|/\tau}}{4\tau} \times [1 B_{tag}(a + B_{tag}D_{tag}b + D_{tag}c)sin(\Delta m\Delta t) + B_{tag}D_{tag}cos(\Delta m\Delta t)]$
- $\mathbf{B}_{tag} = +1(-1)$ for $B^0(\overline{B}^0)$, $\mathbf{D}_{tag} = +1(-1)$ for $D^{(*)+}(D^{(*)-})$
- CP parameters

 $\begin{aligned} a &= 2r\sin(2\beta + \gamma)\cos\delta\\ b &= 2r'\sin(2\beta + \gamma)\cos\delta'\\ c &= 2\cos(2\beta + \gamma)(r\sin\delta - r'\sin\delta')\\ r \text{ refers to CKM suppressed decays of the tagging B; } r'_{lenton} = 0, \; r'_{kaon} \approx r \end{aligned}$

• All CP parameters
$$\propto r = |\frac{A_{suppressed}}{A_{favored}}| \rightarrow |\frac{V_{ub}V_{ed}^*}{V_{cb}^*V_{ud}^*}| \approx 0.02 \Rightarrow$$
 very small & difficult to measure

TD analysis of partially reconstructed $B \rightarrow D^{*\mp}\pi^{\pm}$ Phys.Rev.D 71, 112003 (2005)

Partial reconstruction

- Why? Large single mode signal samples, but more bkg
- Only $B \rightarrow D^* \pi_h, D^* \rightarrow D^0 \pi_s$ reconstructed
- Hard pion π_h from *B*, soft pion π_s from $D^{*\pm}$ used
- Missing mass: Ave. $(\sqrt{|p_D(\cos(\phi))|^2})$ of min,max over ϕ
 - $\phi \rightarrow$ unknown dir. of B^0 (azimuthally about π_h)
 - Peaks @ D⁰ mass
 - Resolution \approx 3 MeV/ c^2

Procedure

- Extract sig, bkg fractions & PDF params from 2D MLL fit to m_{miss} × F (Fisher Discriminant)
 - $N_{lep}^{sig} = 18710 \pm 270, \ N_{kaon}^{sig} = 70580 \pm 660$
 - Fix parameters for the next step
- Extract Δt bkg params from MLL fit to $m_{miss} \times \mathcal{F} \times \Delta t$ in the sideband 1.81 < m_{miss} < 1.84 GeV/ c^2 and fix
- Extract Δt sig params from MLL fit to $m_{miss} \times \mathcal{F} \times \Delta t$ in $m_{miss} > 1.845 \text{ GeV}/c^2$

Results: partially reconstructed $B \rightarrow D^{*\mp}\pi^{\pm}$ Phys.Rev.D **71**, 112003 (2005)

Lepton tags		Kaon tags		
Parameter	Value	Parameter	Value	
$a_{D^*\pi}^\ell$	$-0.042\pm0.019\pm0.010$	$a_{D^*\pi}^K$	$-0.025\pm0.020\pm0.013$	
2 //		$b_{D^*\pi}^{K^n}$	$-0.004 \pm 0.010 \pm 0.010$	
$c_{D^*\pi}^\ell$	$-0.019 \pm 0.022 \pm 0.013$	$c_{D^*\pi}^{K}$	$-0.003\pm0.020\pm0.015$	
$\Delta m_{D^*\pi}$	$0.518\pm 0.010{ m ps}^{-1}$	$\Delta m_{D^*\pi}$	$0.4911 \pm 0.0076~{ m ps}^{-1}$	
$\tau_{D^*\pi}$	$(1.48\pm 0.02\pm 0.02)~{ m ps}$	$ au_{D^*\pi}$	$(1.49 \pm 0.01 \pm 0.04)~{ m ps}$	

- Raw, TD asymmetry $A(\Delta t) = \frac{N_{B_{tag}=1}(\Delta t) - N_{B_{tag}=-1}(\Delta t)}{N_{B_{tag}=1}(\Delta t) + N_{B_{tag}=-1}(\Delta t)}$
- In the limit of no bkg + high statistics $\Rightarrow A(\Delta t)$ is sinusoidal if $a_{D^*\pi} \neq 0$
- $\Delta m \& \tau$ in good agreement with PDG

Results: partially reconstructed $B \rightarrow D^{*\mp} \pi^{\pm}$ Phys.Rev.D 71, 112003 (2005)

Interpretation of results in terms of $sin(2\beta + \gamma)$

- Must estimate *r* due to low statistics $r = \sqrt{\frac{\mathcal{B}(B^0 \to D_s^{*+}\pi^-)}{\mathcal{B}(B^0 \to D^{*-}\pi^+)}} \frac{f_{D_s^*}}{f_{D_s^*}} \tan(\theta_C) \Rightarrow 0.015^{+0.004}_{-0.006} + 30\%$ theoretical uncertainty to account for:
 - Small but unknown contribution of exchange diagram amplitudes (< 10%)
 - Ratio of decay constants $\frac{f_{D^*}}{f_{D^*}}$ to take into account SU(3) breaking & factorization
- $|\sin(2\beta + \gamma)| > 0.62(0.35)$ @ 68%(90%) CL

TD analysis of fully reconstructed $B \rightarrow D^{*\mp} \pi^{\pm} / \rho^{\pm}$ Phys.Rev.D **73**, 111101 (2006)

Why?

 High purity and signal yields

Reconstructed modes

•
$$D^{*+} \rightarrow D^0 \pi^+$$

•
$$D^0 \to K^- \pi^+, K^- \pi^+ \pi^0, K^- \pi^+ \pi^- \pi^+, K^0_S \pi^+ \pi^-$$

•
$$\rho^+ \to \pi^+ \pi^0$$

Procedure

- Extract signal & background fractions & m_{ES} PDF params from MLL fit to m_{ES} and then fix
- Extract CP params from 2D MLL fit to $m_{\rm ES} \times \Delta t$

Results of fully reconstructed $B \rightarrow D^{*\mp} \pi^{\pm} / \rho^{\pm}$ Phys.Rev.D **73**, 111101 (2006)

CP parameters

 $\begin{aligned} a_{D\pi} &= -0.010 \pm 0.023 \pm 0.007 \\ c_{D\pi}^{\ell} &= -0.033 \pm 0.042 \pm 0.012 \\ a_{D^*\pi} &= -0.040 \pm 0.023 \pm 0.010 \\ c_{D^*\pi}^{\ell} &= 0.049 \pm 0.042 \pm 0.015 \\ a_{D\rho} &= -0.024 \pm 0.031 \pm 0.009 \\ c_{D\rho}^{\ell} &= -0.098 \pm 0.055 \pm 0.018 \end{aligned}$

Interpretation of results in terms of $\sin(2\beta + \gamma)$

- Combined CP results from partially reconstructed $B \rightarrow D^{*\mp}\pi^{\pm}$ study
- Used same r with 30% theoretical uncertainty
- $|\sin(2\beta + \gamma)| > 0.64(0.40)$ @ 68%(90%) CL

TD Dalitz plot analysis of $B^0 o D^{\mp} K^0 \pi^{\pm}$

• Why?

- Avoids limitation of small $r(b \rightarrow u : b \rightarrow c) \approx 0.02$
- For this three-body *B*-decay *r* has been estimated to be as large as 0.3 in some regions of the Dalitz plot
- Ultimately, $sin(2\beta + \gamma)$ from this measurement has very little dependence on the value of r
- Final state reached through the following intermediate states
 - $B^0 \to D^{**0}K_S^0$ (right column, color-suppressed) with $D^{**0} = \{D_0^{**}(2400), D_2^{**}(2460)\}$
 - $B^0 \rightarrow D^- \check{K^{*+}}$ (left column, tree-level) with
 - $K^* = \{K^*(892), K_0^*(1430), K_2^*(1430), K^*(1680)\}$
 - $D^+ \rightarrow K^- \pi^+ \pi^-$
 - Small contribution from $B^0 o D_s^{*+}(2573)\pi^-$ expected
- CP sensitivity of $B^0 \to D^\mp K^0 \pi^\pm$ comes from interference between
 - $b \rightarrow c$ (b) & $b \rightarrow u$ (d) transitions of $D^{**0}K_S^0$
 - $D^{**0}K^0_S \ b
 ightarrow u$ (d) & $D^-K^{*+} \ b
 ightarrow c$ (a) decays

Overview of $B^0 \rightarrow D^{\mp} K^0 \pi^{\pm}$ analysis procedure Phys.Rev.D 77, 071102 (2008)

- Extract fit parameters & yields from 3D MLL fit to $m_{\text{ES}} \times \Delta E \times F$ $N_{\text{sia}} = 558 \pm 34$
- Fix parameters for next step
- Fit TD Dalitz plot

TD Dalitz plot PDF

$$\frac{A_{c}^{2}+A_{u}^{2}}{2} \times \frac{e^{-\frac{|\Delta t|}{\tau_{B}}}}{4\tau_{B}} \times \{1 - D_{tag}B_{tag}Ccos(\Delta m_{d}\Delta t) + B_{tag}S_{D_{tag}}sin(\Delta m_{d}\Delta t)\}$$

with:

•
$$S_{D_{tag}} = \frac{2 \operatorname{Im}(A_c A_u e^{i(2\beta+\gamma)+D_{tag}i(\phi_c-\phi_u)})}{A_c^2+A_u^2}$$

•
$$C = \frac{A_c^2 - A_u^2}{A_c^2 + A_u^2}$$

• $A_c, \phi_c \Rightarrow$ Amplitude, strong phase at each point of the Dalitz plot for $b \rightarrow c$

- $A_u, \phi_u \Rightarrow$ Amplitude, strong phase at each point of the Dalitz plot for $b \rightarrow u$
- Unable to determine $A_u \Rightarrow$ fix the ratio of $A_u/A_c = 0.3$

Results of TD Dalitz plot analysis of $B^0 o D^{\mp} K^0 \pi^{\pm}$

Dalitz plot PDF projections on data:

- Central value has weak dependence on $r = \frac{A(b \rightarrow u)}{A(b \rightarrow c)}$ (b)
- Errors decrease as $r \rightarrow 1$ as expected
- Ambiguity at $(83 + 180)^{\circ}$ (c)

Prospect: γ from $B^0 \rightarrow D^{0(*)} K^0_s$ Phys.Rev.D 74, 031101 (2006)

TD Decay rate

$$\propto e^{-\Delta t/\tau} \times \left[1 - B_{tag} D_{rec} \left(\frac{1 - r_b^2}{1 + r_b^2}\right) \cos(\Delta m_d \Delta t) + B_{tag} \left(\frac{r_b}{1 + r_b^2}\right) \sin(2\beta + \gamma + D_{rec}\delta) \sin(\Delta m_d \Delta t) \right]$$

- Small theoretical uncertainty
- $\mathcal{A}(B^0 \to D^0 K^0) \propto V_{ub} V_{cs}^* \&$ $\mathcal{A}(\overline{B}^0 \to D^0 \overline{K}^0) \propto V_{cb}^* V_{us} \Rightarrow \mathcal{O}(\lambda^3),$ $\lambda = \sin(\theta_{Cabibbo}) = 0.22$
- Expect large asymmetries
- Previous analyses measured B only
- At 2× the previous data set expect more than 200 ${\cal B}^0 o D^0 {\cal K}^0_S$ events
- Final state reconstructed via the following

$$\begin{array}{ccc} \bullet & D^{*0} \to D^0 \pi^0 \\ \bullet & D^0 \to K^- \pi^+, \, K^- \pi^+ \pi^0, \, K^- \pi^+ \pi^- \pi^+ \end{array}$$

$$\overline{K}^{*0} \to K^{-} \pi^{+}$$

• \mathcal{B} result from 2D MLL fit to $m_{ES} \times \Delta E$:

B Mode	NS	S	$B[10^{-5}]$	<mark>IR</mark> .
${ ilde B}^0 o D^0 { ilde K}^0$	104 ± 14	9.2σ	$5.3\pm0.7\pm0.3$	-
${ ilde B}^0 ightarrow D^{*0} { ilde K}^0$	17.1 ± 5.2	4.3σ	$3.6\pm1.2\pm0.3$	13/17

Conclusion

- All analyses need to be updated to the final data set
- We expect an improvement in the measurement of γ with $B \rightarrow D^{(*)\mp} \pi^{\pm} / \rho^{\pm}$ since *r* can be more precisely estimated
 - We can use the isospin relation $r = \sqrt{\frac{\tau_B^0}{\tau_B^+} \frac{2\mathcal{B}(B^+ \to D^{*+}\pi^0)}{\mathcal{B}(B^0 \to D^{*-}\pi^+)}}$ as suggested by
 - Search for B⁺ → D^{*+}π⁰ decay BELLE, Phys. Rev. Lett. 101, 041601 (2008)
 - And use the estimate r < 0.051 @ 90% CL
- The BABAR data sample is just large enough to possibly detect CP asymmetry in $B^0 \to D^0 K^0_s$
- Thus far, there is no experimental evidence of any sort of deviation from SM predictions for γ
- At present, the errors on direct measurements of γ are too large to detect variation from CKM fit: (67.2^{+3.9}/_{-3.9})° vs. (71⁺²¹/₋₂₅)°

Summary: HFAG CP param results, world averages for $B \rightarrow D^{*\mp} \pi^{\pm} / \rho^{\pm}$

Merged D*π a						
BaBar PRD 73 (2006) 111101		-0.040 ± 0.	023 ± 0.010			
Belle PRD 73 (2006) 092003		-0.039 ± 0.	020±0.013			
BaBar PRD 71 (2005) 112003	E AG	-0.034 ± 0.	014 ± 0.009			
Belle arXiv:0809.3203	* 5	+ -0.047 ± 0.	014 ± 0.012			
Average HFAG	-	-0.	040 ± 0.010			
-0.08 -0.06	-0.04	-0.02	0			

Summary: HFAG constraints on $2\beta + \gamma$ from $B \rightarrow D^{*\mp} \pi^{\pm} / \rho^{\pm}$

$\rho - \eta$ from UTfit

