THE CASE FOR MEASURING GAMMA PRECISELY

JURE ZUPAN

OUTLINE

- preliminaries
- new methods since CKM08
- how precise is precise enough?
 - th. error in *γ* extraction in the SM
 - "the ultimate test of MFV"

OBTAINING GAMMA

• use interference between $b \rightarrow c\bar{u}s$ and $b \rightarrow u\bar{c}s$ Gronau, Wyler, 1991; Gronau, London, 1990

J. Zupan The case for measuring gamma...

MANY FINAL STATE CHOICES

see also talks by Y. Horii, G. Marchiori, P. Squillacioti, M. Williams

- possible choices for final state f in D decay
 - CP- eigenstate (e.g. $K_S \pi^0$) Gronau, London, Wyler (1990,1991)
 - flavor state (e.g. $K^+\pi^-$) Atwood, Dunietz, Soni (1997)
 - singly Cabibbo suppressed (e.g. *K**+*K*⁻) Grossman, Ligeti, Soffer (2002)
 - many-body final state (e.g. $K_S \pi^+\pi^-$) Giri, Grossman, Soffer, JZ (2003)
- other extensions:
 - many body *B* final states: $B^+ \rightarrow DK^+\pi^0$, $B^0 \rightarrow D\pi^-K^+$ Aleksan, Petersen, Soffer (2002), Gershon (2008), Gershon, Poluektov (2009)
 - use D^{0*} in addition to D^0 Bondar, Gershon (2004)
 - use self tagging D^{0**} , D_2^{*-} Sinha (2004) Gershon (2008)
 - neutral B decays (time dep., time-integr., self-tag)

many refs.; see also talks by A. Rubin, Y. Onuki, V. Gligorov

J. Zupan The case for measuring gamma...

4

CKM2010, Warwick, Sept 8, 2010

Poluektov et al. [Belle] (2004)

MANY FINAL STATE CHOICES

see also talks by Y. Horii, G. Marchiori, P. Squillacioti, M. Williams

- possible choices for final state f in D decay
 - CP- eigenstate (e.g. $K_S \pi^0$) Gronau, London, Wyler (1990,1991)
 - flavor state (e.g. $K^+\pi^-$) Atwood, Dunietz, Soni (1997)
 - singly Cabibbo suppressed (e.g. K*+K⁻) Grossman, Ligeti, Soffer (2002)
 - many-body final state (e.g. $K_S \pi^+\pi^-$) Giri, Grossman, Soffer, JZ (2003)
- other extensions:
 - many body *B* final states: $B^+ \rightarrow DK^+\pi^0$, $B^0 \rightarrow D\pi^-K^+$ Aleksan, Petersen, Soffer (2002), Gershon (2008), Gershop, Poluektov (2009)
 - use D^{0*} in addition to D^0 Bondar, Gershon (2004)
 - use self tagging D^{0**} , D_2^{*-} Sinha (2004) Gershon (2008)
 - neutral B decays (time dep., time-integr., self-tag)

many refs.; see also talks by A. Rubin, Y. Onuki, V. Gligorov

J. Zupan The case for measuring gamma...

4

CKM2010, Warwick, Sept 8, 2010

Poluektov et al. [Belle] (2004)

NEW METHOD(S) SINCE CKM2008

- a "method": a subset of final states allowing for extr. of γ
- multibody $B^0 \rightarrow DK^+\pi^-$ Gershon (2008) Gershon, Williams (2009)
 - contains flavor specific $D_2^{*-}(2460) \rightarrow \bar{D}^0 \pi^-$
 - interf. with other resonances (e.g. $B^0 \rightarrow DK^{*0}$) gives γ
 - many choices for $D \rightarrow f$ still

• equivalent of GLW does not need CP-odd $D \rightarrow K_S \pi^0$ decays (that is difficult for LHCb)

J. Zupan The case for measuring gamma...

NEW METHOD(S): $B^0 \rightarrow DK^+\pi^-$

see also talk by M. Williams

• compared to quasi-two-body $B^0 \rightarrow DK^{*0}$

Gershon, Williams, 0909.1495

- at least 50% better sensitivity to γ
- extension of model indep. method possible
 - double Dalitz plot analysis $B^0 \rightarrow DK^+\pi^- \rightarrow (K_S \pi^+ \pi)_D K^+\pi^-$ Gershon, Poluektov, 0910.5437
 - $B^0 \rightarrow DK^+\pi^-$ Dalitz still poorly known
 - estimates using reasonable models: 20 annual yields of LHCb $\Rightarrow O(1^\circ)$ error

TO COMBINE OR NOT TO COMBINE

- many methods: GLW, ADS, Dalitz,...
- we are really interested in γ
- does it make sense to split into "methods"?
- one has ~N_DN_B measurements, but ~N_D+N_B unknowns
 - combined analysis wins
- only benefits of splitting: compare diff. γ
 - check for NP or systematics

TEST FOR NP IN DECAY AMPLITUDES

extraction of γ has a built in test for presence of extra NP in decay ampl.

$$A(B^{-} \rightarrow f_{D}K^{-}) \propto r_{D}e^{i\delta_{D}} + r_{B}e^{i\delta_{B}-\gamma} + r'_{B}e^{i\delta'_{B}-\gamma'}$$

$$A(B^{+} \rightarrow f_{D}K^{+}) \propto r_{D}e^{i\delta_{D}} + r_{B}e^{i\delta_{B}+\gamma} + r'_{B}e^{i\delta'_{B}+\gamma'}$$
• thus for B⁺ and B⁻ different r_B

$$r_{B^{+}} \rightarrow |r_{B}e^{i\delta_{B}+\gamma} + r'_{B}e^{i\delta'_{B}+\gamma'}|; r_{B^{-}} \rightarrow |r_{B}e^{i\delta_{B}-\gamma} + r'_{B}e^{i\delta'_{B}-\gamma'}|$$

TEST OF DIRECT CP NP IN B→DK

• there is NP in $B \rightarrow DK$ amplitude if

$$r_{B^-} \neq r_{B^+}$$

Belle and Babar already
 measure this

$$x_{\pm} = r_B \cos(\gamma \pm \delta_B)$$
$$y_{\pm} = \pm r_B \sin(\gamma \pm \delta_B)$$

even, if x²₊ + y²₊ = x²₋ + y²₋ still possible that γ is shifted

• another test: γ from $B^{\pm} \rightarrow DK^{\pm}$, $B^{\pm} \rightarrow DK^{*\pm}$, $B^{\pm} \rightarrow DK^{*\pm}$, $B^{\pm} \rightarrow D^{*}K^{\pm}$, $B^{0} \rightarrow DK^{0}$,... all need to coincide!

J. Zupan The case for measuring gamma...

THEORY ERRORS ON EXTRACTING GAMMA

THEORY ERRORS

- how precise is precise enough?
 - how precisely will we know γ after the end of LHCb, SFF?
 see talk A. Poluektov
 - is there any benefit in making things more precise?
- will assume SM
 - errors from $D \overline{D}$ mixing
 - errors from electroweak corrections
- long look in the future, if we have infinite statistics, "the limits of our knowledge"

$D - \overline{D}$ **MIXING**

- in SM $D \overline{D}$ mixing is CP conserving \Rightarrow the effect is small
- if *D* decay info. is from flavor tagged *D* (i.e. from $D^* \rightarrow D \pi$)
 - then only important changes are in the interf. term
 - change in relative phase: $\delta_f \rightarrow \langle \delta_f \rangle$ Grossman, Soffer, JZ, 2005
 - dilutes the interference: $\dots \rightarrow \dots \times e^{-\varepsilon}$
- the effect on γ is $\varepsilon \sim \mathcal{O}(x_D^2/r_f^2, y_D^2/r_f^2)$
 - applies e.g. to GLW, ADS
 - even for doubly Cabibbo supp. *D* decays the shift $\Delta \gamma < 1^{\circ}$
- in model indep. Dalitz analysis no changes needed, if everything from B→DK
 - one already fits for both $\langle \delta_f \rangle$ and ε by fitting for c_i , s_i

$D-\bar{D}$ **MIXING**

Bondar, Poluektov, Vorobiev, 1004.2350

- the effect potentially larger, if D decay info from CLEO ($\psi(3770) \rightarrow D\overline{D}$) on important charm inputs see talks by S. Ricciardi, P. Spradlin
- the change since time integr. interv.: $t \in (-\infty,\infty)$
 - the shift in γ is now linear in x_D , y_D
 - but still small: $\Delta \gamma \le 2.9^{\circ} (\le 0.2^{\circ}, \text{ if } |A_D|^2 \text{ info. comes from } D^* \rightarrow D \pi$)
- most importantly: $D \overline{D}$ mixing effects can be incl. exactly if x_D , y_D precisely measured

OTHER ERRORS

• for γ from (untagged) $B_s \rightarrow D\phi$ the inclusion of $\Delta \Gamma_s$ depen. important

Gronau, Grossman, Soffer, Surujon, JZ, 2007

- $\Delta \Gamma_{\rm s}$ needs to be well measured
- the remaining (SM) theory error is coming from

higher electroweak corrections

14

CKM2010, Warwick, Sept 8, 2010

IRREDUCIBLE THEORY ERROR ON GAMMA

- irreduc. theory error in SM introduced by ew.
 corrections that change CKM structure
 - if only vertex corrections no effect on γ extr.
 - no effect from Z exchange
 - there is effect from box diagrams

CKM2010, Warwick, Sept 8, 2010

IRREDUCIBLE THEORY ERROR ON GAMMA

- shift in γ only ops. with different weak phase than LO
 - for $(\bar{c}b)_L(\bar{s}u)_L$ need w.ph., leading corr.

$$\begin{split} & \left[\sim \frac{g^2}{16\pi^2} V_{cb} V_{cs}^* V_{ub}^* V_{cb} \frac{m_b^2}{m_W^2} \left[A_B / (V_{cb} V_{us}^*) \right] \sim \frac{g^2}{16\pi^2} \lambda^4 \frac{m_b^2}{m_W^2} A_B \\ & \bullet \quad \text{for} \ (\bar{u}b)_L (\bar{s}c)_L \quad \text{need w.ph. diff. from } \gamma \\ & \left[\sim \frac{g^2}{16\pi^2} V_{cb} V_{cs}^* V_{cs}^* V_{us} \frac{m_c^2}{m_W^2} \left[A_B / (V_{cb} V_{us}^*) \right] \sim \frac{g^2}{16\pi^2} \frac{m_c^2}{m_W^2} A_B \end{split} \end{split}$$

• contribs. with interm *t* power supp.

• irreducible theory error on γ is $\delta \gamma / \gamma \sim O(10^{-6})$

J. Zupan The case for measuring gamma...

17

CKM2010, Warwick, Sept 8, 2010

ULTIMATE TEST OF MFV

- how high NP scales can we probe using γ from $B \rightarrow DK$?
- assuming MFV: can probe $\Lambda \sim 10^2 TeV$
- assume gen. FV: can probe $\Lambda \sim 10^3 TeV$
- this is far future of course
 - $O(10^{18})$ $B\bar{B}$ pairs needed

SOME NUMBERS FOR FUN

PROBE	Λ _{NP} for (N)MFV NP	Λ_{NP} for gen. FV NP	No. of <i>BB</i> pairs
γ from $B \rightarrow DK$	$\Lambda \sim O(10^2 \mathrm{TeV})$	$\Lambda \sim O(10^3 \text{TeV})$	~10 ¹⁸
$B \rightarrow \tau \nu^{(1)}$	$\Lambda \sim O(\text{TeV})$	Λ~O(30 TeV)	~10 ¹³
$b \to s s \bar{d}$	$\Lambda \sim O(\text{TeV})$	$\Lambda \sim O(10^3 \text{TeV})$	~10 ¹⁵
β from $B \rightarrow J/\psi K_S^{(2)}$	Λ~O(50 TeV)	Λ~O(200 TeV)	~10 ¹²
K-K mixing $^{3)}$	Λ>0.4TeV(6TeV)	$\Lambda > 10^{3}$ TeV(10 ⁴ TeV)	now

1) assuming no err. on f_B , so that ultimate th. error just from ew. corr.

2) assuming pert. error estimates $\delta\beta/\beta\sim0.1\%$

3) bounds for ReC_1 (Im C_1) from UT fitter 0707.0636

J. Zupan The case for measuring gamma...

19

CKM2010, Warwick, Sept 8, 2010

CONCLUSIONS

- reviewed new methods for γ extraction from $B \rightarrow DK$
- shown that the irreducible theory error on γ is $\delta \gamma / \gamma \sim O(10^{-6})$

BACKUP SLIDES