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@ why are baryons harder than mesons?

@ a critical look at current calculations
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Overview

Plot taken from Dina Alexandrou’s talk at Lattice 2010
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Results from 2 and 3-flavour computations evc ros LAT 2009; Dinter at Lattice 2010; Yamazai et al.,
PRD 97, 14505 (2009); LHPC arXiv:1001.3620; QCDSF, Pleiter at Lattice 2010; CLS, Knippschild at Lattice 2010, RBC+UKQCD, Ohta,
Lattice 2010
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Why are baryons harder than mesons?

@ definition of ga:
’ ’ a ] ’ ’ Ta
(N(p’,s)IALIN(p,s)) = U(p’,s )? YuysGa(d®) + s

ga = Ga(0)
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Why are baryons harder than mesons?

@ definition of ga:

NS VAIN(P,9)) = TP, 8) 5 [1175Ga(?) + 75 53m= G (a)] u(p,)
ga = Ga(0)

@ the above matrix element is extracted from the (Euclidean)
time-dependence of three-point functions

Cua(d ts,t) = <ON (tS)Ay(t)ON(O)> 1T 7 -mute-Ey (50 | excited states

probably the easiest nucleon 3pt-function one could think of
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@ systematic errors in lattice computations:
a (cut-off effects)

renormalization
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fitting/excited states

L (finite size effects)
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Signal to noise ratio

@ in LQCD C;5 as stat. mean of MC-integration of path integral with stat.
error estimate
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Signal to noise ratio

@ in LQCD C;5 as stat. mean of MC-integration of path integral with stat.
error estimate

signal « 1 o-t(my=3/2my)

noise /N

exponential decay of signal-to-noise ratio

fornucleons :
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Signal to noise ratio

@ in LQCD C;5 as stat. mean of MC-integration of path integral with stat.
error estimate
signal e ie—t(mN—S/Zmn)

noise /N

exponential decay of signal-to-noise ratio

Q-mass, Mainz-group

fornucleons :
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Signal to noise ratio

@ in LQCD C;5 as stat. mean of MC-integration of path integral with stat.

error estimate
signal « 1 e-t(my-3/2mx)
noise /N

exponential decay of signal-to-noise ratio

Q-mass, Mainz-group

fornucleons :
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@ the deterioration of signal makes extraction of ground state difficult
@ less severe in ratios of n-pt functions
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Excited states
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plot taken from Bastian Knippschild's talk at Confinement 2010
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Excited states

plot taken from Bastian Knippschild's talk at Confinement 2010

the summation method:

» standard plateau-method:

R(G.t,ts) = Rg + O (e 1) + 0 (e*A/(t57t))

» sum the ratio in t up to ts

» after some calculation one gets:
ts ’
Y R(G.t,ts) =R - ts+ c(A,A)+ O (e785) + O (e‘A ff)
t=0

» linear behavior in t

» higher state corrections are much smaller for the summation
method than for the standard method

how to extract Rg:
» do inversions for several ts

» fit a straight line and extract the slope
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Excited states

plot taken from Bastian Knippschild's talk at Confinement 2010
summation method at work:
connected isoscalar V for different momenta
lattice data: 64x323, m; = 550MeV, smeared-local-operator
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Excited states

plot taken from Bastian Knippschild's talk at Confinement 2010

unrenormalised isovector axial charge ga
lattice data: 64x323, m; = 415MeV, smeared-local-operator
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Excited states

The nucleon axial

plot taken from Bastian Knippschild's talk at Confinement 2010

renormalised axial charge ga:
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Finite Volume effects

plot taken from James Zanotti’s talk at Confinement 2010
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Finite Volume effects

plot taken from James Zanotti’s talk at Confinement 2010
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Finite Volume effects

plot taken from James Zanotti’s talk at Confinement 2010
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Finite Volume effects

plot taken from James Zanotti’s talk at Confinement 2010
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Summary & outlook

@ nucleons on the lattice are hard, mainly due to the signal-to-noise issue
@ sysetmatic effects are easily under-estimated

@ finite size effects in nucleons are much worse than for mesons

9 the exponential decay of signal-to-noise makes it hard to identify excited
states - summation method and/or generalized eigenvalue problem seem to
be a good thing to do

@ currently I would consider ga as a candle for lattice computations rather
than a prediction

@ we need a fundamental understanding of the signal-to-noise ratio - ideas?
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