Lattice calculation of $B \rightarrow K^{(*)} / /$ form factors

Zhaofeng Liu

DAMTP, University of Cambridge
with
Stefan Meinel, Alistair Hart, Ron R. Horgan, Eike H. Müller, Matthew Wingate

September 72010
University of Warwick

Outline

- Motivation
- Lattice setup and data
- Preliminary results

Rare B decays

- Flavor Changing Neutral Current (FCNC) transition $b \rightarrow s$ are suppressed in the Standard Model.
- Penguin and box diagrams $(b \rightarrow s / I)$:

- $b \rightarrow s$ effective weak Hamiltonian

$$
\mathcal{H}_{e f f}=-\frac{G_{F}}{\sqrt{2}} \sum_{i=1}^{10} V_{t b} V_{t s}^{*} C_{i}(\mu) Q_{i}(\mu)
$$

Local operators in our calculation

- $Q_{7}=m_{b} \bar{s} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b F_{\mu \nu}$

Relevant for $B \rightarrow K^{*} \gamma, B_{s} \rightarrow \phi \gamma$, and $B \rightarrow K^{(*)} I^{+} I^{-}$.

- $Q_{9}=\bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b \bar{\gamma} \gamma_{\mu} l, \quad Q_{10}=\bar{s} \gamma^{\mu}\left(1-\gamma_{5}\right) b \bar{l} \gamma_{\mu} \gamma_{5} /$.

Relevant for $B \rightarrow K^{(*)} I^{+} I^{-}$.

Parametrization of matrix elements

$$
\begin{aligned}
& B \rightarrow K I^{+} I^{-} \\
& \begin{aligned}
&\left\langle K\left(p^{\prime}\right)\right| \bar{s} \gamma^{\mu} b|B(p)\rangle= f_{+}\left(q^{2}\right)\left[p^{\mu}+p^{\prime \mu}-\frac{M_{B}^{2}-M_{K}^{2}}{q^{2}} q^{\mu}\right] \\
&+f_{0}\left(q^{2}\right) \frac{M_{B}^{2}-M_{K}^{2}}{q^{2}} q^{\mu}, \quad\left(q=p-p^{\prime}\right), \\
& i f_{T}\left(q^{2}\right) \\
& q_{\nu}\left\langle K\left(p^{\prime}\right)\right| \bar{s} \sigma^{\mu \nu} b|B(p)\rangle=\frac{\left.q^{2}\left(p^{\mu}+p^{\prime \mu}\right)-\left(M_{B}^{2}-M_{K}^{2}\right) q^{\mu}\right] .}{M_{B}+M_{K}} \quad B \rightarrow K^{*} I^{+} I^{-} \\
& B \rightarrow K^{*} \gamma, \quad B_{s} \rightarrow \phi \gamma, \quad \\
& q^{\nu}\left\langle K^{*}\left(p^{\prime}, \lambda\right)\right| \bar{s} \sigma_{\mu \nu} b|B(p)\rangle= 4 T_{1}\left(q^{2}\right) \epsilon_{\mu \nu \rho \sigma} e_{\lambda}^{* \nu} p^{\rho} p^{\prime \sigma}, \quad\left(e_{\lambda}^{\nu}: \text { polarization }\right), \\
& q^{\nu}\left\langle K^{*}\left(p^{\prime}, \lambda\right)\right| \bar{s} \sigma_{\mu \nu} \gamma_{5} b|B(p)\rangle=2 i T_{2}\left(q^{2}\right)\left[e_{\lambda \mu}^{*}\left(M_{B}^{2}-M_{K^{*}}^{2}\right)-\right. \\
&\left.\left(e_{\lambda}^{*} \cdot q\right)\left(p+p^{\prime}\right)_{\mu}\right]+2 i T_{3}\left(q^{2}\right)\left(e_{\lambda}^{*} \cdot q\right)\left[q_{\mu}-\frac{q^{2}}{M_{B}^{2}-M_{K^{*}}^{2}}\left(p+p^{\prime}\right)_{\mu}\right] .
\end{aligned}
\end{aligned}
$$

Parametrization of matrix elements

$$
B \rightarrow K^{*} I^{+} I^{-}
$$

$$
\begin{gathered}
\left\langle K^{*}\left(p^{\prime}, \lambda\right)\right| \bar{s} \gamma^{\mu} b|B(p)\rangle=\frac{2 i V\left(q^{2}\right)}{M_{B}+M_{K^{*}}} \epsilon^{\mu \nu \rho \sigma} e_{\lambda \nu}^{*} p_{\rho}^{\prime} p_{\sigma} \\
\left\langle K^{*}\left(p^{\prime}, \lambda\right)\right| \bar{s} \gamma^{\mu} \gamma_{5} b|B(p)\rangle=2 M_{K^{*}} A_{0}\left(q^{2}\right) \frac{e_{\lambda}^{*} \cdot q}{q^{2}} q^{\mu} \\
\quad+\left(M_{B}+M_{K^{*}}\right) A_{1}\left(q^{2}\right)\left[e_{\lambda}^{* \mu}-\frac{e_{\lambda}^{*} \cdot q}{q^{2}} q^{\mu}\right] \\
-A_{2}\left(q^{2}\right) \frac{e_{\lambda}^{*} \cdot q}{M_{B}+M_{K^{*}}}\left[p^{\mu}+p^{\mu}-\frac{M_{B}^{2}-M_{K^{*}}^{2}}{q^{2}} q^{\mu}\right]
\end{gathered}
$$

Other lattice calculations (all are quenched simulations)

- D. Becirevic, V. Lubicz and F. Mescia, Nucl. Phys. B 769, 31 (2007)
- Quenched calculation of $T(0)\left(=T_{1}(0)=T_{2}(0)\right)$ for $B \rightarrow K^{*} \gamma$.
- Two lattice spacings.
- Unphysical heavy quark mass: $M_{B}>M_{H} \geq M_{D}$. Extrapolation: $1 / M_{H} \rightarrow 1 / M_{B}$ using heavy quark scaling laws.
- Extrapolating to M_{B} at $q^{2}=0: T\left(0 ; \mu=m_{b}\right)=0.24(3)_{-0.01}^{+0.04}$ (should be divided by 2 if using our normalization).
- Checked by extrapolating to M_{B} at fixed $q^{2}(\neq 0)$ and then to $q^{2}=0$.
- L. Del Debbio, J. M. Flynn, L. Lellouch and J. Nieves [UKQCD Collaboration], Phys. Lett. B 416, 392 (1998)
- A. Abada et al. [APE Collaboration], Phys. Lett. B 365, 275 (1996)
- T. Bhattacharya and R. Gupta, Nucl. Phys. Proc. Suppl. 42, 935 (1995)
- K. C. Bowler et al. [UKQCD Collaboration], Phys. Rev. Lett. 72, 1398 (1994)
- C. W. Bernard, P. Hsieh and A. Soni, Phys. Rev. Lett. 72, 1402 (1994)

Lattice setup and data

- $2+1$ flavor simulation (u, d, s sea quarks) with Staggered fermions (MILC configurations).
- Using (moving-)NRQCD for the b quark and Staggered fermions for light quarks.
- The bare b quark mass is determined from the Υ masses ($a m_{b}=2.8$ on coarse lattices, 1.95 on the fine lattice).
- The pion mass is in the range of $[300,500] \mathrm{MeV}$.

	$a(\mathrm{fm})$	$a m_{\text {sea }}$	Volume	$N_{\text {conf }} \times N_{\text {src }}$	$a m_{\text {val }}$
coarse	~ 0.12	$0.007 / 0.05$	$20^{3} \times 64$	2109×8	$0.007 / 0.04$
		$0.02 / 0.05$	$20^{3} \times 64$	2052×8	$0.02 / 0.04$
fine	~ 0.09	$0.0062 / 0.031$	$28^{3} \times 96$	1910×8	$0.0062 / 0.031$

- Renormalisations for the vector and tensor (at the scale $\mu=m_{b}$) currents were calculated in Eike H. Müller et al., PoS LAT2009, 241 (2009) [arXiv:0909.5126 [hep-lat]].

Preliminary results of form factors f_{0}, f_{+}and f_{T}

- $a \approx 0.12 \mathrm{fm}$ and $m_{\pi} \approx 300 \mathrm{MeV}$. Only statistical errors.
- Errors increase from 1% to 3% as q^{2} decreases.

Preliminary results of form factors T_{1} and T_{2}

- $a \approx 0.12 \mathrm{fm}$ and $m_{\pi} \approx 300 \mathrm{MeV}$. Only statistical errors.
- Errors increase from 4% to 12% as q^{2} decreases.

The march to small q^{2}

- By giving the B meson a non-zero momentum in the opposite direction, we can reduce the final meson's momentum at a given q^{2} to reduce discretisation errors and noise to signal ratios in correlators.
- The formalism for achieving this is called moving NRQCD.

Summary

- We are doing a $2+1$ flavour lattice calculation of form factors for rare $B \rightarrow K^{(*)}$ decays.
- With (moving-)NRQCD, one works directly at the physical b quark mass.
- Our calculation are most precise in the low recoil region $q^{2} \approx q_{\max }^{2}$.
- Extrapolation to the physical u / d quark mass point.
- Extrapolation to low- q^{2} and $q^{2}=0$ for $B \rightarrow K^{*} \gamma$ (using pole dominance/z-parameterisation).

Thank you for your attention!

BACKUP

Extrapolation of T_{1} and T_{2} to $q^{2}=0$

Pole dominance [Becirevic \& Kaidalov (2000), Ball \& Zwicky (2005), Becirevic et al. (2007)]

$$
T_{1}\left(q^{2}\right)=\frac{T(0)}{\left(1-\tilde{q}^{2}\right)\left(1-\alpha \tilde{q}^{2}\right)}, \quad T_{2}\left(q^{2}\right)=\frac{T(0)}{1-\tilde{q}^{2} / \beta}, \quad \tilde{q}^{2}=q^{2} / M_{B_{s}^{*}}^{2} .
$$

$T(0)=0.161(45)$ if $M_{B_{s}^{*}}$ is a free parameter (left graph).
$T(0)=0.164(38)$ if $M_{B_{s}^{*}}=5.4158 \mathrm{GeV}$ is fixed from PDG2010.

Lattice setup

- Tadpole improved $\mathcal{O}\left(1 / m_{b}^{2}, v_{r e l}^{4}\right)$ moving NRQCD action. Discretisation error starts at $\mathcal{O}\left(\alpha_{s} a^{2}\right)$ (tree-level errors begin at $\left.\mathcal{O}\left(a^{5}\right)\right)$.
- The bare b quark mass is determined from the physical \uparrow masses using NRQCD.

$$
\text { [A. Gray et al., Phys. Rev. D 72, } 094507 \text { (2005)] }
$$

- Lüscher-Weisz gluon action. AsqTad fermion action (sea and light valence quarks).
- The local operators (currents) are expanded to $\mathcal{O}\left(1 / m_{b}\right)$.
- Operator matching factors are calculated by tadpole-improved 1-loop lattice perturbation theory.

$$
J^{\text {cont }}=\left(1+\alpha_{s} c_{+}\right) J_{+}^{(0)}+\alpha_{s} c_{-} J_{-}^{(0)}+\frac{1}{m_{b}} J_{+}^{(1)}
$$

$\mathcal{O}\left(\alpha_{s} / m_{b}, \alpha_{s}^{2}, 1 / m_{b}^{2}\right)$ ignored.

Correlators

Interpolating fields:

- Light mesons: $\Phi_{F}=\bar{q} \Gamma s, \quad q=u, s, \quad \Gamma=\gamma_{5}, \gamma_{i}$.
- B / B_{s} mesons: $\Phi_{B}=\bar{q} \gamma_{5} \Psi_{b}, \quad q=u, s$.

2-point correlators (with a point source):

$$
\begin{aligned}
& C_{F F}\left(x_{t}, \vec{p}^{\prime}\right)=\sum_{\vec{x}}\left\langle\Phi_{F}(x) \Phi_{F}^{\dagger}(0)\right\rangle e^{-i \vec{p}^{\prime} \cdot \vec{x}} \\
& C_{B B}\left(x_{t}, \vec{p}\right)=\sum_{\vec{x}}\left\langle\Phi_{B}(x) \Phi_{B}^{\dagger}(0)\right\rangle e^{-i \vec{p} \cdot \vec{x}}
\end{aligned}
$$

3-point correlators

$$
C_{F J B}\left(\vec{p}, \vec{p}^{\prime}, T, t\right)=\sum_{\vec{x}} \sum_{\vec{y}}\left\langle\Phi_{B}(\vec{x}, T) J(\vec{y}, t) \Phi_{F}^{\dagger}(0)\right\rangle e^{-i \vec{p} \cdot \vec{x}} e^{i \vec{q} \cdot \vec{y}},
$$

- $q=p-p^{\prime}$.
- $T=x_{t}-z_{t}$ is varied between 8 and 26 on the coarse lattice, 15 and 36 on the fine lattice. (About 1.3 to 3.2 fm .)
- $t=y_{t}-z_{t}=0,1, \cdots, T$. Fit both t and T.

